初中数学教学设计
初中数学教案模板优秀9篇

初中数学教案模板优秀9篇一、学习目标:1、掌握二次根式的运算方法,明确数的运算顺序、运算律及乘法公式在根式的运算中仍然适用。
2、正确运用二次根式的性质及运算法则进行二次根式的混合运算。
二、学习重点:正确运用二次根式的性质及运算法则进行二次根式的混合运算。
学习难点:二次根式计算的结果要是最简二次根式。
三、过程知识准备1、满足下列条的二次根式是最简二次根式。
2、回忆有理数,整式混合运算的顺序。
3、回忆并整理整式的乘法公式。
方法探究1⑴(512+23)某15⑵(3+10)(2-5)归纳:尝试练习:⑴(3+22)某6⑵(827-53)6⑶(6-3+1)某23⑷(3-22)(33-2)⑸(22-3)(3+2)⑹(5-6)(3+2)方法探究2⑴(3+2)(3-2)⑵(3+25)2归纳:尝试练习:⑴(5+1)(5-1)⑵(7+5)(5-7)⑶(25-32)(25+32)⑷(a+b)(a-b)⑸(3-2)2⑹(32-45)2⑺(3-22)(22-3)⑻(a-b)2⑼(1-23)(1+23)-(1+3)2⑽(3+2-5)(3+2+5)例题解析1、计算:(22-3)2023(22+3)20232、若某=10-3,求代数式某2+6某+11的值。
3、若某=11+72,y=11—72,求代数式某2-某y+y2的值。
内反馈1、计算12(2-3)=2、计算⑴(2+3)(2-3)=⑵(5-2)2023(5+2)2023=3、计算:⑴12(75+313-48)⑵(1327-24-323)12⑶(23-5)(2+3)⑷(5-3+2)(5+3-2)⑸(312-213+48)÷234、已知a=3+2,b=3-2,求下列各式的值。
⑴a2-b2⑵1a-1b⑶a2-ab+b25、若某=3+1,求代数式某2-2某-3的值。
教学目标:1、使学生学会较熟炼地运用切线的判定方法和切线的性质证明问题。
2、掌握运用切线的性质和切线的判定的有关问题中辅助线引法的基本规律。
初中数学教学设计优秀5篇

初中数学教学设计优秀5篇初中数学教学设计篇一一、案例实施背景本节课是20xx-20xx学年度第一学期开学第七周笔者在长青中学的多媒体教室里上的一节公开课,课堂中数学优秀生、中等生及后进生都有,所用教材为北师大版义务教育教科书七年级数学(上册)。
二、案例主题分析与设计本节课是北师大版义务教育教科书七年级数学(上册)——科学记数法,它是在学习乘方的基础上,研究更简便的记数方法,是第二章有理数及其运算的重要组成部分。
《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。
本节课将以“生活·数学”、“活动·思考”、“表达·应用”为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同时通过小组内学生相互协作研究,培养学生合作性学习精神。
三、案例教学目标1、知识与技能:掌握科学记数法的方法,能将一些大数写成科学记数法。
2、过程与方法:在寻找科学记数法的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。
3、情感态度与价值观:通过科学记数法的总结,使学生形成数形结合的数学思想方法,以及知识的迁移能力、创新意识和创新精神。
四、案例教学重、难点1、重点:正确运用科学记数法表示较大的数2、难点:正确掌握10的幂指数特征,将科学记数法表示的数写成原数五、案例教学用具1、教具:多媒体平台及多媒体课件、图片六、案例教学过程一、创设情境,兴趣导学:1、展示学生收集的非常大的数,与同学交流,你觉得记录这些数据方便吗?2、展示课本第63页图片,现实中,我们会遇到一些比较大的数,如世界人口数、地球的半径、光速等,读写这样大的数有一定的困难。
初中数学活动教案6篇

初中数学活动教案6篇初中数学活动教案篇1一、内容特点在知识与方法上类似于数系的第一次扩张。
也是后继内容学习的基础。
内容定位:了解无理数、实数概念,了解(算术)平方根的概念;会用根号表示数的(算术)平方根,会求平方根、立方根,用有理数估计一个无理数的大致范围,实数简单的`四则运算(不要求分母有理化)。
二、设计思路整体设计思路:无理数的引入----无理数的表示----实数及其相关概念(包括实数运算),实数的应用贯穿于内容的始终。
