第1章-流体力学的基本概念

合集下载

第一章 流体力学的基本概念

第一章 流体力学的基本概念
dx dy dz dt u v w
第一章 流体力学的基本概念
x x( x0 , y 0 , z 0 , t , ) y y ( x0 , y 0 , z 0 , t , ) z z ( x , y , z , t , ) 0 0 0
τ固定,t变化时,迹线;
第一章 流体力学的基本概念
§1.1 拉格朗日参考系和欧拉参考系
一、拉格朗日参考系
1.流动的描述
流体的物理量表示为流体质点和时间的函数。
p p( x0 , y0 , z0 , t )
T T ( x0 , y0 , z0 , t )
( x0 , y0 , z0 , t )
(x0 , y0 , z0) 固定,t 变化: 表示某一确定流体质点的空间位臵及相 关物理量随时间的变化规律。 (x0 , y0 , z0)变化,t 固定: 表示同一时刻不同流体质点的空间位臵 及相关物理量。
0
有限大的正数
r0 , r 互为反函数。
第一章 流体力学的基本概念
§1.1 拉格朗日参考系和欧拉参考系
三、两个参考系间的相互转换
2.两个参考系间的相互转换
r0 r0 (r , t )
x0i x0i ( x j , t )
x0 x0 ( x, y, z , t ) y0 y0 ( x , y , z , t ) z z ( x, y , z , t ) 0 0
三、两个参考系间的相互转换
2.两个参考系间的相互转换
(2) 已知欧拉参考系的物理量
u u (r , t )
积分 代入
dr u (r , t ) dt
dx dt u ( x, y , z , t ) dy v ( x, y , z , t ) dt dz dt w( x, y , z , t )

流体力学课件(全)

流体力学课件(全)
X 1 p 0 x
Y 1 p 0 y
欧拉平衡方程
Z 1 p 0 z
p p( , T )
t
1 V V T p
1 V V p T
p p(V , T )
1 t T p
p
p
1 p T
V
p y = pn pz = pn
px = p y = pz = pn = p
28/34
第二章
流体静力学
§1 静压强及其特性 §2 流体静力学平衡方程 §3 压力测量 §4 作用在平面上的静压力 §5 作用在曲面上的静压力 §6 物体在流体中的潜浮原理
29/34
§2流体静力学平衡方程
通过分析静止流体中流体微团的受力,可以建立 起平衡微分方程式,然后通过积分便可得到各种不同 情况下流体静压力的分布规律。 why 因此,首先要建立起流体平衡微分方程式。 现在讨论在平衡状态下作用在流体上的力应满足 的关系,建立平衡条件下的流体平衡微分方程式。
《流体力学》
汪志明教授
5/24
第一章 流体的流动性质
§1 流体力学的基本概念
§2 流体的连续介质假设 §3 状态方程 §4 传导系数 §5 表面张力与毛细现象
《流体力学》
汪志明教授
6/24
§2 流体的连续介质假设
虽然流体的真实结构是由分子构成,分子间有一定的孔隙,但流 体力学研究的并不是个别分子微观的运动,而是研究大量分子组成的 宏观流体在外力的作用下所引起的机械运动。 因此在流体力学中引入连续介质假设:即认为流体质点是微观上 充分大,宏观上充分小的流体微团,它完全充满所占空间,没有孔隙 存在。这就摆脱了复杂的分子运动,而着眼于宏观机械运动。

大学流体力学课件5——第一章流体的基本概念(粘性)

