西门子840D系统下的螺距补偿和垂度补偿的综合运用
840D螺距补偿

840D螺距补偿1.修改轴参数,设定各轴补偿点数量。
a)设定坐标轴补偿点数量依次按“Menu Select”—〉“启动”—〉“机床数据”—〉“轴MD”,找到MD38000(用于差补补偿的中间点数量),设置补偿点的数量,本例中为:50。
然后按“Input”键,此时出现4400报警“机床数据修改将导致缓冲存储器的重新组织(数据丢失)”。
请勿NCK重启,作下一步备份NC数据。
b)备份NC数据依次按“Menu Select”—〉“服务”—〉“”—〉“连续启动”,出现下图。
在文档内容中选择“NC”和“带补偿数据”;输入文件名称,一定要按“Input”键,否则文件名无效。
本例中为:NC_COMP01;按“文档”键,开始创建连续启动文档,如下图所示。
c)恢复数据待连续启动文档创建好后,按“读入调试文档”键。
选择刚才创建的连续启动文档NC_COMP01,按“启动”键,并点击“是”加以确认。
此后系统会重启几次。
2.导出补偿数据,生成ARC文件或MPF程序(参见补充说明)因为补偿文件不能直接修改,只能输出成ARC文件。
下面以给轴1添加螺补为例说明。
依次按“Menu Select”—〉“服务”—〉“数据选择”,选择“NC-生效-数据”,按“确认”键。
在数据输出窗口的树形图中选择“NC-生效-数据”—〉“测量系统误差补偿”—〉“测量系统错误补偿—轴1”,按“文档”键。
出现下图。
输入文档名,本例中为:AX1_EEC。
选择文档格式,必须为:带CR+LF穿孔带,否则无法编辑。
按启动键。
3.输入补偿数据,编辑ARC文件。
PCU50可直接编辑ARC文件。
PCU20可将ARC文件通过RS232传出,使用文本编辑器编辑。
也可制作补偿程序,见第7条的补偿说明。
PCU50操作如下:在树形图中选择“文档”—〉“AX1_EEC”,按“Input”键打开文件。
补偿文件结构如下:$AA_ENC_COMP[0, 0, AX1]=0.5 对应于最小位置上的误差值$AA_ENC_COMP[0, 1, AX1]=0.2 对应于最小位置+1个间隔位置上的误差值$AA_ENC_COMP[0, 2, AX1]=-0.5 对应于最小位置+2个间隔位置上的误差值… …$AA_ENC_COMP[0, 48, AX1]=0 对应于最小位置+48个间隔位置上的误差值$AA_ENC_COMP[0, 49, AX1]=0 对应于最小位置+49个间隔位置上的误差值$AA_ENC_COMP_STEP[0, AX1]=10 测量间隔(毫米)$AA_ENC_COMP_MIN[0, AX1]=0 最小位置(绝对)$AA_ENC_COMP_MAX[0, AX1]=100 最大位置(绝对)$AA_ENC_COMP_IS_MODULO[0, AX1]=0 用于旋转轴修改文件后,保存并关闭编辑器。
840dsl螺距补偿方法

840dsl螺距补偿方法宝子,今天咱来唠唠840dsl的螺距补偿方法哈。
咱得先知道,螺距补偿是为了让机床的加工精度更高呢。
一般来说呀,在840dsl 系统里,你得先进入到机床的参数设置界面。
这就像你要进一个神秘的小房间,里面藏着能让机床变厉害的魔法咒语。
在参数设置里,你要找到和螺距补偿相关的那些参数。
这可能得费点小劲儿,就像在一堆宝藏里找特定的那颗宝石一样。
有些参数可能是关于螺距补偿的点数啦,补偿的间隔啦之类的。
你得小心地设置这些数值,要是弄错了,机床可能就会闹小脾气,加工出来的东西就不那么完美啦。
然后呢,你要测量实际的螺距误差。
这就好比给机床做个体检,看看它的螺距到底哪里有偏差。
你可以用一些专业的测量工具,像激光干涉仪之类的。