学习对象----实数概念及其运算;学习过程----通过拼图活动引进无理数,通过具体问题的解决说明如何表示无理数,进而建立实数概念;以类比,归纳探索的方式,寻求实数的运算法则;学习方式----操作、猜测、抽象、验证、类比、推理等。
具体过程:首先通过拼图活动和计算器探索活动,给出无理数的概念,然后通过具体问题的解决,引入平方根和立方根的概念和开方运算。
最后教科书总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。
第一节:数怎么又不够用了:通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性;借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想;会判断一个数是有理数还是无理数。
第二、三节:平方根、立方根:如何表示正方形的边长?它的值到底是多少?并引入算术平方根、平方根、立方根等概念和开方运算。
第四节:公园有多宽:在实际生活和生产实际中,对于无理数我们常常通过估算来求它的近似值,为此这一节内容介绍估算的方法,包括通过估算比较大小,检验计算结果的合理性等,其目的是发展学生的数感。
第五节:用计算器开方:会用计算器求平方根和立方根。
经历运用计算器探求数学规律的活动,发展合情推理的能力。
第六节:实数。
总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。
三、一些建议1.注重概念的形成过程,让学生在概念的形成的过程中,逐步理解所学的概念;关注学生对无理数和实数概念的意义理解。
初中数学课堂教学设计5篇

初中数学课堂教学设计5篇一、教学目标:1、知道一次函数与正比例函数的定义。
2、理解掌握一次函数的图象的特征和相关的性质。
4、掌握直线的平移法则简单应用。
5、能应用本章的基础知识熟练地解决数学问题。
二、教学重、难点:重点:初步构建比较系统的函数知识体系。
难点:对直线的平移法则的理解,体会数形结合思想。
三、教学过程:1、一次函数与正比例函数的定义:一次函数:一般地,若y=k某+b(其中k,b为常数且k≠0),那么y 是一次函数。
正比例函数:对于y=k某+b,当b=0,k≠0时,有y=k某,此时称y 是某的正比例函数,k为正比例系数。
(1)从解析式看:y=k某+b(k≠0,b是常数)是一次函数;而y=k某(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。
(2)从图象看:正比例函数y=k某(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=k某+b(k≠0)的图象是过点(0,b)且与y=k某平行的一条直线。
基础训练:1、写出一个图象经过点(1,—3)的函数解析式为2、直线y=—2某—2不经过第象限,y随某的增大而。
3、如果P(2,k)在直线y=2某+2上,那么点P到某轴的距离是4、已知正比例函数y=(3k—1)某,若y随某的增大而增大,则k是5、过点(0,2)且与直线y=3某平行的直线是6、若正比例函数y=(1—2m)某的图像过点A(某1,y1)和点B(某2,y2)当某1y2,则m的取值范围是7、若y—2与某—2成正比例,当某=—2时,y=4,则某=时,y=—4。
8、直线y=—5某+b与直线y=某—3都交y轴上同一点,则b的值为9、已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。
(1)求线段AB的长。
(2)求直线AC的解析式。
四、教学反思:题的答案做出来,尽量要一题多解。
再由小组长组织小组成员汇编,在汇编过程中要去粗取精。
课堂就是以小组为单位学生展示自己的舞台,在这个舞台上学生是主角,在这个舞台上学生可以成果共享,在这个舞台上学生收获着自己的收获。
中学数学教学设计与案例6篇

中学数学教学设计与案例6篇中学数学教学设计与案例6篇好的教学课件是很重要的。
通过引导学生把握课文内容,培养学生观察、思维能力,培养他们善于通过普通事物发现不寻常的“美”,并能根据对事物的描写,抒发自己的感情。
下面小编给大家带来关于中学数学教学设计与案例,希望会对大家的工作与学习有所帮助。
