纳米ZnO的制备及表征

合集下载

纳米氧化锌的制备、表征和光催化性能分析

纳米氧化锌的制备、表征和光催化性能分析

液) 的紫外 一 见吸 收光谱 图 , 5为纳 米 Z ( 存 在 下经 太 阳 可 图 n) 光2 h光 催化 降解 后 的甲基橙 溶液 紫外一 可见 吸收 光谱 图 。
2 4 光 致发 光 ( L) . P 光谱
为 了探 讨 纳米 Z O粒 子光 催化 的动 , n 分别 测量 了纳 米 氧化 锌 ( 、 N) 商品 Z (( 的激 发 光 谱 。图 6是 N 的 光敛 发 n )c) 光 ( I 谱 , 中 3个 主峰分 别 是 紫色 发光 峰 ( 9 . 6 m) 较 P ) 图 33 5n 、 强 的蓝 色可 见发光 峰 ( 4 . 5 m, 4 5 5 n 该主 峰 有一 个伴 峰 ) 一 个 、 次 强的绿 色 发光峰 ( 6 . 4 m, 主 峰两侧 有多 个伴 峰 ) 4 75 n 该 。前 两个 峰 属于带 边 自由激 子发 光 , 一个 峰 可能 为 束缚 激 子 发 第 -
W ANG il n Ju i g a
( Re l g f n h n Unv r i Ii nCol eo e Ya s a iest y,Qih a g a 6 0 4 n u n d o0 6 0 )
Ab ta t sr c Na o Z O y t e ie y t em e h d o n f r p e i i t n i i h p fs h r F smi ro e , n n s n h s d b h t o fu i m r c p t i s n s a e o p e e O i l n s z o a o a
关 键 词 纳米材料 氧化锌 制备技术 光催化剂 催化特性 中 图分 类号 : 4 . 063 3 文献标识码 : A
Pr pa a i n a e r to nd Cha a t r z t0 f Na o ZnO nd I s Ana y i r c e ia i n o n a t lss o o o c t l tc Pr pe te fPh t ’ a a y i o r i s

《纳米棒状ZnO自组装结构的制备及其光电性能研究》

《纳米棒状ZnO自组装结构的制备及其光电性能研究》

《纳米棒状ZnO自组装结构的制备及其光电性能研究》篇一一、引言随着纳米科技的飞速发展,纳米材料因其独特的物理和化学性质在众多领域展现出巨大的应用潜力。

其中,ZnO纳米材料因其优异的电学、光学及光电性能,在光电器件、传感器、太阳能电池等领域具有广泛的应用前景。

本文以纳米棒状ZnO自组装结构为研究对象,详细探讨了其制备方法及其光电性能。

二、纳米棒状ZnO自组装结构的制备1. 材料与设备本实验所需材料包括氧化锌(ZnO)粉末、乙醇、去离子水等。

设备包括磁力搅拌器、水热反应釜、烘箱、扫描电子显微镜(SEM)等。

2. 制备方法采用水热法制备纳米棒状ZnO自组装结构。

具体步骤如下:将一定浓度的ZnO溶液与乙醇和去离子水混合,通过磁力搅拌器搅拌至均匀;将混合溶液转移至水热反应釜中,设置适当的温度和时间进行反应;反应结束后,将产物进行离心、洗涤、干燥等处理,得到纳米棒状ZnO自组装结构。