大学流体力学课件5——第一章流体的基本概念(粘性)
粘性的定义


牛顿内摩擦定律
粘度


粘温特性
牛顿流体
§1-2
流体的主要物理性质
二、粘性
1. 粘性的定义
现象: # 手粘油或水,感觉不同; # 油加温,变稀,易流
# 右图:下盘转动,会带动上盘
§1-2
流体的主要物理性质
二、粘性 1.粘性的定义
一般分析:
定义:
流体内部质点间或流层间因相对运动而产生 内摩擦力,以反抗相对运动的性质。
流体的主要物理性质
二、粘性
3. 粘度 粘性大小的度量 (2) :运动粘度
量纲和单位:
国际单位制:
物理单位制:
工程单位制:
例: 机械油的牌号 液压油 20#: N32:
§1-2
流体的主要物理性质
二、粘性
3. 粘度 粘性大小的度量 (3) 相对粘度
恩氏粘度计
恩氏粘度
§1-2
流体的主要物理性质
二、粘性
间隙中速度梯度近似按线性分布处理; 计算过程中注意单位统一; 作业中应作图,并分析
§1-2
流体的主要物理性质
二、粘性
4.粘~温, 粘~压特性
一般
粘温特性是工程液体的重要技术参量 粘性阻力的微观机理: 分子引力产生粘阻 (液体中为主) 分子动量交换产生粘阻 (气体中为主)
§1-2
流体的主要物理性质
流体力学中分两步走的研究方法: 分析无粘性流体模型 ----→初步运动规律
考虑粘性影响修正
----→实际运动规律
§1-2
流体的主要物理性质 小 结
二、粘性
0. 粘性是流体区别于固体的重要特性
是产生流动阻力的内因
1. 粘性:流体质点间可流层间因相对运动而产生 摩擦力以反抗相对运动的性质 2. 牛顿内摩擦定律反映粘性的数值关系 3. 粘度是粘性的度量 4. 符合牛顿内摩擦定律的流体为牛顿流体 5. 不考虑粘性的流体称为理想气体

化工原理第一章流体力学基础

化工原理第一章流体力学基础

第一章 流体力学基础
m GA uA
17/37
1.3.1 基本概念
三、粘性——牛顿粘性定律
y x
v
内部存在内摩擦力或粘滞力
v=0
内摩擦力产生的原 因还可以从动量传 递角度加以理解:
v
单位面积上的内摩擦力,N m2
dv x
dy
动力粘度 简称粘度
速度梯度
----------------牛顿粘性定律
(2)双液柱压差计
p1
1略小于2
z1
p1 p2 2 1 gR
p1
R
p2
R
p2
1
z1
R 2
0
倾斜式压差计
浙江大学本科生课程 化工原理
第一章 流体力学基础
读数放大
14/14
幻灯片2目录
1.3 流体流动的基本方程 1.3.1 基本概念 1.3.2 质量衡算方程 1.3.3 运动方程 一、作用在流体上的力 二、运动方程 三、N-S方程 四、欧拉方程 五、不可压缩流体稳定层流时的N-S 方程若干解
v x v y vz 0
t x
y
z
t
vx
x
vy
y
vz
z
v x x
v y y
v z z
0
D
Dt
v x x
v y y
v z z
0
-------连续性方程微分式
若流体不可压缩,则D/Dt=0
v x v y v z 0 x y z
浙江大学本科生课程 化工原理
第一章 流体力学基础
dy
N m2 ms
Ns m2
Pa s
m
1Pa s 10P 1000cP

第一章流体力学基本概念

第一章流体力学基本概念

分别运动至A’,B’,C’,D’点,则有
A
B
A'
B'
udt
E D D D A A (u d)d u u t d dtudt
图1-2 速度梯度
由于
du ED
dt
因此得速度梯度 duED tgd d
dy dydt dt dt
可以看出dθ为矩形ABCD在dt时间后剪切变形角度,这就表明速度梯度实质上就 是流体运动时剪切变形角速度
•第一章流体力学基本概念
随着科学技术的不断进步,计算机的发展和应用,流体力学的研究领域和应用范 围将不断加深和扩大。从总的发展趋势来看,随着工业应用日益扩大,生产技术 飞速发展,不仅可以推动人们对流动现象深入了解,为科学研究提供丰富的课题 内容,而且也为验证已有的理论、假设和关系提供机会。理论和实践密切结合, 科学研究和工业应用相互促进,必将推动本学科逐步成熟并趋于完善。
第一章 流体力学基本概念
第一节 流体力学的发展、应用及其研究方法 第二节 流体的特征和连续介质假设 第三节 流体的主要物理性质及分类 第四节 作用在流体上的力
•第一章流体力学基本概念
第一节 流体力学的发展、应用及其研究方法
一、流体力学发展简史
流体力学是研究流体的平衡及运动规律,流体与固体之间的相互作 用规律,以及研究流体的机械运动与其他形式的运动(如热运动、化学 运动等)之间的相互作用规律的一门学科。 流体力学属于力学范畴,是 力学的一个重要分支。其发展和数学、普通力学的发展密不可分。流体 力学起源于阿基米德(Archimedes,公元前278~公元前212)对浮力的 研究。
流体的压缩性及相应的体积弹性模量是随流体的种类、温度和压力而变化 的。当压缩性对所研究的流动影响不大,可以忽略不计时,这种流动成为不可 压缩流动,反之称为可压缩流动。通常,液体的压缩性不大,所以工程上一般 不考虑液体的压缩性,把液体当作不可压缩流体来处理。当然,研究一个具体 流动问题时,是否考虑压缩性的影响不仅取决于流体是气体还是液体,而更主 要是由具体条件来决定。