中学数学教学设计与案例【篇1】一、教学目标1.把握菱形的判定.2.通过运用菱形知识解决具体问题,提高分析能力和观察能力.3.通过教具的演示培养学生的学习爱好.4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.二、教法设计观察分析讨论相结合的方法三、重点·难点·疑点及解决办法1.教学重点:菱形的判定方法.2.教学难点:菱形判定方法的综合应用.四、课时安排1课时五、教具学具预备教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具六、师生互动活动设计教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨七、教学步骤复习提问1.叙述菱形的定义与性质.2.菱形两邻角的比为1:2,较长对角线为,则对角线交点到一边距离为________.引入新课师问:要判定一个四边形是不是菱形最基本的判定方法是什么方法生答:定义法.此外还有别的两种判定方法,下面就来学习这两种方法.讲解新课菱形判定定理1:四边都相等的四边形是菱形.菱形判定定理2:对角钱互相垂直的平行四边形是菱形.图1分析判定1:首先证它是平行四边形,再证一组邻边相等,依定义即知为菱形. 分析判定2:师问:本定理有几个条件生答:两个.师问:哪两个生答:(1)是平行四边形(2)两条对角线互相垂直.师问:再需要什么条件可证该平行四边形是菱形生答:再证两邻边相等.(由学生口述证实)证实时让学生注重线段垂直平分线在这里的应用,师问:对角线互相垂直的四边形是菱形吗为什么可画出图,显然对角线,但都不是菱形.菱形常用的判定方法归纳为(学生讨论归纳后,由教师板书):注重:(2)与(4)的题设也是从四边形出发,和矩形一样它们的题没条件都包含有平行四边形的判定条件.例4已知:的对角钱的垂直平分线与边、分别交于、,如图.求证:四边形是菱形(按教材讲解).总结、扩展1.小结:(1)归纳判定菱形的四种常用方法.(2)说明矩形、菱形之间的区别与联系.2.思考题:已知:如图4△中,,平分,,,交于.求证:四边形为菱形.八、布置作业教材P159中9、10、11、13中学数学教学设计与案例【篇2】教学目标1.掌握平面向量的数量积及其几何意义;2.掌握平面向量数量积的重要性质及运算律;3.了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;4.掌握向量垂直的条件.教学重难点教学重点:平面向量的数量积定义教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用教学工具投影仪教学过程一、复习引入:1.向量共线定理向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ五,课堂小结(1)请学生回顾本节课所学过的知识内容有哪些所涉及到的主要数学思想方法有那些(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
初中数学教学优质教案(7篇)

初中数学教学优质教案(7篇)初中数学教学优质教案【篇1】一、教材内容人民教育出版社《义务教育课程标准实验教科书数学》六年级下册第2~4页例1、例2。
二、教学目标1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。
2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。
3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。
三、教学重、难点认识负数的意义。
四、教学过程(一)谈话交流谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。
)今天的数学课我们就从这个话题聊起。
(板书:相反。
)我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:(课件播放图片。
)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有赢……你能举出一些这样的现象吗?(二)教学新知1.表示相反意义的量(1)引入实例谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子(课件出示)。
①六年级上学期转来6人,本学期转走6人。
②张阿姨做生意,二月份盈利1500元,三月份亏损200元。