三、纳米棒状ZnO自组装结构的光电性能研究1. 结构表征利用SEM对制备的纳米棒状ZnO自组装结构进行形貌观察。

结果表明,所制备的ZnO纳米棒具有较高的长径比和良好的分散性。

2. 光学性能通过紫外-可见光谱仪测试纳米棒状ZnO自组装结构的光吸收性能。

结果表明,该结构在紫外光区具有较好的光吸收性能,可用于紫外光探测器等光电器件。

3. 电学性能利用霍尔效应测试仪测试纳米棒状ZnO自组装结构的电学性能。

结果表明,该结构具有较好的导电性能和较低的电阻率,可用于制备高性能的电子器件。

四、结论本文采用水热法成功制备了纳米棒状ZnO自组装结构,并通过SEM、紫外-可见光谱仪和霍尔效应测试仪对其结构和光电性能进行了研究。

结果表明,该结构具有较高的长径比、良好的分散性和优异的光电性能,在光电器件、传感器、太阳能电池等领域具有广泛的应用前景。

五、展望未来,我们将进一步研究纳米棒状ZnO自组装结构的生长机制,优化制备工艺,提高其光电性能。

同时,我们还将探索其在生物医学、环境保护等领域的应用,为纳米科技的发展做出更大的贡献。

ZnO纳米薄膜的电化学制备及其AFM形貌表征

ZnO纳米薄膜的电化学制备及其AFM形貌表征
式测量 。
射、 电化学沉积[ 等 。其 中电化学沉积法由于具 5 ]
有 成膜质 量高 、 以实现原 子级 掺杂 、 备相 对简 可 设 单 、 需 要超高 真空 的优势 而得 到 了特 别 的关 注 。 不 关 于电化学 沉 积 制 备 Z 0 薄 膜 的 研究 已有 很 多 n 报道 , 是 由于 电化学 沉积 过程 中溶 液 的 p 值 、 但 H 温度 、 浓度 、 积 电 压[ 等 都 会 对 生 成 的 Z O 纳 沉 5 ] n 米粒 子形貌 产生 微 妙 的影 响 , 以本 文利 用 恒 电 所 位 电化 学沉 积法进 行 了 Z O纳 米 薄膜 的制 备 , n 并
第2 3卷
第 3期





ห้องสมุดไป่ตู้

Vo. 3 NO 3 12 .
21 0 0年 6月
P YS CA【 H I EXPERI ENT M 0F C0L LEGE
J I 01 uL2 0
文 章 编 号 :0 72 3 (O0 0 —0 10 10 —9 42 1 )30 0 —3
Z O是一种直接带 隙宽禁带半导体材料 , n 在 信 息领域有 着重 要 的应 用 [。和 目前 广泛 使用 的 】 ]
光 电子 材 料 G N 相 比, n 薄 膜具 有 生 长 温 度 a ZO 低、 激子束缚 能高 (0 V)] 6 me [ 等优点 , 理论上在
1 实

本工 作 中制 备 纳 米 Z O 薄膜 采 用 的基 片是 n
Z O纳米薄膜 的电化学制备及其 A M 形貌表征 n F
以看 出 , 经过 Na 溶 液 超 声 清 洗 后 , 底上 大 OH 基

纳米zno的制备与应用

纳米zno的制备与应用

纳米zno的制备与应用
一、制备方法
1、水溶法:水溶法是制备纳米ZnO的简便方法,可采用连续(水-硝
酸甲酯)、隔离(亚硝酸乙酯或酒精-硝酸甲酯)分步法,在反应液中
向锌溶液添加过量浓硝酸,使溶液pH降低到≤2。

在搅拌条件下使锌溶
液和硝酸发生反应,形成纳米锌硝酸。

在增加浓乙醇或水的添加下硝
酸制备出不同的形貌的纳米ZnO粒子。

2、氧化还原反应:可以将氧化锌与还原剂进行氧化还原反应,从而在
一定pH范围内制备出纳米ZnO粒子,氧化还原反应过程可以由X射
线衍射、扫描电镜等表征分析仪表进行表征。

3、溶液浸渍法:它是把染料溶液,碱金属氢氧化物和无机酸比较平衡
地溶液等介质前加入Zn(II)离子,制备出具有不同形貌的纳米ZnO粒子,此法做法简便。

4、共沉淀法:将酸性和碱性的底物混合,随后向其中加入Zn(II)离子,在碱性底物的碳酸钙、硅酸钙的存在下,再缓缓加入氢氧化钾溶液,ZnO的纳米颗粒会在pH范围内沉淀到底物表面,即可得到纳米ZnO
粒子。

