第十章(第三部分)曲线积分习题解答

第十章(第三部分)曲线积分习题解答
第十章(第三部分)曲线积分习题解答

第十章 曲线积分与曲面积分

(第三部分)曲线积分习题解答

一、对弧长的曲线积分

1.计算?

=

L

yds I ,其中L 为摆线)cos 1( ),sin (t a y t t a x -=-=的一拱

)20 ,0(π≤≤>t a .

解 由于?

??-=-=)c o s 1()s i n

(:t a y t t a x L , )20 (π≤≤t ;而

dt t a dt y x ds 2

1

2

2)cos 1(2-='+'=,)20 (π≤≤t

故 ?

?

π

-?-=

=

2 0

2

1

)c o s 1(2)c o s 1(dt t a t a yds I L

?

π

=2 0

3

22

sin 4dt t

a ?π= 0 32sin 8udu a

?

π=2

0 32

sin 16udu a

2

2

32a =

. 2.计算曲线积分?

+L

ds y x 22,其中L 为圆周ax y x =+22.

解 圆周ax y x =+22在极坐标下的方程为θ=ρc o s a )2

2(π

≤θ≤π-

,则 θ=θρ'+ρ=ad d ds 22. 故

?

+L

ds y x 22

?

π

π-?ρ=2

2 ads ?

ππ-θ?θ=2

2 cos ad a ?

πθθ=2

0 2

cos 2d a

22a =.

3. 计算?+=L

y x ds e

I 2

2,其中L 为圆周222a y x =+,直线x y =及x 轴在第一象限内

所围成的扇形的整个边界.

解 积分曲线L 为闭曲线(如右图),可分解为321L L L L ++=,其中

)0( ,0 :1a x y OA L ≤≤==;

)4

0( , :2π

θ≤==a r AB L ;

)2

0( , :3a x x y OB L ≤

≤==.

故 ???+++++=3

2

222

212

2 L y x L y x L y x ds e

ds e

ds e

I

???'++θ'++'+=π2

224

0 2

2 0

2

)(1)()0(1a x

a a

x

dx x e

d a a e

dx e

???

+θ+=

π2

24

0 0

2a x

a

a

x

dx e

d a

e dx e

2)4

2(-π

+

=a e a . 4. 设螺旋线弹簧一圈的方程为t a x cos =,t a y sin =,kt z =,其中π≤≤20t ,它的线密度222) , ,(z y x z y x ++=ρ. 求此线关于z 轴的转动惯量z I .

分析 本题为对弧长的曲线积分在物理中的应用问题,应首先将所求的转动惯量用对弧长的曲线积分?ρ+=L

z ds z y x y x I 22) , ,()(表示,然后计算积分即可。

解 所求的转动惯量为?ρ+=L

z ds z y x y x I 22) , ,()(,而

dt t z t y t x ds )()()(222'+'+'=

dt k a 22+=,

故 ?ρ+=L

z ds z y x y x I 22) , ,()(?+++=L

ds z y x y x 22222))((

?

π

++=2 0

222222)(dt k a t k a a )43(3

222222

2k a k a a π++π=

. 二、对坐标的曲面积分

1. 计算曲线积分?---=

L

x dy y y dx y e I ])sin ()cos 1[(,其中L 为区域x y x sin 0 ,0≤≤π≤≤的边界,取逆时针方向。

解 令)c o s

1(y e P x -=,)s i n (y y e Q x --=.则 y e y P x sin =??,)sin (y y e x

Q

x --=??. 即

x

Q y P ??≠??. 由于π≤≤≤≤x x y D 0 ,sin 0 :. 故利用格林公式,得

????-??=

D

dxdy y P

x Q I )(

??-=D

x dxdy ye ?

-=x

x ydy e dx sin 0

)1(5

1

π-=

e . 2. 计算曲线积分[]?

---=

L

x dy y y dx y e I )sin ()cos 1(.其中L 为曲线x y sin =上从点

)0 ,(πA 到点)0 ,0(O 的一段弧。

解 补直线段OA L =':0=y ,x 从0变到π;并设闭曲线L L '+所围区域为D (如图所示),则由Green 公式,得:

?

'

+---L

L x

dy y y dx y e ])sin ()cos 1[( ????-??=

D

dxdy y P

x Q )(

??-=D

x dxdy ye ?

-=x

x ydy e dx sin 0

)1(5

1

π-=

e . 又

[]0)s i n ()c o s 1( =---?

'

L

x

dy y y dx y e (OA L =':0=y ,x 从0变到π), 故 []dy y y dx y e I x L L L )sin ()cos 1()( ----=?