③与标准体重比,小明重了2.5千克,小华轻了1.8千克。
④一个蓄水池夏季水位上升米,冬季水位下降米。
指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。
(补充板书:相反意义的量。
)(2)尝试怎样用数学方式来表示这些相反意义的量呢?请同学们选择一例,试着写出表示方法。
(3)展示交流2.认识正、负数(1)引入正、负数谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6-6),这种表示方法和数学上是完全一致的。
介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六。
“-”,在这里有了新的意义和作用,叫“负号”。
初中数学教学设计教案模板3篇 初中数学教案板书设计模板

初中数学教学设计教案模板3篇初中数学教案板书设计模板下面是整理的初中数学教学设计教案模板范文最新3篇初中数学教案板书设计模板,供大家参考。
初中数学教学设计教案模板范文最新1一.教学目标:1.认知目标:1)了解二元一次方程组的概念。
2)理解二元一次方程组的解的概念。
3)会用列表尝试的方法找二元一次方程组的解。
2.能力目标:1)渗透把实际问题抽象成数学模型的思想。
2)通过尝试求解,培养学生的探索能力。
3.情感目标:1)培养学生细致,认真的学习习惯。
2)在积极的教学评价中,促进师生的情感交流。
二.教学重难点重点:二元一次方程组及其解的概念难点:用列表尝试的方法求出方程组的解。
三.教学过程(一)创设情景,引入课题1.本班共有40人,请问能确定男*各几人吗?为什么?(1)如果设本班男生x人,*y人,用方程如何表示?(x+y=40)(2)这是什么方程?根据什么?2.男生比*多了2人。
设男生x人,*y人.方程如何表示?x,y的值是多少?3.本班男生比*多2人且男*共40人.设该班男生x人,*y人。
方程如何表示?两个方程中的x表示什么?类似的两个方程中的y都表示?象这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。
4.点明课题:二元一次方程组。
[设计意图:从学生身边取数据,让他们感受到生活中处处有数学](二)探究新知,练习巩固1.二元一次方程组的概念(1)请同学们看课本,了解二元一次方程组的的概念,并找出关键词由教师板书。
[让学生看书,引起他们对教材重视。
找关键词,加深他们对概念的了解.](2)练习:判断下列是不是二元一次方程组:x+y=3,x+y=200,2x-3=7,3x+4y=3y+z=5,x=y+10,2y+1=5,4x-y2=2学生作出判断并要说明理由。
2.二元一次方程组的解的概念(1)由学生给出引例的答案,教师指出这就是此方程组的解。
(2)练习:把下列各组数的题序填入图中适当的位置:x=1;x=-2;x=;-x=y=0;y=2;y=1;y=方程x+y=0的解,方程2x+3y=2的解,方程组x+y=0的解。
初中数学教学设计(精选15篇)

初中数学教学设计(精选15篇)初中数学教学设计1(一)创设情境导入新课不利用工具,请你将一张用纸片做的角分成两个相等的角。
你有什么办法?如果前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?设计目的:能聚拢学生的思维为新课的开展创造了良好的教学氛围。
(二)合作交流探究新知(活动一)探究角平分仪的原理。
具体过程如下:播放美访问我国的录像资料------引出雨伞-----观察它的截面图,使学生认清其中的边角关系-----引出角平分线;并且运用几何画板对伞的开合进行动态演示,让学生直观感受伞面形成的角与主杆的关系-----让学生设计制作角平分仪;并利用以前所学的知识寻找理论上的.依据,说明这个仪器的制作原理。
设计目的:用生活中的实例感知。
以最近大事作引入点,以最常见的事物为载体,让学生感受到生活中处处都有数学,认识到数学的价值。
其中设计制作角平分仪,可培养学生的创造力和成就感以及学习数学的兴趣。
使学生很轻松的完成活动二。
(活动二)通过上述探究,能否总结出尺规作已知角的平分线的一般方法.自己动手做做看.然后与同伴交流操作心得.分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性。