二、应用:
1、电子器件:ZnO纳米粒子具有较高的非线性折射率,此特性使其成
为数码电子器件中的主要组件。

纳米ZnO多晶硅材料具有优异的机械
强度和电磁介质性,因此其在可靠性和耐热性方面特别有利。

2、光学元件:纳米ZnO具有上至真空处的高反射率和强的抗紫外线能
力,因此应用于需要高反射和抗UV的光学元件。

3、量子点:纳米ZnO也被用于制造量子点,量子点具有非常独特的物理特性和电子特性,使其成为生物技术与材料学研究中重要的技术工具。

ZnO纳米粒子的制备与表征及其光催化活性

ZnO纳米粒子的制备与表征及其光催化活性
M a .,2 0 r 01
文 章 编 号 :6 2— 0 7 2 1 ) 1 0 0 一 3 17 4 6 (0 0 0 — 0 1 O
Z O纳米粒 子的制备与表征及 其光催化活性 n
杨 玉英 尚秀丽 ,
(. 1 西北师范大学 化学 化工学院高分子重点实验室 , 甘肃 兰州 7 0 7 30 0
下 制备 的 Z O纳米粒 子 的光 催化 活性 。 n
关键 词 : 枝 淀粉 , 米粒 子 ,n 制备 ; 接 纳 Z O; 光催 化
中 图分 类号 : Q 3 . T 124 文 献标识 码 : A
由于半导体纳 米材料独特的光学和电学性质 , 在 过去 几 十年 中就 已引起 了科学 家 的广 泛关 注 。 当

波加 热法 。采 用 溶 胶 一凝 胶 法 可 以 制 得 大 量 的
将 Z ( O ) A. )溶 于 去 离 子 水 中 形 成 溶 n N ( R 液 , 入 一定 量 的接枝 羧基 淀粉 , 加 用一 定浓 度 的氨水
纳米材料 , 但是在形成溶胶 一 凝胶 的过程 中极易形 成沉淀 , 并且 , 由于在这一过程 中使用金属醇盐为原 料 , 该 法合成 成 本 较 高 。化 学 沉 淀 法最 具 工业 应 使 用前景 , 但是具有反应 温度高 、 所得颗粒 粒度分 布 宽, 比表面积大等缺点 。因此 , 探索低成本 、 高产率、 易操作且具有工业应用前景 的超微粉制备技术 , 具 有重要 的意义 。现今许 多科 学 家都 致 力于研 究低 成
1 2 氧 化锌 纳米 粒子 的制 备 .
泛应用 , 因而更受广大科学工作者的青睐。 为了制得质量好 、 粒度分 布窄 、 形貌好 的纳米 Z O, n 目前 ,已发展 了多 种制 备 方 法 , 中包 括溶 胶 其 凝 胶法 J沉 淀法 J热 分解 法 J水 热 法 j , , , 和微

ZnO纳米结构的制备及光学性质的研究的开题报告

ZnO纳米结构的制备及光学性质的研究的开题报告

ZnO纳米结构的制备及光学性质的研究的开题报告题目:ZnO纳米结构的制备及光学性质的研究课题背景:纳米材料的出现引发了人类对材料科学领域的巨大兴趣,巨大的比表面积和量子效应使得纳米材料具有许多独特的性质,例如热稳定性和光学性质。

在过去的二十年中,ZnO纳米材料已经引起了广泛的关注。

ZnO是一种具有光催化性质、磁性和阳光防护功能的广泛应用的材料,因此ZnO纳米材料的制备及其性能研究成为课题的研究方向,具有重要的科学和实际应用价值。

研究目的:本课题的研究目的是通过改变合成条件制备高品质ZnO纳米结构,探讨其光学性质,并将其应用于光电器件的研究和开发。

研究方案:1. 合成ZnO纳米结构采用热溶液法合成ZnO纳米棒、纳米片和纳米粒子。

以Zn(NO3)2和NaOH为前驱体,在恒温条件下进行溶剂热合成,并通过改变反应时间、溶液浓度、温度等条件来控制合成的ZnO纳米结构的形貌。

2. 表征ZnO纳米结构利用SEM、TEM对合成的ZnO纳米结构进行形貌和晶体结构的表征,利用XRD和EDS检测其晶体相和元素配比,利用UV-Vis吸收光谱对其光学性质进行研究。

3. 应用研究将合成的ZnO纳米结构应用于光电器件的研究和开发,并通过光电转换效率和稳定性的测试来评估其性能。

预期创新点:本课题利用热溶液法制备ZnO纳米结构,通过控制合成条件实现形貌可控,结合光学性质研究,探索其应用于光电器件的发展,有望在材料科学领域做出一定的创新。

预计影响:本课题研究所得的成果对于ZnO纳米结构的制备及其光学性质的研究有着积极的意义,为光电器件的研究和开发提供基础和支撑,并促进ZnO材料在其他领域的应用。

ZnO纳米材料的制备及其光性能分析

ZnO纳米材料的制备及其光性能分析

ZnO纳米材料的制备及其光性能分析ZnO纳米材料的制备及其光性能分析摘要:随着纳米材料的研究和应用逐渐深入,ZnO纳米材料因其优异的光学性质和广泛的应用潜力而备受关注。

