专题复习(三)——参数方程
参数方程知识点整理

参数方程知识点整理参数方程是数学中一种常用的表示曲线形状的方法。
参数方程的形式为x=f(t),y=g(t),其中x和y分别是曲线上的点的横纵坐标,t为参数。
参数方程通常用于描述一些复杂的曲线,如圆、椭圆、双曲线等,它可以方便地描述出曲线上每一个点的位置。
下面结合一些具体的例子来整理参数方程的相关知识点。
1.直线的参数方程:当直线的斜率为k,截距为b时,可以通过参数方程表示为:x=ty=kt+b其中t为参数,t可以取任意实数。
2.圆的参数方程:一个圆可以通过参数方程表示为:x=R*cos(t)y=R*sin(t)其中R为圆的半径,t为参数,t的取值范围可以是[0,2π]。
3.椭圆的参数方程:一个椭圆可以通过参数方程表示为:x=a*cos(t)y=b*sin(t)其中a和b分别是椭圆的长轴长度和短轴长度,t为参数,t的取值范围可以是[0,2π]。
4.双曲线的参数方程:一个双曲线可以通过参数方程表示为:x=a*cosh(t)y=b*sinh(t)其中a和b分别是双曲线的参数,cosh(t)和sinh(t)分别表示双曲函数的余弦和正弦函数。
5.抛物线的参数方程:一个抛物线可以通过参数方程表示为:x=ty=at^2+bt+c其中a、b和c为抛物线的参数,t为参数,t可以取任意实数。
6.参数方程与命题方程的转化:有时候我们已经知道了一条曲线的命题方程,想要求出其参数方程。
这时可以通过代入一些特定的参数值,利用参数方程的定义解出x和y的值,从而得到参数方程。
例如,已知一条直线的命题方程为y=2x+3,我们可以任选一个参数值t,假设t=1,那么根据直线的参数方程可以得到:x=1y=2*1+3=5所以参数方程可以表示为:x=ty=2t+3参数方程在几何图形的研究中有着广泛的应用。
通过参数方程,我们可以方便地描述出复杂曲线的形状和特性,比如曲线的弧长、曲率、切线等。
参数方程能够将复杂的问题转化为简单的曲线方程的解析表达式,进而进行更深入的研究和分析。
高考数学知识点参数方程

高考数学知识点参数方程高考数学知识点:参数方程数学在高考中占据着重要的地位,其中一个重要的知识点就是参数方程。
参数方程是描述物体运动以及数学曲线的一种有效方式。
本文将从基本概念开始,逐步深入探讨参数方程的相关内容。
一、什么是参数方程?参数方程是一种使用参数表示变量关系的表达方式。
在平面直角坐标系中,我们通常使用 x 和 y 坐标轴来表示一个点的位置。
但在有些情况下,一个点的位置需要通过另外的变量来确定。
例如,我们可以使用时间作为参数来描述物体的运动轨迹。
二、参数方程的表示方法通常,参数方程可以用以下形式表示:x = f(t)y = g(t)其中,f(t) 和 g(t) 是关于参数 t 的函数。
通过不同的 t 值,我们可以得到一组点 (x, y) 的坐标。
三、平面曲线的参数方程1. 点的轨迹考虑一个点 P(x, y),沿着一条轨迹运动。
如果我们能够找到一个参数 t,能够唯一确定点的位置,那么我们可以使用参数方程来描述点的轨迹。
2. 直线的参数方程对于直线,我们可以使用参数方程表示。
例如,一条直线的参数方程可以写作:x = at + by = ct + d其中 a、b、c、d 是常数。
3. 圆的参数方程对于一个圆,我们可以使用参数方程表示。
以原点 O 为圆心,半径为 r 的圆的参数方程可以写作:x = r*cos(t)y = r*sin(t)其中,t 是参数,范围在[0, 2π]。
四、参数方程的应用1. 物体运动在物理学中,参数方程常常用于描述物体的运动轨迹。
例如,一个抛体运动的轨迹可以使用参数方程来表示。
2. 曲线绘制在计算机图形学中,参数方程可以用于生成各种复杂的曲线。
通过调整参数的取值,我们可以绘制出各种形状的曲线,如椭圆、双曲线等。
3. 函数的参数化有些函数无法用解析式直接表示,但可以通过参数方程来表示。
例如,钟摆的运动可以通过一个参数方程来描述。
五、参数方程的优点和不足1. 灵活性参数方程具有很大的灵活性,可以描述出各种复杂的曲线。
参数方程知识点