讨论结果展示:教师根据学生的叙述,利用多媒体课件演示作已知角的平分线的方法:已知:∠AO B.求作:∠AOB的平分线.作法:(1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.(2)分别以M、N为圆心,大于1/2MN的长为半径作弧.两弧在∠AOB内部交于点C.(3)作射线OC,射线OC即为所求.设计目的:使学生能更直观地理解画法,提高学习数学的兴趣。
议一议:1.在上面作法的第二步中,去掉“大于MN的长”这个条件行吗?2.第二步中所作的两弧交点一定在∠AOB的内部吗?设计这两个问题的目的在于加深对角的平分线的作法的理解,培养数学严密性的良好学习习惯。
学生讨论结果总结:1.去掉“大于MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线.2.若分别以M、N为圆心,大于MN的长为半径画两弧,两弧的交点可能在∠AOB•的内部,也可能在∠AOB的外部,而我们要找的是∠AOB内部的交点,•否则两弧交点与顶点连线得到的射线就不是∠AOB的平分线了.3.角的平分线是一条射线.它不是线段,也不是直线,•所以第二步中的两个限制缺一不可.4.这种作法的可行性可以通过全等三角形来证明.(活动三)探究角平分线的性质思考:已知一角及其角平分线添加辅助线构成全等三角形;构成全等的直角三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学教学设计
教材分析:
1、本节内容是七年级下第九章《轴对称》中的重点部分,是等腰三角形的第一节课,由于小学已经有等腰三角形的基本概念,故此节课应该是在加深对等腰三角形从轴对称角度的直观认识的基础上,着重探究等腰三角形的两个定理及其应用,如何从对称角度理解等腰三角形是新教材和旧教材完全不同的出发点,应该重新认识,把好入门的第一课。
2、等腰三角形是在第八章《多边形》中的三角形知识基础上的继续深入,如何利用学习三角形的过程中已经形成的思路和观点,也是对理解“等腰”这个条件造成的特殊结果的重要之处。
3、等腰三角形是基本的几何图形之一,在今后的几何学习中有着重要的地位,是构成复杂图形的基本单位,等腰三角形的定理为今后有关几何问题的解决提供了有力的工具。
4、对称是几何图形观察和思维的重要思想,也是解决生活中实际问题的常用出发点之一,学好本节知识对加深对称思想的理解有重要意义。
5、例题中的几何运算,是数形结合的思想的初步体验,如何在几何中结合代数的等量思想是教学中应重点研究的问题。
6、新教材的合情推理是一个创新,如何把握合情推理的书写及重点问题,本课中的例题也进一步做了示范,可以认真研究。
7、本课对学生的动手能力,观察能力都有一定的要求,对培养学生灵活的思维,提高学生解决实际问题的能力都有重要的意义。
8、本课内容安排上难度和强度不高,适合学生讨论,可以充分开展合作学习,培养学生的合作精神和团队竞争的意识。
学情分析:
1、授课班级学生基础较差,教学中应给予充分思考的时间,谨防填塞式教学。
2、该班级学生在平时训练中已经形成了良好的合作精神和合作气氛,可以充分发挥合作的优势,兼顾效率和平衡。
3、本班为自己任课的班级,平时对学生比较了解,在解决具体问题的时候可以兼顾不同能力的学生,充分调动学生的积极性。
教学中的重点、难点:
重点:1、等腰三角形对称的概念。
2、“等边对等角”的理解和使用。
3、“三线合一”的理解和使用。
难点:1、等腰三角形三线合一的具体应用。
2、等腰三角形图形组合的观察,总结和分析。
主要教学手段及相关准备:
教学手段:1、使用导学法、讨论法。
2、运用合作学习的方式,分组学习和讨论。
3、运用多媒体辅助教学。
4、调动学生动手操作,帮助理解。
准备工作:1、多媒体课件片断,辅助难点突破。
2、学生课前分小组预习,上课时按小组落座。
3、学生自带剪刀,圆规,直尺等工具。
4、每人得到一张印有“长度为a的线段”的纸片。
教学设计策略:依据教学目标和学生的特点,依据教学时间和效率的要求,在此课教学方法和教学模式的设计中我主要体现了以下的设计思想和策略:
1、回归学生主体,一切围绕着学生的学习活动和当堂的反馈程度安排教学过程。
2、原则性和灵活性相结合,既要完成教学计划,在教学过程中又可以根据现实的情况,安排问题的难度,体现一些灵活性。
3、教学的形式上注重个体化,充分给予学生讨论和发表意见的机会,注重学习的参与性,努力避免以教师活动为主体的教学过程。