流体力学的基本概念

流体力学的基本概念

流体力学的基本概念流体力学是研究流体在运动和静止时的物理学科,广泛应用于工程、自然科学和医学领域。

流体力学的基本概念包括:流体、速度场、流线、通量、压力、连通性、黏度等。

下面将对这些基本概念进行介绍。

1. 流体流体是指能够流动的物质,包括气体和液体。

与固体不同的是,流体没有一定的形状,并且具有很强的流动性。

流体力学研究的是在流体中运动和转化的能量和物质。

2. 速度场在流体力学中,速度场指的是在空间中的任何一个点(x,y,z)处,流体在该点的速度向量V(x,y,z)。

速度场可以用向量场表示,它是一个三维矢量,表示流体在不同点的速度和方向。

3. 流线流线是指在流体中某个时刻从每个点出发的一条曲线,它的方向与该点的速度向量方向相同。

流线可用于描述流体在空间中的流动状态,它的密度越集中,表示流体流动越迅速。

4. 通量在流体力学中,通量是指通过一定面积的流体的质量或者体积。

它可以通过流体穿过该面积的速度与面积相乘来计算。

通量是流体力学中的重要概念,与流体的流动速度和流体的面积有关。

5. 压力压力是指单位面积受到的力的大小,以牛顿/平方米表示。

在流体力学中,压力是指垂直于流体流动方向的单位面积上的压力大小,它与流体的密度和流速有关。

6. 连通性流体力学中的连通性是指流体不可穿透的性质,即两个靠近的流体体积不能相互穿透。

在流体运动中,连通性是一条重要的限制条件。

连通性是流体力学中常常需要掌握的概念,尤其是在流体的运动与静止的过程中。

7. 黏度黏度是指流体阻力的大小,它是描述流体的粘性的物理量。

黏度可以用来描述流体在运动中的阻力大小,阻力越大,黏度也就越大。

黏度是流体力学中非常重要的物理量,它影响了流体的运动和可塑性。

流体的基本概念和物理性质


密度 密度差会形成自然循环、热对流和自 然对流换热等现象。
F
热板
自然循环锅炉 1—给水泵 2—省煤器 3—汽包 4—下降管 5—联箱 6—蒸发受热面 单位体积流体所具有的质量。 用符号ρ表示,单位为kg/m3 。
m 均质流体定义式: V m 非均质流体定义式为: lim
第一篇
第一篇
工程流体力学
第一章 流体的基本概念和性质 第二章 流体静力学 第三章 流体动力学
第一章 流体的基本概念和性质 流体的定义和连续介质假设 流体的压缩性和膨胀性 流体的粘性 作用在流体上的力
第一节 流体的定义和连续介质假设
一、流体的定义 通俗定义:能流动的物质称为流体。 力学定义:在任何微小剪切力的持续作 用下能够连续变形的物质,称为流体。
• 气体易于压缩;而液体难于压缩; • 液体有一定的体积,存在一个自由表面; 气体能充满任意形状的容器,无一定的体积, 不存在自由表面。
•液体和气体的共同点:两者均具有流动性 ——在任何微小切应力作用下都会发生变 形或流动,故二者都是流体。
从微观角度看
流体是由大量做无规则运动的分子组成的,分子之间存在空 隙,在标准条件下,1mm3气体含有2.7×1016个左右的分子, 分子间距离是3.3×10-6mm。
1 dV V dt V
单位为m3
流体温度的增加量, 单位为℃(K)
流体原有的体积, 单位为m3
•关于体胀系数αv
液体的体胀系数很小;
如:水在98000Pa下,10~20℃内,
αv =150×10-6 1/ ℃
大多数液体αv随压强的增大而稍减小; 水在50℃以下,
αv 随压强增大而增大;
一般情况下
通常把液体视为不可压缩流体。 通常在流速较高,压强变化较大的场合,气 体视为可压缩流体,必须将密度视为变量。 在流速不高(比声速小得多时),压强变化 较小,密度变化不大( )的场合, 气体可视为不可压缩流体。如锅炉的尾部烟 2 1 100% 20% 道中和空调系统通风管道中的气体等。 1