本文通过对ZnO纳米材料的制备方法及其光性能的分析,探讨了其在可见光谱范围内的应用前景和潜在问题。

1. 引言ZnO是一种重要的半导体材料,在可见光范围内具有良好的透明性和光学性能。

纳米化技术使ZnO纳米材料的制备更加容易,并且能够调控其形貌和结构,进一步扩展了其应用领域。

本文主要研究了ZnO纳米材料的制备方法和其在光学性能方面的应用。

2. ZnO纳米材料的制备方法2.1 水热法水热法是制备ZnO纳米材料常用的方法之一。

通过在高温高压条件下将Zn源物与反应溶液中的脱水剂反应,在特定的温度、压力和时间下得到纳米级的ZnO颗粒。

这种方法可以控制纳米粒子的形貌和大小。

2.2 氧化法氧化法是将氧化锌粉末进一步破碎并通过化学反应得到纳米级ZnO颗粒的方法。

具体步骤包括溶液制备、沉淀制备和煅烧等。

这种方法制备的ZnO纳米材料通常具有较高的纯度和比表面积。

2.3 等离子体辅助沉积法等离子体辅助沉积法是一种通过等离子体溅射氧化锌薄膜并在退火过程中形成纳米颗粒的方法。

这种方法对制备较大面积的纳米薄膜具有较高的效率和可控性。

3. ZnO纳米材料的光性能分析3.1 光吸收与发射性质ZnO纳米材料在可见光谱范围内具有很好的吸光性能,吸收光谱主要集中在紫外光区域,具有很高的吸收系数。

此外,ZnO纳米材料还表现出良好的荧光性能,其荧光峰位主要在380-420 nm范围内。

3.2 光电导性质由于ZnO纳米材料是一种半导体材料,因此具有良好的光电导性能。

通过引入掺杂元素或修饰表面,可以调控和增强ZnO纳米材料的光电导能力。

这使得ZnO纳米材料在光电器件和太阳能电池等领域有广泛的应用前景。

3.3 光催化性能ZnO纳米材料具有较高的光催化性能,可以在可见光区域内吸收光能并产生电子-空穴对。

《纳米棒状ZnO自组装结构的制备及其光电性能研究》

《纳米棒状ZnO自组装结构的制备及其光电性能研究》

《纳米棒状ZnO自组装结构的制备及其光电性能研究》篇一一、引言随着纳米科技的飞速发展,纳米材料因其独特的物理和化学性质在众多领域展现出巨大的应用潜力。

其中,ZnO纳米材料因其优异的电学、光学及光电性能,在光电器件、传感器、太阳能电池等领域具有广泛的应用前景。

本文以纳米棒状ZnO自组装结构为研究对象,详细探讨了其制备方法及其光电性能。

二、纳米棒状ZnO自组装结构的制备1. 材料与设备本实验所需材料包括氧化锌(ZnO)粉末、乙醇、去离子水等。

设备包括磁力搅拌器、恒温烘箱、原子力显微镜(AFM)、X射线衍射仪(XRD)等。

2. 制备方法采用溶剂热法结合自组装技术制备纳米棒状ZnO自组装结构。

具体步骤如下:(1)将ZnO粉末溶解在乙醇中,形成均匀的溶液;(2)将溶液转移至反应釜中,在一定的温度和压力下进行溶剂热反应;(3)反应结束后,对产物进行离心、洗涤和干燥处理;(4)最后得到纳米棒状ZnO自组装结构。