参数方程知识点参数方程是用参数来表示平面曲线或者空间曲线的方程。
参数方程中的变量称为参数,通过改变参数的值来得到曲线上不同点的坐标。
参数方程在数学、物理等领域都有广泛的应用。
参数方程的基本形式为:x=f(t)y=g(t)其中,x和y是平面上的坐标,t是参数。
函数f(t)和g(t)表示x和y坐标与参数t之间的关系,可以是多项式函数、三角函数、指数函数等。
参数方程的优点是可以描述一些复杂的曲线,例如圆、椭圆、螺旋线等。
而直角坐标方程通常难以表示这些曲线。
具体地,参数方程可以应用在以下几个方面。
1. 平面曲线的参数方程对于平面曲线,常见的参数方程有圆的参数方程、椭圆的参数方程、双曲线的参数方程等。
例如,圆的参数方程为:x=r*cos(t)y=r*sin(t)其中,r为圆的半径,t为参数,取值范围是0到2π。
2. 空间曲线的参数方程对于空间曲线,参数方程可以用来描述空间中的曲线、曲面等。
例如,螺旋线的参数方程可以表示为:x=r*cos(t)y=r*sin(t)z=k*t其中,r为螺旋线的半径,k为螺旋线的高度,t为参数,取值范围是0到2π。
3. 曲线的方程和轨迹通过参数方程,可以求解曲线的方程和轨迹。
例如,通过给定曲线上的两个点,可以得到曲线的方程,然后可以推导出曲线的形状和性质。
另外,通过变换参数的取值范围,可以得到不同参数方程的曲线,从而得到曲线的轨迹。
4. 曲线的长度和曲率通过参数方程,可以计算曲线的长度和曲率等。
曲线的长度可以通过参数方程的导数来计算,即:L=∫√(dx/dt)²+(dy/dt)²dt其中,L为曲线的长度,dx/dt和dy/dt为参数方程对应的导数。
曲线的曲率可以通过曲线的参数方程和导数来计算,即:k=|d²y/dx²| / (1+(dy/dx)²)^(3/2)其中,k为曲线的曲率,dy/dx和d²y/dx²为参数方程对应的导数。
数学参数方程知识点总结

数学参数方程知识点总结1.参数的定义:在参数方程中,通常使用一个或多个参数来表示变量。
参数的取值范围可以是实数集,也可以是一个有限的区间。
2.参数方程表示的几何对象:参数方程可以描述各种几何对象,包括曲线、曲面、体积等。
常见的参数方程表示几何对象的经典例子有圆的参数方程、直线的参数方程以及曲面的参数方程等。
3.曲线的参数方程:曲线的参数方程通常写为x=f(t),y=g(t),其中x和y是曲线上的点的坐标,而t是参数。
通过改变参数t的取值,我们可以得到曲线上的不同点。
参数方程可以用来描述各种曲线,例如直线、抛物线、椭圆、双曲线等。
4.曲面的参数方程:曲面的参数方程通常写为x=f(u,v),y=g(u,v),z=h(u,v),其中x、y和z是曲面上的点的坐标,而u和v是参数。
通过改变参数u和v的取值,我们可以得到曲面上的不同点。
参数方程可以用来描述各种曲面,例如球面、柱面、锥面等。
5.参数方程的优点:相比于直角坐标方程,参数方程具有一些独特的优势。
它可以更好地描述曲线和曲面的特征,如曲率、切线以及曲面上的法向量等。
此外,参数方程可以更好地描述复杂的几何变换,例如旋转、平移和缩放等。
6.参数方程的应用:参数方程在数学、物理、工程等领域都有广泛的应用。
在数学中,它可以用来研究曲线和曲面的性质,解析几何和微积分等。
在物理中,参数方程可以用来描述粒子的运动轨迹、电磁场的分布等。
在工程中,参数方程可以用来设计曲线和曲面,生成图形模型等。
7.曲线的特征:通过参数方程,我们可以轻松地计算曲线的长度、曲率、切线方程等。
对于二次曲线,可以通过参数方程推导出焦点、直径、抛物线的方程等。
这些特征可以帮助我们更好地理解曲线的性质和几何意义。
8.曲面的特征:通过参数方程,我们可以计算曲面的方程、法向量、切平面等特征。
这些特征可以帮助我们更好地理解曲面的性质,如曲面的形状、曲率等。
9.曲线和曲面的相交:通过参数方程,我们可以确定曲线和曲面的交点。
高三数学参数方程知识点

高三数学参数方程知识点数学是一门抽象而又具有普适性的学科,它的应用广泛,对于高三学生来说,数学的学习变得更加重要和密集。
本文将着重介绍高三数学中的参数方程知识点,帮助学生全面理解并有效记忆这一概念。