化工原理第一章流体力学


反映管路对流体的阻力特性
表示管路中流量与压力损失之间 关系的曲线
管路特性曲线的概念
01
03 02
管路特性曲线及其应用
管路特性曲线的绘制方法 通过实验测定一系列流量下的压力损失数据 将数据绘制在坐标图上,并进行曲线拟合
管路特性曲线及其应用
01 管路特性曲线的应用
02
用于分析管路的工作状态,如是否出现阻塞、泄漏等
流速和流量测量误差分析
• 信号处理误差:如模拟信号转换为数字信 号时的量化误差、信号传输过程中的干扰 等。
流速和流量测量误差分析
管道截面形状不规则
导致实际流通面积与计算流通面积存在偏差。
流体流动状态不稳定
如脉动流、涡街流等导致流量波动较大。
流速和流量测量误差分析
仪表精度限制
仪表本身的精度限制以及长期使用后的磨损等因素导 致测量误差增大。
流体静压强的表示
方法
绝对压强、相对压强和真空受力平衡条件,推导出流体平 衡微分方程。
流体平衡微分方程的物理意义
描述流体在静止状态下,压强、密度和重力 之间的关系。
流体平衡微分方程的应用
用于求解流体静力学问题,如液柱高度、液 面形状等。
重力作用下流体静压强的分布规律
连续介质模型的意义
连续介质模型是流体力学的基础,它 使得我们可以运用数学分析的方法来 研究流体的运动规律,从而建立起流 体力学的基本方程。
流体力学的研究对象和任务
流体力学的研究对象
流体力学的研究对象是流体(包括液体和气体)的平衡、运动及其与固体边界的相互作 用。
流体力学的任务
流体力学的任务是揭示流体运动的内在规律,建立描述流体运动的数学模型,并通过实验和 计算手段对流体运动进行预测和控制。具体来说,流体力学需要解决以下问题:流体的静力

1.1流体力学的基本概念

第1章 CFD 基 础计算流体动力学(computational fluid dynamics ,CFD)是流体力学的一个分支,它通过计算机模拟获得某种流体在特定条件下的有关信息,实现了用计算机代替试验装置完成“计算试验”,为工程技术人员提供了实际工况模拟仿真的操作平台,已广泛应用于航空航天、热能动力、土木水利、汽车工程、铁道、船舶工业、化学工程、流体机械、环境工程等 领域。

本章介绍CFD 一些重要的基础知识,帮助读者熟悉CFD 的基本理论和基本概念,为计算时设置边界条件、对计算结果进行分析与整理提供参考。

1.1 流体力学的基本概念1.1.1 流体的连续介质模型流体质点(fluid particle):几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。

连续介质(continuum/continuous medium):质点连续地充满所占空间的流体或固体。

连续介质模型(continuum/continuous medium model):把流体视为没有间隙地充满它所占据的整个空间的一种连续介质,且其所有的物理量都是空间坐标和时间的连续函数的一种假设模型:u =u (t ,x ,y ,z )。

1.1.2 流体的性质1. 惯性惯性(fluid inertia)指流体不受外力作用时,保持其原有运动状态的属性。

惯性与质量有关,质量越大,惯性就越大。

单位体积流体的质量称为密度(density),以r 表示,单位为kg/m 3。

对于均质流体,设其体积为V ,质量为m ,则其密度为m Vρ= (1-1) 对于非均质流体,密度随点而异。

若取包含某点在内的体积V ∆,其中质量m ∆,则该点密度需要用极限方式表示,即0lim V m Vρ∆→∆=∆ (1-2) 2. 压缩性作用在流体上的压力变化可引起流体的体积变化或密度变化,这一现象称为流体的可压缩性。

压缩性(compressibility)可用体积压缩率k 来量度Fluent 高级应用与实例分析2 d /d /d d V V k p pρρ=-= (1-3) 式中:p 为外部压强。