这个测量过程可得认真,就像医生给病人做检查一样,不能马虎。
得到了测量数据后,就把这些数据按照系统要求的格式输入到螺距补偿的参数里。
还有哦,在做螺距补偿的时候,要注意机床的状态。
要是机床有其他的故障或者没调整好,那这个螺距补偿做了可能效果也不好。
就像你给一个生病的人吃补药,可他还有其他毛病没治好呢,补药也发挥不了最大的作用。
而且呀,做完螺距补偿之后,最好再测试一下机床的加工精度。
看看是不是真的有提高。
要是有提高,那就太棒啦,就像你的小宠物学会了新技能一样让人开心。
要是没有,那可能就得重新检查一下前面的步骤,是不是哪里出了小差错。
总之呢,840dsl的螺距补偿虽然有点小复杂,但只要咱细心、耐心,就像照顾小宝贝一样对待这个过程,就能让机床更好地工作,加工出超棒的零件呢。
宝子,希望你能顺利搞定螺距补偿哦。
西门子840D数控系统螺距误差补偿知识

西门子840D数控系统螺距误差补偿西门子840D数控系统不同于以前曾广泛应用的810T/M和840C等老数控系统,它并没有提供专门的双向螺距误差补偿功能,通过对840D系统中的下垂补偿功能的分析研究,找到了一种方法,成功的解决了进行双向螺距误差补偿的问题。
关键词:数控系统下垂补偿功能双向螺距误差补偿由于机床丝杠在制造、安装和调整等方面的误差,以及磨损等原因,造成机械正反向传动误差的不一致,导致零件加工精度误差不稳定。
因此也必须定期对机床坐标精度进行补偿,必要时要做双向坐标补偿,以达到坐标正反向运动误差的一致性。
一、西门子840D数控系统的补偿功能西门子840D数控系统提供了多种补偿功能,供机床精度调整时选用。
这些功能有:1、温度补偿。
2、反向间隙补偿。
3、插补补偿,分为:(1) 螺距误差和测量系统误差补偿。
(2)下垂补偿(横梁下垂和工作台倾斜的多维交叉误差补偿)。
4、动态前馈控制(又称跟随误差补偿)。
包括:速度前馈控制和扭矩前馈控制。
5、象限误差补偿(又称摩擦力补偿)。
分为:常规(静态) 象限误差补偿和神经网络(动态)象限误差补偿。
6、漂移补偿。
7、电子重量平衡补偿。
在西门子840D功能说明样本和资料中所列的众多补偿功能中,都没有指出该系统具有双向螺距误差补偿功能。
但是在下垂补偿功能描述中却指出,下垂补偿功能具有方向性。
这样,如果下垂误差补偿功能,在基准轴和补偿轴定义为同一根轴时,就可能对该轴进行双向丝杠螺距误差补偿,由此提供了一个双向螺距误差补偿的依据。
二、840D下垂补偿功能的原理1、下垂误差产生的原因:由于镗铣头的重量或镗杆自身的重量,造成相关轴的位置相对于移动部件产生倾斜,也就是说,一个轴(基准轴)由于自身的重量造成下垂,相对于另一个轴(补偿轴)的绝对位置产生了变化。
2、840D下垂补偿功能参数的分析:西门子840D数控系统的补偿功能,其补偿数据不是用机床数据描述,而是以参数变量,通过零件程序形式或通用启动文件(_INI文件) 形式来表达。
840D螺距补偿步骤

1.螺距补偿→Service→Manage Date→NC-active –date→Meas.-system-error-comp.→选择将要补偿的轴。
→Copy→光标到LIECHTI→Insert→打开补偿表→输入补偿值如X轴的补偿:CHANDATA(1)$AA_ENC_COMP[1,0,AX1]=0$AA_ENC_COMP[1,1,AX1]=-0.00 $AA_ENC_COMP[1,2,AX1]=-0.001 $AA_ENC_COMP[1,3,AX1]=-0.003 $AA_ENC_COMP[1,4,AX1]=-0.004 $AA_ENC_COMP[1,5,AX1]=-0.007 $AA_ENC_COMP[1,6,AX1]=-0.009 $AA_ENC_COMP[1,7,AX1]=-0.011 $AA_ENC_COMP[1,8,AX1]=-0.012 $AA_ENC_COMP[1,9,AX1]=-0.014 $AA_ENC_COMP[1,10,AX1]=-0.017 $AA_ENC_COMP[1,11,AX1]=-0.016 $AA_ENC_COMP[1,12,AX1]=-0.018 $AA_ENC_COMP[1,13,AX1]=-0.019 $AA_ENC_COMP[1,14,AX1]=-0.023 $AA_ENC_COMP[1,15,AX1]=-0.026 $AA_ENC_COMP[1,16,AX1]=-0.028 $AA_ENC_COMP[1,17,AX1]=-0.029 $AA_ENC_COMP[1,18,AX1]=-0.029 $AA_ENC_COMP[1,19,AX1]=-0.032 $AA_ENC_COMP[1,20,AX1]=-0.034 $AA_ENC_COMP[1,21,AX1]=-0.037 $AA_ENC_COMP[1,22,AX1]=-0.037 $AA_ENC_COMP[1,23,AX1]=-0.039 $AA_ENC_COMP[1,24,AX1]=-0.042 $AA_ENC_COMP[1,25,AX1]=-0.046 $AA_ENC_COMP[1,26,AX1]=-0.049 .$AA_ENC_COMP_STEP[1,AX1]=56 $AA_ENC_COMP_MIN[1,AX1]=-171 $AA_ENC_COMP_MAX[1,AX1]=1285$AA_ENC_COMP_IS_MODULO[1,AX1]=0M1→保存并关闭此文档→Drive OFF→选择此补偿文件→Load HD→NC→看到显示屏底部出现:Job is ready 即完成→NCK-Reset→Start up→Machine Date→Axis MD→选择将要被补偿的轴。
西门子840D数控系统螺距误差及补偿

(2)机床热变形误差。机床在运行过程中各传动部件和润 滑液压管路系统会导致机床产生热变形误差;另外机床的设 计、液压元件安装位置和环境温度同样会导致机床产生热变形 误差。针对此类误差大多会采用风冷、油冷等设备降低和控制 液压系统温度来减少误差。
(4)其他误差源。如伺服系统的跟随误差、数控系统插补 计算误差、位置测量系统的测量误差等。这些误差需要对数控 系统进行不断升级,利用数控系统的误差补偿功能来控制和 减小误差。
在设计和制造时消除和减少可能的误差源、更好的利用周 边辅助设备控制环境温度等方法在技术上实现起来难度较大, 需要的从研发到成熟的时间较长,而且需要付出的经济代价也 很高昂。而对已有的机床误差,可以利用数控系统的补偿功能 进行补偿,提高机床精度。常用的补偿功能有:丝杠螺距误差补 偿、反向间隙补偿、垂度补偿等等。
輨 輰 设备管理与维修 2019 翼4(下)
也节省了时间,可以减小或部分消除螺距误差,使坐标轴的实际
位移更加接近指令值,提高机床加工精度,满足生产需求。
3 设备故障维修案例
对数控机床误差补偿前,需要进行误差测量。应使用高精度
的测量仪器(如激光干涉仪和球杆仪等)来保证测量数据的准确
性。误差测量前须将机床各零部件的间隙调整到最小,各项几何
(3)加工工件时的误差。主要由于工件材料质地不匀、断续 切屑或刀具磨损等导致加工时负载的变化所引起的误差。可以 通过使用高质量的切削刀具和优化加工工艺来改善。
机械磨损造成误差。机床长期使用过程中,导轨、丝杠、联 接轴承等部件的磨损导致机床几何精度下降,误差扩大。针对 此类误差,设备应进行科学合理的定保小修和对易损件进行定 期点检就尤为重要。严格按规程进行设备保养,能在一定程度 上来降低因机械磨损导致的误差。