一、参数方程的定义与特点参数方程是指用一个参数表示所有的自变量和因变量之间的函数关系。
通常用t作为参数,表示自变量的取值范围。
在参数方程中,将自变量和因变量用参数表示,使得函数的自变量和因变量之间的关系更为灵活。
二、参数方程的表示方法参数方程的表示方法有多种形式,常见的有向量表示法和分量表示法。
1. 向量表示法在向量表示法中,自变量和因变量都用向量表示。
例如,对于平面上的一个点P,其参数方程可表示为:P(t) = (x(t), y(t))其中,x(t)和y(t)分别表示点P的x坐标和y坐标,t为参数。
2. 分量表示法在分量表示法中,将自变量和因变量都分别表示为关于参数t的函数。
例如,对于平面上的一个点P,其参数方程可以表示为:x = f(t)y = g(t)其中,f(t)和g(t)分别表示x和y的函数,t为参数。
三、参数方程应用领域参数方程在数学中有广泛的应用,特别是在曲线的研究中起到重要作用。
下面分别介绍参数方程在平面曲线和空间曲线中的应用。
1. 平面曲线参数方程在平面曲线中的应用非常广泛,常见的曲线方程如圆、椭圆、抛物线、双曲线等都可以用参数方程表示。
通过参数方程,可以对曲线的形状和性质进行更深入的研究。
例如,对于圆的参数方程为:x = a*cos(t)y = a*sin(t)其中,a为半径,t为参数。
通过改变参数t的取值范围,可以绘制出一条圆的完整轨迹。
2. 空间曲线参数方程在空间曲线的研究中也起到重要作用,例如,直线、曲线、螺旋线等都可以通过参数方程来表示。
通过参数方程,可以描述物体在空间中的运动轨迹,从而研究物体的运动方式和变化规律。
四、参数方程的解法当给定一个参数方程时,我们需要求解参数方程对应的曲线方程或图形。
高三参数方程知识点

高三参数方程知识点高三学生在学习数学的过程中,会接触到各种不同的知识点和概念。
其中,参数方程是高三数学学习中的一个重要内容。
本文将详细介绍高三参数方程的相关知识点,帮助同学们更好地理解和掌握该知识。
一、参数方程的概念参数方程是指以一个或多个参数表示的函数关系,其中参数的取值范围可以是任意的。
一般来说,参数方程可以将曲线或曲面上的点表示为参数的函数。
二、参数方程的表示方法1. 一元一次方程组参数方程最简单的形式是一元一次方程组。
例如,对于平面上的曲线,可以用两个一元一次方程来表示。
常见的一元一次方程组形式为:x = f(t)y = g(t)其中,x和y是曲线上的点的坐标,t是参数。
2. 二元一次方程组在三维空间中,参数方程可以用二元一次方程组表示。
形式为:x = f(u, v)y = g(u, v)z = h(u, v)其中,x、y和z是曲面上的点的坐标,u和v是参数。
三、参数方程的应用参数方程在几何图形的描述和计算中具有广泛的应用。
以下是几个常见的应用场景:1. 曲线的参数方程参数方程可以描述各种曲线,如直线、圆、椭圆、抛物线和双曲线等。
通过参数方程,我们可以很方便地计算曲线上的点的坐标,进而绘制曲线。
2. 曲线的长度和曲率参数方程在计算曲线的长度和曲率时非常有用。
通过确定参数的取值范围,并计算相邻点的距离,我们可以求得曲线的长度。
此外,通过求导数和二阶导数,我们还可以计算曲线的曲率和曲率半径等重要指标。
3. 曲面的参数方程参数方程可以用于描述各种曲面,如球面、圆柱、圆锥和双曲面等。
通过参数方程,我们可以计算曲面上的点的坐标,进而绘制出复杂的三维图形。
四、参数方程的特点和优势参数方程具有一些独特的特点和优势,使其在数学领域得到广泛应用:1. 灵活性:参数方程中的参数可以取任意实数值,因此可以描述各种不同的几何图形。
2. 简洁性:用参数方程表示几何图形时,通常可以用更简洁的形式表示,较少出现复杂的运算和方程。
高考参数方程知识点归纳
高考参数方程知识点归纳高考数学中的参数方程作为一个重要的知识点,是考查学生对于坐标系、直线方程和解析几何的基本理解和应用能力的一种方式。
参数方程是通过引入参数的方式来描述一条曲线或者曲面的方程,它与直角坐标系有着密切的联系,可以方便地表达出不同形状和特征的图形。