三、纳米棒状ZnO自组装结构的光电性能研究1. 结构表征利用原子力显微镜(AFM)和X射线衍射仪(XRD)对制备的纳米棒状ZnO自组装结构进行表征。

结果表明,所制备的ZnO 纳米棒具有较高的纯度和良好的结晶性。

2. 光学性能分析通过紫外-可见光谱和光致发光光谱对纳米棒状ZnO自组装结构的光学性能进行分析。

结果表明,该结构在紫外光区域具有较强的吸收能力,并且在可见光区域表现出良好的光致发光性能。

此外,该结构还具有较高的光稳定性。

3. 电学性能分析采用电化学工作站对纳米棒状ZnO自组装结构的电学性能进行测试。

结果表明,该结构具有良好的导电性能和较低的电阻率。

此外,该结构还表现出优异的光电响应特性,在光照射下能够产生明显的光电流。

四、结论本文采用溶剂热法结合自组装技术成功制备了纳米棒状ZnO 自组装结构,并对其光电性能进行了系统研究。

实验结果表明,该结构具有较高的纯度、良好的结晶性、优异的光学性能和电学性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化学化工学院材料化学专业实验报告实验实验名称:纳米ZnO的制备及表征.年级:2015级材料化学日期:2017/09/20姓名:汪钰博学号:2220 同组人:向泽灵一、预习部分氧化锌的结构氧化锌(ZnO)晶体是纤锌矿结构,属六方晶系,为极性晶体。

氧化锌晶体结构中,Zn原子按六方紧密堆积排列,每个Zn原子周围有4个氧原子,构成Zn-O4配位四面体结构,四面体的面与正极面C(00001)平行,四面体的顶角正对向负极面(0001),晶格常数a=342pm, c=519pm,密度为cm3,熔点为2070K,室温下的禁带宽度为. 如图1-1、图1-2所示:图1-1 ZnO晶体结构在C (00001)面的投影图1-2 ZnO纤锌矿晶格图2 氧化锌的性能和应用纳米氧化锌(ZnO)粒径介于1- 100nm 之间, 由于粒子尺寸小, 比表面积大, 因而, 纳米ZnO 表现出许多特殊的性质如无毒、非迁移性、荧光性、压电性、能吸收和散射紫外线能力等, 利用其在光、电、磁、敏感等方面的奇妙性能可制造气体传感器、荧光体、变阻器、紫外线遮蔽材料、杀菌、图象记录材料、压电材料、压敏电阻、高效催化剂、磁性材料和塑料薄膜等。

同时氧化锌材料还被广泛地应用于化工、信息、纺织、医药行业。

纳米氧化锌的制备是所有研究的基础。

合成纳米氧化锌的方法很多, 一般可分为固相法、气相法和液相法。

本实验采用共沉淀和成核/生长隔离技术制备纳米氧化锌粉。

3 氧化锌纳米材料的制备原理不同方法制备的ZnO晶形不同,如:共沉淀和成核/生长隔离法借助沉淀剂使目标离子从溶液中定量析出是材料制备领域液相法的重要技术。

常规共沉淀制备是将盐溶液与碱溶液直接混合并通过搅拌的方式实现,由于混合不充分,反应界面小、存在浓度梯度、反应速度和扩散速度慢,先沉淀的粒子上形成新沉淀粒子,新旧粒子的同时存在,导致粒子尺寸分布极不均匀。

使合成材料的粒子尺寸和均分散性能受到很大影响,其晶体的尺寸也很难达到纳米量级,极大限制了此类材料的应用;成核/生长隔离制备采用强制微观混合技术,将盐溶液与碱溶液在反应器转子与定子之间的缝隙处迅速充分混合接触,反应后物质迅速脱离反应器,实现粒子的同时成核、同步生长,从而使材料具有粒子尺寸小和分布均匀的特性,粒子的尺寸可以达到10-100nm 。

水热法和微波水热法常规水热法是利用高温高压的水溶液使那些在大气条件下不溶或难溶的物质溶解,或反应生成该物质的溶解产物,通过控制高压釜内溶液的温差使产生对流以形成过饱和状态而析出生长晶体的方法。

水热法制备材料的特点是粒子纯度高、分散性好、晶形好且可控制,生产成本低。

用水热法制备的粉体一般无需烧结和球磨,这就可以避免在烧结过程中晶粒会长大而且杂质容易混入等缺点;近年来, 水热法的一个创新是将微波引入反应体系中以更快地制备陶瓷材料。

这提供了传统反应釜加热所不具有的优点,包括快速加热至晶化温度, 均匀成核以及通过氢氧化物沉淀的快速溶解达到快速过度饱和, 从而导致较低的晶化温度和较短的晶化时间。