西门子840D数控系统螺距误差补偿

西门子840D数控系统不同于以前曾广泛应用的810T/M和840C等老数控系统,它并没有提供专门的双向螺距误差补偿功能,通过对840D系统中的下垂补偿功能的分析研究,找到了一种方法,成功的解决了进行双向螺距误差补偿的问题。
关键词:数控系统下垂补偿功能双向螺距误差补偿由于机床丝杠在制造、安装和调整等方面的误差,以及磨损等原因,造成机械正反向传动误差的不一致,导致零件加工精度误差不稳定。
因此也必须定期对机床坐标精度进行补偿,必要时要做双向坐标补偿,以达到坐标正反向运动误差的一致性。
一、西门子840D数控系统的补偿功能西门子840D数控系统提供了多种补偿功能,供机床精度调整时选用。
这些功能有:1、温度补偿。
2、反向间隙补偿。
3、插补补偿,分为:(1) 螺距误差和测量系统误差补偿。
(2)下垂补偿(横梁下垂和工作台倾斜的多维交叉误差补偿)。
4、动态前馈控制(又称跟随误差补偿)。
包括:速度前馈控制和扭矩前馈控制。
5、象限误差补偿(又称摩擦力补偿)。
分为:常规(静态) 象限误差补偿和神经网络(动态)象限误差补偿。
6、漂移补偿。
7、电子重量平衡补偿。
在西门子840D功能说明样本和资料中所列的众多补偿功能中,都没有指出该系统具有双向螺距误差补偿功能。
但是在下垂补偿功能描述中却指出,下垂补偿功能具有方向性。
这样,如果下垂误差补偿功能,在基准轴和补偿轴定义为同一根轴时,就可能对该轴进行双向丝杠螺距误差补偿,由此提供了一个双向螺距误差补偿的依据。
二、840D下垂补偿功能的原理1、下垂误差产生的原因:由于镗铣头的重量或镗杆自身的重量,造成相关轴的位置相对于移动部件产生倾斜,也就是说,一个轴(基准轴)由于自身的重量造成下垂,相对于另一个轴(补偿轴)的绝对位置产生了变化。
2、840D下垂补偿功能参数的分析:西门子840D数控系统的补偿功能,其补偿数据不是用机床数据描述,而是以参数变量,通过零件程序形式或通用启动文件(_INI文件) 形式来表达。
西门子840D数控系统螺距补偿的探索与实践

$A A _E N C _C O M P 0 ,O,A X I]= 0. 2 [ 04 $A A _E N C 工 O M P ,l,A X I]= 0. 20 0 [ 0
. 2 4 .1
N o lo
N 020 N 030
N ( 牡 ) )
主程序
G 5 4 G 90 G D X 一 10
G4FS XO
定 义 补偿 步
$A A 一 N C _ C O M P M I [ A X I =50 . - N 0 , ] 0 0 点 $A A J N C工 O M P M A X [ , X I 二 50 . 0A ] 10 0 0 偿 终点 $A A E N C _ C O M P IS_ M O D U L [ ,A X I]= O 0 0 功能
$A A _E N C _C O M P 0 ,5,A X I]= 0. 旧 [ (兀 $A A E N C _C O M P 0 ,6,A X I]= 0. [ 仪抖
N 050
X SU B l l
PZI
调用子程 序 X SU B l ,共 调用 l 1 2 次 , 即 X 轴正 向走完 全长 到终 点后 ,再 次越程 10~
然后用 键盘 的光标键选 择 /数 据 , 0, 并选 择其 中的 /丝 杠误差 补偿 0,按 菜单键 /读 出 0 动数据 传输 " 启 5 ) 按 照预 定 的最小 位 置 , 最 大位 置 和测 量 间隔 移 动要进 行补偿 的坐标 " 6 ) 用激光 干涉仪测 试每一 点的误差 " ) 7
% N
西门子 84 D 数控系统螺距补偿的探索与实践 0