工程流体第一章

11
考核方法、学习要求、答疑 考核方法、学习要求、
考核方法: 1. 平时考勤、作业成绩占20%; 考核方法: 平时考勤、作业成绩占20% 2. 期末考试占80%。 期末考试占80% 学习要求: 学习要求: 1. 重点掌握 : 基础流体力学的基本概念 、 基本 重点掌握:基础流体力学的基本概念、 方程、 方程、基本应用 2. 按时 、 独立 、 认真完成作业 。 作业要求画图 , 按时、 独立、 认真完成作业。 作业要求画图, 代入数据。 代入数据。 答疑:1. 随时、随地欢迎同学们交流; 答疑: 随时、随地欢迎同学们交流; 2.主楼F613热工教研室; 主楼F613热工教研室 热工教研室; 3.Tel:61772472(O) Tel:61772472(O) 12 4.Email:lwy@ Email:lwy@.
7
4、我国水利事业的历史: 我国水利事业的历史:
4000多年前的 大禹治水”的故事——顺水之性,治 顺水之性, 4000多年前的 “大禹治水”的故事 顺水之性 水须引导和疏通 秦朝在公元前256 前210年修建了我国历史上的三大 秦朝在公元前256—前210年修建了我国历史上的三大 256 水利工程(都江堰、郑国渠、灵渠) 水利工程(都江堰、郑国渠、灵渠)-明渠水流和堰流 古代的计时工具“铜壶滴漏” 古代的计时工具“铜壶滴漏”——孔口出流 孔口出流 清朝雍正年间,何梦瑶在《算迪》一书中提出流量等 清朝雍正年间,何梦瑶在《算迪》 于过水断面面积乘以断面平均流速的计算方法。 于过水断面面积乘以断面平均流速的计算方法。 隋朝(公元587 610年 587—610 隋朝(公元587 610年)完成的南北大运河 隋朝工匠李春在冀中蛟河修建(公元605—617 隋朝工匠李春在冀中蛟河修建(公元605 617年)的 605 617年 赵州石拱桥——拱背的4个小拱,既减压主拱的负载, 拱背的4 赵州石拱桥 拱背的 个小拱,既减压主拱的负载, 又可宣泄洪水。 又可宣泄洪水。 8
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章 流体力学的基本概念流体力学是研究流体的运动规律及其与物体相互作用的机理的一门专门学科。

本章叙述在以后章节中经常用到的一些基础知识,对于其它基础内容在本科的流体力学或水力学中已作介绍,这里不再叙述。

1.1 连续介质与流体物理量1.1.1 连续介质流体和任何物质一样,都是由分子组成的,分子与分子之间是不连续而有空隙的。

例如,常温下每立方厘米水中约含有3×1022个水分子,相邻分子间距离约为3×10-8厘米。

因而,从微观结构上说,流体是有空隙的、不连续的介质。

但是,详细研究分子的微观运动不是流体力学的任务,我们所关心的不是个别分子的微观运动,而是大量分子“集体”所显示的特性,也就是所谓的宏观特性或宏观量,这是因为分子间的孔隙与实际所研究的流体尺度相比是极其微小的。

因此,可以设想把所讨论的流体分割成为无数无限小的基元个体,相当于微小的分子集团,称之为流体的“质点”。

从而认为,流体就是由这样的一个紧挨着一个的连续的质点所组成的,没有任何空隙的连续体,即所谓的“连续介质”。

同时认为,流体的物理力学性质,例如密度、速度、压强和能量等,具有随同位置而连续变化的特性,即视为空间坐标和时间的连续函数。

因此,不再从那些永远运动的分子出发,而是在宏观上从质点出发来研究流体的运动规律,从而可以利用连续函数的分析方法。

长期的实践和科学实验证明,利用连续介质假定所得出的有关流体运动规律的基本理论与客观实际是符合的。

所谓流体质点,是指微小体积内所有流体分子的总体,而该微小体积是几何尺寸很小(但远大于分子平均自由行程)但包含足够多分子的特征体积,其宏观特性就是大量分子的统计平均特性,且具有确定性。