溶胶-凝胶法Sol-gel 法的原理主要是原材料的水解、缩聚反应,常用的原料一般为金属醇盐和无机化合物。

作为湿化学反应方法之一,不论所用的起始原料(称为前躯物)为无机盐或金属醇盐,其主要反应步骤是前驱物溶于溶剂(水或有机溶剂)中形成均匀的溶液,溶质与溶剂产生水解或醇解反应生成物聚集成1nm 左右的粒子并组成溶胶,经蒸发干燥转变为凝胶,基本反应原理如下:(1)溶剂化:能电力的前驱物-金属盐的金属阳离子+Z M 将吸收水分子形成溶剂单元()+Z n O H M 2(Z 为M 离子的价数),为保持它的配位数而有强烈地释放+H 的趋势:()()()()++--++→H OH O H M O H M Z n Z n 1122,这时如有其它离子进入就可能产生聚合反应,但反应式极为复杂;(2)水解反应:非电离式分子前驱物,如金属醇盐()n OR M (n 为金属M 的原子价)与水反应:()()()xROH OR OH M O xH OR M x n x n +→+-2;反应可延续进行,直至生成()n OH M(3) 缩聚反应:缩聚反应可分为失水缩聚:O H M O M M HO OH M 2+---→--+-- 和失醇缩聚:-→ROH-+----M-MMOM+ORHO反应生成物是各种尺寸和结构的荣胶体粒子。

反相微乳液法微乳体系中包含单分散的水或油的液滴,这些液滴在连续相中不断扩散并互相碰撞,微乳液的这种动力学结构使其成为良好的纳米反应器。

因为这些小液滴的碰撞是非弹性碰撞或“粘性碰撞”,这有可能使得液滴间互相合并在一起形成一些较大液滴。

但由于表面活性剂的存在,液滴间的这种结合是不稳定的,所形成的较大液滴又会相互分离,重新变成小的液滴。

微乳液的这种性质致使体系中液滴的平均直径和数目不随时间的改变而改变,故而,微乳体系可用于纳米粒子的合成。

如果以油包水型微乳体系作为纳米反应器,由于反应物被完全限定于水滴内部,因此要使反应物相互作用,其首要步骤是水滴的合并,实现液滴内反应物之间的物质交换。

当混合水相中分别溶解有反应物A和B的两种相同的微乳体系时,由于水滴的相互碰撞、结合与物质交换,最后可形成AB的沉淀颗粒。

在反应刚开始时,首先形成的是生成物的沉淀核,随后的沉淀便附着在这些核上,使沉淀不断长大。

当粒子的大小接近水滴的大小时,表面活性剂分子所形成的膜附着于粒子的表面,作为“保护剂”限制了沉淀的进一步生长。

这就是微乳体系作为纳米反应器的原理,由于所合成的粒子被限定于水滴的内部,所以,合成出来的粒子的大小和形状也反映了水滴的大小和内部形状。

4 纳米氧化锌的物理性能表征表征通常是指确定物质的结构、颗粒尺寸、形状和形貌等。

热分析热分析仪技术是在程序温度控制下测量物质的物理性质随温度的变化,用于研究物质在某一特定温度时所发生的热学物理参数的变化,由此进一步研究物质的结构和性能之间的关系;物质在加热过程中发生的晶型转变、熔化、升华、挥发、还原、分解、脱水或降解、化合等物理化学变化,常伴随着热量和质量的变化。

在程序温度控制下通过测量物质的热量和质量随温度的变化,研究材料(金属、矿物质、陶瓷和玻璃)的玻璃转变温度,结晶时间与结晶温度,结晶度,融化热与反应热,材料的热稳定性,材料氧化稳定性、分解动力学、估算产品寿命等,揭示物质性质的内在变化的分析方法。

根据国际热分析协会(international confederation for thermal analysis,ICTA) 规定,DSC 曲线放热峰向上,吸热峰向下。

一个热效应对应的峰位置和方向反映了物质的变化本质,其宽度、高度、对称性和取决于升温速率、样品量、颗粒大小、测定条件、样品变化过程中的各种动力学因素。

X 射线衍射(XRD)分析每种晶体的结构与其X射线衍射图之间都有着一一对应的关系,其特征X 射线衍射图谱不会因为它种物质混聚在一起而产生变化,这就是X射线衍射物相分析方法的依据。