赵 阳 卢 宝
泞 夏共享精密加工有限公司,宁夏 银川 7 0 2 ) 5 1
840D螺补方法

1.螺补3.1螺补有关的参数:MD32450MA_BACKLASH[ ] (轴反向间隙补偿)MD32700MA_ENC_COMP_ENABLE[ ] (补偿生效)MD38000MA_MM_ENC_COMP_MAX_POINTA[ ](轴螺补补偿点数)3.2螺补的步骤(以X轴为例):(1)参数MD38000,按照X轴的全行程以及步长必须小于150mm的规则确定要补偿的点数(最好是一次确定并更改所有需要螺补轴的补偿点数)。
更改完此参数后会出现一个报警4000,此时不要做NCK Reset,此时应该做NC备份。
备份完后作POWER ON。
(2)在“Programe”(程序)中“Workpiece Programe(工件程序)”拷入各个轴的螺补程序LBX,LBY,LBZ等。
(3)在Service(服务)中找寻Data selection,在打开的界面中选择NC_active_data,回到data manage(数据管理)中打开NC_active_data,会出现meas.system_error_comp目录,再打开此目录会出现几个子目录:meas.system_error_comp_axis1(axis2,Axis3,axis4,……),点击axis1,按copy出现一个面板,将axis1复制到LB中,回到“workpiece(工件)”的LB中,将出现AX1—EEC程序,此程序就是X轴的数据补偿程序。
其他轴同理。
(4)在对机床进行螺补之前,应先走一遍所测轴全程,确定所测轴的全程间隙,如果过大需要调整光栅钢带的长度,使得所测轴全程激光测得的数与显示屏显示的数相差范围在0.02mm以下。
(5)将MD32700设置为0,将X轴以LBX的程序运行一遍(注意要设置好LBX 里的步长,全长等数据),将激光测试出的各个点的误差及反向间隙数据采集下来。
把各个点的误差数据以及程序的步长,最大和最小点一次写入AX1—EEC程序(注意不要改变数据的正负号),将反向间隙写入MD32450。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西门子840D系统下的螺距补偿和垂度补偿的综合运用李培志(武汉华中自控技术发展有限公司,武汉430062)摘要:结合西门子840D系统介绍了两种为提高机床定位精度的补偿方法------螺距补偿和垂度补偿。
以及在机械几何精度不理想情况下的两种方法的综合运用。
关键词:螺距补偿垂度补偿位置精度检测由于机械电子技术的飞速发展,数控机床作为一种高精度、高效率、稳定性强的自动化加工设备,越来越多的受到大家的关注。
数控系统的定位精度是影响其高精度性能的一个重要因素,而利用西门子840D数控系统自带的螺距补偿和垂度补偿功能可以极大的降低机床的定位误差,提高机床的定位精度。
本文就此介绍了这两种方法在实际中的具体使用。
补偿一般在机床几何精度调整完成后进行,这样可以尽量减少几何精度对定位精度的影响。
一般情况下,螺距补偿可以运用在所有的直线进给轴以及旋转轴中,垂度补偿多运用在镗床的主轴箱滑枕或镗杆与立柱间的交叉补偿。
1.螺距补偿840D数控系统的螺距补偿功能是一种绝对型补偿方法,螺距补偿是按轴进行的。
我们设定补偿起始点位置a,补偿终止点位置b,补偿间隔距离c,那么需要插补的中间点的个数n,其中n=1+(b-a)/c。
具体操作步骤如下:1)设置轴数据MD38000 MM_ENC_COMP_MAX_POINTS[t] =n,修改此参数后会引起NCK内存的重新分配。
所以修改后要在服务菜单下对NC做一次备份。