?

'

'

+

0)1(51--=

πe )1(5

1

π-=e . 3. 设L 是一条封闭的光滑曲线,方向为逆时针,计算曲线积分?+-L

y

x xdy

ydx 2

24. 分析 因224) ,(y x y y x P +=

,224) ,(y x x

y x Q +-=,则

2

2222)

4(4y x y x y P +-=??,2222

2)4(4y x y x x Q +-=??. 故

x

Q

y P ??=??. 由于) ,(y x P 与) ,(y x Q 在原点)0 ,0(处不连续,因此可知:(1)若给定的曲线L 所围成的闭区域不包括原点)0 ,0(,则在此区域内曲线积分与路径无关;(2)若给定的曲线L 所围成的闭区域包括原点)0 ,0(,那么P 、Q 在L 所围成的闭区域上不满

足格林公式(积分与路径无关的条件)。此时,我们可取一条特殊的封闭光滑曲线1L ,在1L L +上应用Green 公式,由此将L 上的曲线积分转化为1L 上的曲线积分。

解 因224) ,(y x y y x P +=

,224) ,(y x x

y x Q +-=,则

2

2222)

4(4y x y x y P +-=??,2222

2)4(4y x y x x Q +-=??. 故

x

Q

y P ??=

??. (1)若给定的曲线L 围成的闭区域不包括原点)0 ,0(. 由

x

Q

y P ??=

??知曲线积分?

+-L

y x xdy ydx 2

24与路径无关,故04 22=+-?L y x xdy

ydx . (2)若给定的曲线L 所围成的闭区域包括原点)0 ,0(,则取一条特殊的有向曲线

22214 :ε=+y x L (0>ε充分小),规定1L 的方向为逆时针(如右图所示)。设)

(1L L -+所围城的区域为D ,则在)(1L L -+上应用Green 公式,得

0)(

41

2

2=??-??=+-???

-dxdy y

P

x Q y

x xdy

ydx D

L L , 所以

??

+-=+-1 22 2244L L

y

x xdy

ydx y x xdy ydx . 而 ?

?

=+-1

1

2

2214L L xdy ydx y x xdy ydx π-=ε-

=??D

dxdy 21

2

.

故π-=+-?

L

y

x xdy

ydx 2

24. 或利用参数方程计算:令1L :θε=cos x ,θε

=

sin 2

y ,θ从0到π2. 所以 ??

+-=+-1 2

2 2244L L

y x xdy

ydx y x xdy ydx π-=θεθ+θε-=?π2 0 2

222

)cos (sin 21d

.

4. 设在半平面0>x 内有力)(3→→→

-=j y i x k

F 构成力场,其中k 为常数,

22y x +=

ρ,证明在此力场中场力所作的功与所取的路径无关。

分析 由于场力沿路径所作的功为?

ρ

-ρ-

=

L

ydy k xdx k W 33,所以证明场力所作的功与所取的路径无关的问题,实质上就是证明上述曲线积分与路径无关的问题。

证明 场力沿路径所作的功为?

ρ-ρ-

=

L

ydy k xdx k W 3

3. 令233)(y x kx x k P +-=ρ-

=,233)

(y x ky

y k Q +-=ρ-=;则 y

P

y x kxy x Q ??=+?=??25)(23. 由于右半平面为单连通区域,且

y

P

x Q ??=

??,所以场力所作的功与所取的路径无关。 5.设函数)(x ?具有连续导数,在围绕原点的任意分段光滑简单闭曲线C 上,曲线积分

?++C y x dy

x xydx 24)(2?的值为常数。

(1) 设L 为正向闭曲线1)2(22=+-y x ,证明: 0)(224=++?L y x dy

x xydx ?;

(2) 求函数)(x ?;

(3) 设C 是围绕原点的光滑简单正向闭曲线,求?++C y x dy

x xydx 2

4)(2?.

(1) 证 设I y

x dy

x xydx L =++?

24)(2?,闭曲线L 由2,1,=i L i 组成。设0L 为不经过原点的光滑曲线,使得1

10-L L 和20L L 分别组成围绕原点的分段光滑闭曲线2,1,=i C i ,

由曲线积分的性质和题设条件知

???????---+=+=++110022124)(2L L L L L L L y x dy

x xydx ?

02

1

=-=-

=

?

?

I I C C .

所以,?

++1

4

222)(L y x xydy

dx y ??

++=

2

4

222)(L y x xydy

dx y ?,即0224

2=++?

C

y x xydy

dx y )(?.