制备各种标准单相物质的衍射花样并使之规范化,将待分析物质的衍射花样与之对照,从而确定物质的组成相,就成为物相定性分析的基本方法。

鉴定出各个相后,根据各相峰的强度正比于改组分存在的量,就可对各种组分进行定量分析。

目前常用衍射仪法得到衍射图谱,用“粉末衍射标准联合会(JCPDS )”负责编辑出版的“粉末衍射卡片(PDF 卡片)”进行物相分析。

扫描电子显微镜(SEM )分析扫描电子显微镜是依据电子与物质的相互作用。

当一束高能的人射电子轰击物质表面时,被激发的区域将产生二次电子、俄歇电子、特征x 射线和连续谱X 射线、背散射电子、 透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。

可以获取被测样品本身的各种物理、化学性质的信息,如形貌、组成、晶体结构、电子结构等。

BET 比表面及孔径分布测定物质的比表面积(1g 吸附剂所具有的内外面积之和)大小和孔径分布情况,是评选催化剂、气敏材料、了解固体表面性质的重要参数。

其理论依据是1938年Brunauer 、Emmett 和Teller 三人在1916年Langmuer 吸附理论基础上,从经典统计理论推导出的多分子层吸附公式基础上,即著名的BET 方程。

二、实验部分(一)实验原理1) 纳米ZnO 制备以氯化锌为原料、氢氧化纳为沉淀剂制备纳米ZnO 的反应方程式如下:沉淀反应:222()ZnCl NaOH Zn OH NaCl +=↓+热处理:22()Zn OH ZnO H O ∆−−→+↑2)X 衍射粒度测定(物相分析见X 衍射讲义)在X 衍射图谱中,材料在某个晶面的厚度与衍射角存在如下关系:θβλCOS D 89.0= D 为粉末平均粒径(nm);λ= nm,为X 射线波长;β为2θ所对应的衍射峰的半高宽(FWHM );θ为半衍射角,该公式称为Scherrer 公式。

对于纳米粉体材料而言,晶体的大小等于颗粒的大小,即为粒径;因此对于球形颗粒D 就可以直接表示其粒径,不过在计算D 时,β通常选择最强峰的半高宽。

对于其它形状的颗粒,可以以最强的三个峰的平均值来表示。

3)比表面积与粒径的关系(比表面积测定原理见比表面仪讲义)纳米材料的表面效应即纳米微粒表面原子与总原子数之比随纳米微粒尺寸的减小而大幅增加,粒子的表面能及表面张力也随之增加,从而引起纳米材料性质变化。

因此纳米材料的粒径的大小很大程度上决定了材料的性质。

对粉体材料的粒径测量可以通过其比表面积的测定得到,比表面积与粒径的关系可表示为:w k S Dρ=⋅ w S :比表面积(m 2/g); ρ ;粒子的理论密度;D ;粒子平均直径; k ;形状因子。

对球形粒子,k 取6由上式可知,随颗粒尺寸的减小,粒子的表面积迅速增加。

因此,测得了比表面积就可计算出比粒径:6(w w k D S S ρρ==⋅⋅球形颗粒)(二)实验步骤1、 称取氯化锌配成l 溶液,用稀盐酸缓慢调节溶液pH 值到溶液澄清为止。

2、 称取氢氧化钠配成1mol/l 溶液待用;3、 在磁力搅拌条件下,把氢氧化钠滴加到氯化锌溶液中,整个过程保持搅拌,滴加完毕后把溶液pH 值调到9~10陈化2h 以上;抽滤,洗净,在105℃烘箱中烘2h ,研磨以待检测。

4、 样品做XRD 衍射,并打印图谱;同时测比表面积。

(仪器操作另见讲义)。

注意:陈化时间至少2小时(可在上午反应完后下午过滤);样品因洗净到无氯离子。

控制氢氧化钠滴加速度,在20min 左右滴加完毕。

三、实验结果分析1、纳米ZnO 的制备及表征1.光谱图2004006008001000l 2θ2.分析小结:由图可知,在、、、、处有较强的峰,对比氧化锌的PDF 卡片可知样品中的主要成分为氧化锌,但是个最高峰的值都不是特别高,可以知道结晶度并不高,原因可能是陈化时间不够,或者是pH 值未调到最佳值。

相关文档
最新文档