(t=所补偿轴的轴号)2)对系统做一次NCK复位后会出现“M4400” 报警,提示轴参数丢失,此时将1)步骤下的NC备份Load进NC系统。
3)在Nc-Active-Data菜单下Copy出“C EC_DATA”到一个新建立的备份文档目录*.MDN中。
4)在新的目录下找到并打开补偿文件表格,根据测量人员测量的数据把相应的补偿点直接在表格中更改。
保存并关闭编辑器。
5)设定轴参数MD32700 ENC_COMP_ENABLE=0,将修改后的补偿表格 Load进NC系统。
6)设定轴参数MD32700 ENC_COMP_ENABLE=1,做一次NCK复位。
7)轴回参考点,新的补偿数据生效。
可以在“D iagnostics”------“Service display”------“Service Axis”界面下看到数据改变。
螺距补偿获取补偿数据一般通过激光检测仪器,通常要经历两个步骤,一单步程,二多步程。
前者是为了根据机床轴误差建立补偿曲线,后者是为了检测出轴的反向间隙、定位精度、重复精度、位置偏差。
以笔者对一台电气改造后的PAMAφ140实际操作为例,X轴行程-50mm~5870mm, 补偿起始点位置a=0,补偿终止点位置b=5800,补偿间隔距离c=200,那么需要插补的中间点的个数根据n=1+(b-a)/c即n=30,循环次数p=n-2即p=28。
图1X轴行程图走单步程前必须先对轴回参考点,以保证基准点的唯一性。
图2单步程流程图单步程程序 XDBC1.MPFG01G90X0 F4000G4F4L100 ; 轴进200mm退200mmL101 P27 ; 轴进400mm退200mm循环28次后,轴运行到5600mm处G01G91X250F4000G4F4X-50 ; 轴运行250mm后返回50mm,使差值等于cM30子程序L100.SPFG01G91F4000X200G4F4X-200G4F4M02图3 L100流程图子程序L101.SPFG01G91F4000X400G4F4X-200G4F4M02图4 L101流程图图5 多步程流程图多步程程序 XDBC2.MPFG01G90X0F4000G4F4L100 P5 ; 进200mm退200mm循环5次L102 P27 ; 进400mm退200mm,然后再进200mm退200mm循环5次,大循环28次G01G91X250F4000X-50 ; 轴运行250mm后返回50mm,使差值等于cM30子程序L102.SPFL101L100 P4M02图6 L102流程图流程做完后,将激光干涉仪检测的误差值编辑进补偿表格即可。
一般说来在以光栅尺作为检测元件的全闭环工作方式下,补偿数据不应大于1mm。
而以电机自带编码器作为检测元件的半闭环工作方式下,补偿数据不受此限制,可根据实际情况填写。
很多机床在经过长期使用后原有的传动比可能因为齿轮磨损等诸多原因有所改变,建议在做补偿之前,特别是仅采用半闭环工作方式的轴,用激光干涉仪复查电机的传动比,以缩小补偿误差。
2.垂度补偿垂度补偿多应用在镗床的主轴箱滑枕或镗杆与立柱间的交叉补偿。
通过调节主轴箱也就是Y轴垂直于立柱的位置,最大限度的消除滑枕或镗杆水平伸出后在重力作用下对其伸出水平的影响。
同螺距补偿一样,补偿起始点位置a,补偿终止点位置b,补偿间隔距离c,那么需要插补的中间点的个数n,其中n=1+(b-a)/c。
具体操作步骤如下:1)设定通用参数MD19300 COMP_MASK=4。
2)设定通用参数MD10260=13)设定轴参数MD18342 MM_CEC_MAX_POINTS[t]=n, 修改此参数后会引起NCK内存的重新分配,同时出现“M4400” 报警,此时要在服务菜单下对NC做一次系统备份。