在这篇文章中,我们将对高考中常见的参数方程知识点进行归纳和总结。
1. 参数方程的基本概念和应用参数方程是一种用参数的形式来表示曲线或者曲面上的点的方程,它通常以参数的形式给出,通过改变参数的取值范围,可以得到不同位置的点,从而形成一条曲线或者曲面。
在解析几何中,参数方程可以用来描述直线、圆、椭圆、抛物线、双曲线等各种不同形状的曲线。
2. 参数方程与直线的关系直线可以通过参数方程的形式来表示,这种表示方式可以使得直线的方程更加简洁和直观。
一般而言,一条直线在参数方程中可以表示为x=at+b,y=ct+d,其中a、b、c、d 是常数。
通过给定不同的参数值,我们可以得到直线上的不同点,从而构成整条直线。
3. 参数方程与曲线的关系参数方程在描述曲线时可以给出曲线上每个点的坐标,从而实现对曲线形状的准确描述。
例如,给定一个参数方程 x=f(t),y=g(t),通过给定不同的参数 t 值,我们可以获得曲线上的不同点的坐标。
参数方程不仅可以表达直线,还可以表达各种曲线,如圆、椭圆、抛物线、双曲线等。
4. 参数方程的转换和应用有时候,我们需要将参数方程转换为直角坐标方程,或者将直角坐标方程转换为参数方程。
对于参数方程转换为直角坐标方程,我们可以通过将参数方程中的参数表示用 x、y 表示,然后通过联立方程求解得到直角坐标方程。
而对于直角坐标方程转换为参数方程,我们可以通过引入参数来对直角坐标进行参数化,从而得到参数方程。
5. 参数方程与面积的计算通过参数方程,我们还可以计算曲线所围成的面积。
对于曲线上的两个相邻点 P 和 Q,我们可以用线段 PQ 所围成的面积近似代替曲线围成的面积,并且随着线段 PQ 的长度逐渐缩小,所得到的近似值也会越来越接近实际面积。
参数方程总结知识点
参数方程总结知识点一、参数方程的概念参数方程是指用参数表示平面曲线、空间曲面上各点的坐标的方程,一个平面曲线或者空间曲面可以由一对参数方程来表示。
通常情况下,参数方程是形如x=f(t),y=g(t),z=h(t)的方程,其中x、y、z分别是曲线上某一点的坐标,t是参数。
参数t可以是实数也可以是整数。
二、参数方程的性质1. 参数方程的表示形式:参数方程有两种常用的表示形式,一种是向量形式,另一种是分量形式。
向量形式的参数方程可以表示为:r(t)=<x(t), y(t), z(t)>其中r(t)是位置向量,t是参数,x(t)、y(t)、z(t)分别是位置向量在x轴、y轴、z轴上的分量。
分量形式的参数方程可以表示为:x=f(t),y=g(t),z=h(t)其中x、y、z分别是曲线上某一点的坐标,t是参数,f(t)、g(t)、h(t)分别是曲线上某一点的坐标在x轴、y轴、z轴上的分量。
2. 参数方程的图形:参数方程描述的曲线或者曲面通常是比较复杂的几何图形,参数方程的图形特点不容易直接观察出来。
但是我们可以利用参数方程来绘制曲线或者曲面的图形,可以通过不同的参数值来确定曲线或者曲面上的一系列点,然后将这些点用线段或者曲线段连接起来,就可以得到参数曲线的图形。
3. 参数方程的应用:参数方程在物理、工程等领域有着广泛的应用,比如用来描述物体在空间中的运动轨迹、描述流体在空间中的运动状态等。
参数方程还可以用来求解一些复杂的几何问题,比如求参数曲线的长、面积等。
三、参数方程的运算参数方程的运算包括参数曲线的求导、求积分等。
参数方程的求导和求积分与普通的函数求导和求积分类似,只是要注意求导和求积分的对象是参数t,而不是变量x、y、z。
四、参数方程的方程组一条平面曲线或者空间曲面通常可以由多个参数方程组成,这些参数方程之间存在一定的关系,我们可以利用参数方程的方程组来求解曲线或者曲面上的一些特殊点。
五、参数曲线的方程与直角坐标系之间的转换参数曲线的方程与直角坐标系之间可以相互转换,通过参数曲线的方程,我们可以求解其在直角坐标系中的方程,通过直角坐标系中的方程,我们也可以求解其在参数方程中的方程。
参数方程的知识点总结
千里之行,始于足下。
参数方程的知识点总结参数方程是表示曲线或曲面的一种方法,它以一或多个变量作为参数来描述曲线或曲面上的点的位置。
参数方程有广泛的应用,包括几何、物理、工程等领域。