1.1.2 流体物理量根据流体连续介质模型,任一时刻流体所在空间的每一点都为相应的流体质点所占据。

流体的物理量是指反映流体宏观特性的物理量,如密度、速度、压强、温度和能量等。

对于流体物理量,如流体质点的密度,可以地定义为微小特征体积内大量数目分子的统计质量除以该特征体积所得的平均值,即VMV V ∆∆=∆→∆'limρ (1-1)式中,M ∆表示体积V ∆中所含流体的质量。

按数学的定义,空间一点的流体密度为VMV ∆∆=→∆0limρ (1-2)由于特征体积'V ∆很小,按式(1-1)定义的流体质点密度,可以视为流体质点质心(几何点)的流体密度,这样就应予式(1-2)定义的空间点的流体密度相一致。

为把物理概念与数学概念统一起来,方便利用有关连续函数的数学工具,今后均采用如式(1-2)所表达的流体物理量定义。

所谓某一瞬时空间任意一点的物理量,是指该瞬时位于该空间点的流体质点的物理量。

在任一时刻,空间任一点的流体质点的物理量都有确定的值,它们是坐标点),,(z y x 和时间t 的函数。

例如,某一瞬时空间任意一点的密度是坐标点),,(z y x 和时间t 的函数,即),,,(t z y x ρρ= (1-3)1.2 描述流体运动的两种方法描述流体运动的方法有拉格朗日(Lagrange )法和欧拉(Euler )法。

1.2.1 拉格朗日法拉格朗日法是以个别的流体运动质点为对象,研究这些指定质点在整个运动过程中的轨迹以及运动要素随时间变化的规律。

各个质点运动状况的总和就构成了整个流体的运动。

这种方法又称为质点系法。

在某直角坐标系0xyz 中,将0t t =时的某流体质点在空间的位置坐标),,(c b a 作为该质点的标记。

在此后的瞬间t ,该质点),,(c b a 运动到空间位置),,(z y x 。

不同的质点在0t 时,具有不同的位置坐标,如),,(c b a '''、),,(c b a ''''''……,这样就把不同的质点区别开来。

同一质点在不同瞬间处于不同位置;各个质点在同一瞬间t 也位于不同的空间位置。

因而,任一瞬时t 质点),,(c b a 的空间位置),,(z y x 可表为⎪⎭⎪⎬⎫===),,,(),,,(),,,(t c b a z z t c b a y y t c b a x x(1-4a)式中c b a ,,称为拉格朗日变数。

若给定式中的c b a ,,值,可以得到某一特定质点的轨迹方程。

将某质点运动的空间位置的时间历程描绘出来就得到该质点的迹线。

将式(1-4a )对时间t 取偏导数,可得该流体质点在任意瞬间的速度u 在z y x ,,轴向的分量⎪⎪⎪⎭⎪⎪⎪⎬⎫=∂∂==∂∂==∂∂=),,,(),,,(),,,(t c b a u t z u t c b a u t y u t c b a u tx u z z y y x x (1-5a )若坐标用i x 表示,3,2,1=i ,即用321,,x x x 代替z y x ,,;用i u ,即321,,u u u ,代替z y x u u u ,,;用k x 0,3,2,1=k ,即030201,,x x x ,代替c b a ,,;则式(1-4a )~ (1-5a)可写为),(0t x x x k i i = (1-4b )),(0t x u tx u k i ii =∂∂=(1-5b ) 对于某一特定质点,给定c b a ,,值,就可利用式(1-4)~ (1-5)确定不同时刻流质点的坐标和速度。

1.2.1 欧拉法欧拉法是以考察不同流体质点通过固定的空间点的运动情况来了解整个流动空间内的流动情况,即着眼于研究各种运动要素的分布场。

这种方法又叫做流场法。

采用欧拉法,流场中任何一个运动要素可以表示为空间坐标和时间的函数。

在直角坐标系中,流速是随空间坐标),,(z y x 和时间t 而变化的。

因而,流体质点的流速在各坐标轴上的投影可表示为⎪⎭⎪⎬⎫===),,,(),,,(),,,(t z y x u u t z y x u u t z y x u u z z y y x x (1-6a )或),(t x u u k i i = (1-6b )式中3,2,1,=k x k ,代表自变量z y x ,,。