4)设定41300=1,激活补偿表格。
5)对系统做一次NCK复位后会出现轴参数丢失报警,此时将2)步骤下的NC备份Load进NC系统。
8)在Nc-Active-Data菜单下直接复制“EEC_DATA”到一个新建立的备份文档目录*.MDN中。
9)在新的目录下找到并打开补偿文件表格,根据测量人员测量的数据把相应的补偿点直接在表格中更改。
10)设定轴参数MD32710 ENC_COMP_ENABLE=0,将修改后的补偿表格 Load进NC系统。
11)设定轴参数MD32710 ENC_COMP_ENABLE=1,做一次NCK复位。
12)参照轴和输出轴均需回参考点,新的补偿数据生效。
可以在“D iagnostics”------“Service display”------“Service Axis”界面下看到数据改变。
笔者还是以PAMAφ140实际操作为例,W轴(滑枕)行程+5mm~-700mm, 补偿起始点位置a=0,补偿终止点位置b=-600,补偿间隔距离c=-100,那么需要插补的中间点的个数根据n=1+(b-a)/c即n=7,循环次数p=7-2即p=5。
垂度补偿的方法要较螺距补偿简便,无须激光干涉仪就可以完成。
沿滑枕进给方向置放一水平尺,以X轴(床身工作台)和Y轴(主轴箱)方向校准平尺。
然后在MDA方式下以距离c为间隔向W轴负方向分段进给,记录下每个节点的误差值,重复测量几次,取各点记录误差值的平均值写入补偿表格。
图7垂度测量示意图关于螺距补偿和垂度补偿表格的导入还有种方法是修改补偿文件格式为加工程序,将补偿文件复制到零件程序时系统会自动添加文件头,然后在AUTO方式下运行一遍该程序即可。
垂度补偿的表格与螺距补偿的表格区别在于增加了参考轴和输出轴的概念,在表格中的体现为$AN_CEC_INPUT AXIS(0)=Ax4 ;4表示W轴的轴号$AN_CEC_OUTPUT AXIS(0)=Ax2 ;2表示Y轴的轴号$AN_CEC_DIRECTION(0)=-1 ;负方向有效(1:正向,0:双向。
-1:负向)通过和螺距补偿表格的对比我们可以得到以下启示,螺距补偿仅针对单轴,补偿是双方向都生效的,我们补偿曲线的建立必须考虑双方向的综合误差,取最佳的平衡点。
而垂度补偿引入了参考轴的概念,参考轴可以是轴本身也可以是其他轴,补偿的方向也是可选择的。
在我们应用时有很大的灵活性。
3.螺距补偿和垂度补偿的综合应用在实际运用中因为机械本身几何精度的不稳定性经常导致螺距补偿一个方向比较理想,另一个方向差异比较大,甚至出现误差曲线交叉的情况。
如果仅使用螺距补偿,补偿能力有限,无法满足机床精度要求,我们可以考虑采用以使用螺距补偿为主,垂度补偿为辅的补偿方式,尽最大的可能将机床精度修调到最佳状态。
首先对此轴进行常规的螺距补偿(在此不再复述)。
然后进行单轴的垂度补偿,主要修改垂度补偿表格内下面几个地方。
(n=实际需要补偿的轴号)$AN_CEC_INPUT AXIS(0)=Axn$AN_CEC_OUTPUT AXIS(0)=Axn$AN_CEC_DIRECTION(0)=(1、0、-1)注意两点:1)此时的INPUT AXIS和OUTPUT AXIS一定要选同一轴。
2)在选择方向DIRECTION上,选择螺距补偿效果不理想的那个方向。
最后我们轴回参考点。
在840D诊断部分的轴调整界面下可以很清楚的看到在一个方向螺距补偿生效,反向时螺距补偿和垂度补偿的数据同时生效。
参考文献1 SIEMENS.DOConCD SINUMERIK/SIMODRIVE 11.2002 english. Germany.20022 胡国清.最新数控系统从入门到精通.2008.6: 165-171。