下面是对参数方程的知识点的总结。
1. 参数方程的基本概念:参数方程是用参数表示自变量与函数值之间关系的方程。
对于平面上的曲线,一般使用参数t来表示点的位置。
对于三维空间中的曲线或曲面,一般使用参数u和v来表示点的位置。
参数方程中的参数范围可以是实数集,也可以是一个有限区间,取决于具体的问题。
2. 参数方程与直角坐标系的转换:参数方程可以通过参数与直角坐标系中的点坐标之间的关系来进行转换。
对于二维平面上的参数方程,通过改变参数t,可以得到一系列点的坐标。
对于三维空间中的参数方程,通过改变参数u和v,可以得到一系列点的坐标。
3. 参数方程表示的曲线的性质:参数方程可以用来描述曲线的形状、方向等性质。
曲线的方向可以通过参数的变化来决定,当参数递增时,曲线的方向也随之递增。
曲线上任意一点的切线斜率可以通过参数方程对应点处导数计算得到。
4. 参数方程的举例:参数方程可以表示各种各样的曲线和曲面,例如直线、圆等。
第1页/共2页锲而不舍,金石可镂。
对于直线,通常可以使用参数方程表示为x = at + b,y = ct + d。
对于圆,可以使用参数方程表示为x = r * cos(t),y = r * sin(t)。
5. 参数方程在几何中的应用:参数方程可以用来表示平面上的曲线、曲面等几何图形。
参数方程可以用来计算曲线的弧长、曲面的面积等几何量。
参数方程可以用来求解曲线与直线或曲线与曲线之间的交点。
6. 参数方程在物理中的应用:参数方程可以用来描述物体的运动轨迹。
参数方程可以用来描述物体的速度、加速度等物理量。
参数方程可以用来求解物体在空间中的位置、速度和加速度等问题。
7. 参数方程在工程中的应用:参数方程可以用来描述工程中的曲线和曲面,例如机械零件的形状等。
参数方程知识点总结
千里之行,始于足下。
参数方程知识点总结
参数方程是指将一个曲线或者曲面的坐标用参数表示的方式。
参数方程常用于描述复杂的曲线和曲面,同时也可以方便地进行计算和分析。
以下是参数方程的一些基本知识点总结:
1. 参数方程的定义:参数方程是一组函数,用参数表示曲线或曲面上的坐标点,通常用向量形式表示。
例如,对于二维曲线,可以表示为 x = f(t), y = g(t),其中 t 是参数,x 和 y 是曲线上的点的坐标。
2. 参数化空间曲线:参数化空间曲线是指通过参数方程定义的曲线。
通过改变参数 t 的取值范围,可以得到曲线上的不同点。
3. 参数方程的参数选择:参数的选择通常可以根据具体的问题和需求进行灵活选择。
常见的参数选择可以是距离、时间、角度等。
不同参数选择可能会产生不同的参数方程,因此要根据具体问题确定合适的参数。
4. 参数方程和函数方程的关系:参数方程和函数方程是可以相互转化的。
对于简单的函数方程,可以化简为参数方程;而对于参数方程,可以将其通过消元等方法转化为函数方程。
5. 参数方程的图像表示:参数方程可以通过计算不同参数下的坐标点来绘制曲线或曲面的图像。
常见的绘图方法包括使用计算机软件、手工绘图等。
6. 参数方程的应用:参数方程在计算几何、物理学、工程学等领域有广泛的应用。
例如,参数方程可以用于描述曲线的弧长、速度、加速度等性质,并进行相关计算和分析。
第1页/共2页
锲而不舍,金石可镂。
总而言之,参数方程是一种描述曲线或曲面的坐标表示方法,具有灵活性和计算简便性,并在不同领域中起到重要的应用作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题复习(三)——参数方程
基本知识点:
圆的参数方程:x a R y b R =+=+⎧⎨⎩cos sin θθ (θ为参数,几何意义,如图(a ,b )为圆心,R 为半径) y
P(x,y)
O x θ
椭圆的参数方程:x x a y y b =+=+⎧⎨⎩00cos sin θθ (其中(x 0,y 0)为中心,a 、b 分别为长、短半轴长,θ为参数,叫离心角,如图)
基本思路:
有关“范围”“最值”问题由参数方程转化成三角函数问题比较简单
【典型例题】
例1. 已知点(,)是圆=上任意一点,求的取值范围。