若令上式中z y x ,,为常数,t 为变数,即可求得在某一空间点),,(z y x 上,流体质点在不同时刻通过该点的流速变化情况。

若令t 为常数,z y x ,,为变数,则可求得在同一时刻,通过不同空间点上的流体质点的流速分布情况(即流速场,velocity field )。

流速v ϖ是一个矢量,所以流速场是一个矢量场。

流速虽是流动的一个重要参数,但只有流场不足以完全说明流动的全部情况,还应知道其他表达流动的各个参数的分布情况。

一个标量,如流体的密度ρ,温度T 等,在空间和时间上的连续分布就成为一个标量场。

应力ij σ是一个二阶张量,所以应力在空间和时间上的分布是一个张量场。

表述流动的各种场的综合成为流场(flow field ),如流速场t)z,y,(x,v ϖ,密度场),,,(t z y x ρ等。

1.3 质点的加速度公式和随体导数1.3.1 质点加速度公式质点加速度是质点速度向量随时间的变化率。

在Lagrange 法中是以单个流体质点作为研究对象,因此位移函数(1-4)式对时间求二次偏导数可得流体质点的加速度a 在各轴向的投影:⎪⎪⎪⎭⎪⎪⎪⎬⎫=∂∂==∂∂==∂∂=),,,(),,,(),,,(222222t c b a a t za t cb a a t ya t cb a a t xa z z y y x x (1-7a )或),(022t x a tx a k i ii =∂∂= (1-7b )欧拉法不追踪质点运动而着眼于流场,由速度场)t ,x (u ,k i 计算),(t x k 处的质点加速度i a 时必须求出该质点在t δ时间内的速度增量,在求其极值,即t )t ,x (u )t t ,x x (u lima k i k k i 0x 0t i i δδδδδ-++=→→ (1-8)式中k x δ是质点在t δ时间内的位移。

利用Taylor’s Series 展开,则)x t ,x ,t (O )tu t ()x u x ()t ,x (u )t t ,x x (u k 2k 2x i t k i kk i k k i k δδδδδδδδ+∂∂+∂∂+=++ 略去高阶微小量,所以t ki k x i x i t k i kk i k k i )x u(x )t u (t )t u t ()x u x ()t ,x (u )t t ,x x (u k k ∂∂+∂∂=∂∂+∂∂=-++δδδδδδ 代入式(1-8),得tx x u t u a kk i i i δδ∂∂+∂∂=注意到i x δ是质点位移,因而k kt u tx lim=→δδδ 则得欧拉法描述流体质点加速度的表达式ki k i i x uu t u a ∂∂+∂∂=(1-9a ) 或写为3i 32i 21i 1i i x uu x u u x u u t u a ∂∂+∂∂+∂∂+∂∂=(1-9b ) 以矢量表示为v )v (tv a ϖϖϖϖ∇⋅+∂∂= (1-9c )在直角坐标系下,加速度表述为⎪⎪⎪⎭⎪⎪⎪⎬⎫∂∂+∂∂+∂∂+∂∂==∂∂+∂∂+∂∂+∂∂==∂∂+∂∂+∂∂+∂∂==z u u y u u x u u t u dt du a z u u y u u x u u t u dt du a zu u y u u x u u t u dt du a z z z y z x z z y y z y y y x y y y x z x y x x x x x (1-9d )以上三式中等号右边第一项t u x ∂∂、t u y ∂∂、tu z∂∂表示在每个固定点上流速对时间的变化率,称为时变加速度(当地加速度)。

等号右边的第二项至第四项之和z u u y u u x u u x z x y x x∂∂+∂∂+∂∂、z u u y u u x u u y z y y y x ∂∂+∂∂+∂∂、zu u y u u x u u z z z y z x ∂∂+∂∂+∂∂是表示流速随坐标的变化率,称为位变加速度(迁移加速度)。

因此,一个流体质点在空间点上的全加速度应为上述两加速度之和。

1.3.2 质点的随体导数将推导加速度公式的方法推广到质点上任意物理量的增长率的计算,引出质点的随体导数的概念。

质点携带的物理量随时间的变化率称为质点的随体导数,用DtD表示。

在欧拉法描述中的任意物理量Q 的质点随体导数表述如下:kk x Qu t Q Dt DQ ∂∂+∂∂= (1-10) 式中,),(t x Q Q k =可以是标量、向量或张量。

相关文档
最新文档