P x y x +y 122u x y =
++22
解:设,则x y u u u ==⎧⎨⎩=++⇒+=+cos sin cos sin sin cos θθθθθθ2222
sin()(tan )θϕϕ-=
-+=221
12u u u
|sin()||
|θϕ-≤∴-+≤122112,u u
解得:
473473-≤≤+u
例2. 已知,求的范围。
a a b b a b 22220++-=+
解:
()()a b ++-=11222
令a b =-+=+⎧⎨⎪⎩⎪1212cos sin θθ
则a b +=+=+224(cos sin )sin()θθθπ
∴-≤+≤22a b
例3. 已知对于圆x 2+(y-1)2=1上任意一点P (x ,y ),不等式x+y+m ≥0恒成立,求实数m 的取值范围。
解:设x y ==+⎧⎨
⎩cos sin θθ1
则x y m m m ++=+++≥⇔≥---cos sin sin cos θθθθ101
⇔≥---=
-m [sin cos ]max θθ121
例4. 若,求:32622x y x += (1)x 2+y 2的最大值;
(2)x +y 的最小值。
解: ()x y -+=12312
2
∴=+=⎧⎨⎪⎩⎪令x y 132cos sin θθ
则()113292122422222x y +=++=--≤(cos )(
sin )(cos )θθθ
即()max x y 224+=
()21321021x y +=++
=++cos sin sin()θθθϕ
∴+=-()max x y 110
2
例5. A 是椭圆长轴的一个端点,若椭圆上存在一点P ,使∠OPA =90°,(O 为椭圆的中心),求椭圆离心率的取值范围。
解:设x a y b ==⎧⎨
⎩cos sin ϕϕ
则由,PO PA a b ⊥⇒(cos sin )ϕϕ0)sin 4cos (=-ϕϕb a ,
ϕϕϕ2222sin cos cos -=a b 即
⇒-=--a c a 222211cos (cos )cos ϕϕϕ ∴=
+≥e 21112cos ϕ
∴≤<221e
例6.
椭圆上一点到上顶点(,)距离的最大值x y m m P B m 22
241020+=<<()等于短轴长,求m 的取值范围。
解:设(,)P m 2cos sin θθ
则||(cos )(sin )(sin )(sin sin )PB m m m 22222224121=+-=-+-+θθθθθ =----+-()(sin )441642
2
222m m m m θ
sin θ
当时,才能使时,点位于下顶点时m m P 2
2411-≥=-sin θ
⇒==||()max PB m b 22
此时,m m m m 22420≥-∴≥>() 又,0222<<∴≤<m m
【模拟试题】
1. 动点M (x ,y )在右半椭圆x y 2221+=上,则(
)min y x +=1________ 2. 实数满足
941622x y +=,求下列f 的最值 (1)f x y =+;(2)f x xy y =++22
3. 点P 在椭圆弧x y x y 22
259100+=≥≥(),上运动,点A (10,6)以PA 为对角线作
各边平行x ,y 轴的矩形,求矩形面积S 的最值。
4. 点A 在椭圆x y 2241+=上运动,点B 在圆C :
x y 22213+-=()上运动,求|AB|的最值
5. 椭圆x y 22
941+=上动点P (x ,y )与定点A (a ,0)(03<<a )的距离的最小值
是1,求a 的值。
【试题答案】
1. 2
2
2. 令x y ==432cos sin θθ,
(1)±
2133;(2)26261
9± 3. 令
x y s s ====-5330159422cos sin ()
max min θθ,,, 4. 令x y AB AC r ===-=-211
3cos sin ||||min min θθ,,
||||max max AB AC r =+=+271
3
5. a =2。