(2) 解 令

x

Q

y P ??=

??.从而有

2

242

5224324)

(22)()

(4))((y x xy x y x x x y x x +-=+-+'??, 解得,2)(y y -=?.

(3) 解 设D 为正向闭曲线1:24=+y x C a 所围区域,由(1)

?++C y x dy x xydx 24)(2??+-=a

C y

x dy x xydx 2422,利用Green 公式和对称性,0)4(222242=-=-=+-????

D

C C dxdy x dy x xydx y x dy

x xydx a

a

.

第十章 重积分练习题(答案)

1.填空: (1)设D 是由x 轴,y 轴及直线1=+y x 所围成的三角形闭区域,则比较二重积分的值的大小,有2()D x y d σ+??≥3 ()D x y d σ+??. (2)设??++=D d y x I σ)94(22,其中(){} 4,22≤+=y x y x D ,则估计二重积分的值,有 36π≤≤I 100π. (3)交换积分次序:=??-2210),(y y dx y x f dy ????-+222021 010),(),(x x dy y x f dx dy y x f dx . (4)设D 是由直线y x 2=及抛物线2y x =所围成的闭区域,化二重积分σd y x f D ),(??为两个不同次序的二次积分是????x x y y dy y x f dx dx y x f dy 24022 0),(),(2,. (5)在极坐标系中,面积元素为d d ρρθ。 2.选择: (1)设平面区域(){}(){} 0,0,1,,1,22122≥≥≤+=≤+=y x y x y x D y x y x D ,则下列等式一定成立的是( C ). (A)????=1),(4),(D D dxdy y x f dxdy y x f . (B)????=1 4D D xydxdy xydxdy . (C)14D D =. (D)????=1 4D D xdxdy xdxdy . (2)设平面区域(){}(){}a y x a x y x D a y x a x a y x D ≤≤≤≤=≤≤≤≤-=,0,,,,1,则=+??D dxdy y x xy )sin cos (( A ). (A)??1sin cos 2 D ydxdy x . (B)??12D xydxdy . (C)??+1 )sin cos (4D dxdy y x xy . (D)0. (3)设?? ????+=+=+=σσσd y x I d y x I d y x I D 2223222221)cos(,)cos(cos ,,其中 (){} 1,22≤+=y x y x D ,则( A ). (A)123I I I >>. (B)321I I I >>.

高等数学科学出版社下册课后答案第十章曲线积分与曲面积分习题简答(可编辑修改word版)

1 2 1 2 2 5 L L ? ? ? 第十章曲线积分与曲面积分习题简答 习题 10—1 1 计算下列对弧长的曲线积分: (1) I = ? L xds ,其中 L 是圆 x 2 + y 2 = 1中 A (0,1) 到 B ( , - ) 之间的一段劣弧; 解: (1 + ) . (2) ? L (x + y +1)ds ,其中 L 是顶点为O (0, 0), A (1, 0) 及 B (0,1) 所成三角形的边界; 解: ?L (x - y + 1)ds = 3 + 2 . (3) ? x 2 + y 2 ds ,其中 L 为圆周 x 2 + y 2 = x ; 解: ? x 2 + y 2 ds = 2 . (4) x 2 yzds ,其中 L 为折线段 ABCD ,这里 A (0, 0, 0) , B (0, 0, 2), C (1, 0, 2), L D (1, 2, 3) ; 解: ? L x 2 yzds = 8 . 3 z B (0, 0, 2) D (1, 2,3) C (1, 0, 2) 2 求八分之一球面 x 2 + y 2 + z 2 = 1(x ≥ 0, y ≥ 0, z ≥ 0) 的边界曲线的重心,设曲线的密 度 = 1 。 解 故所求重心坐标为? 4 , 4 , 4 ? . A (0, 0, 0) y x 3 3 3? 习题 10—2 1 设 L 为 xOy 面内一直线 y = b ( b 为常数),证明 1 2 y A C o x B

? ? ?L x - y + z = 2 , ? 证明:略. 2 计算下列对坐标的曲线积分: ?L Q (x , y )dy = 0 。 (1) ? L xydx ,其中 L 为抛物线 y = x 上从点 A (1, -1) 到点 B (1,1) 的一段弧。 2 4 解 : ? L xydx = 5 。 (2) (x 2 + y 2 )dx + (x 2 - y 2 )dy ,其中 L 是曲线 y = 1 - 1 - x 从对应于 x = 0 时的点到 L x = 2 时的点的一段弧; 解 (x 2 + y 2 )dx + (x 2 - y 2 )dy = 4 . L 3 (3) ? L ydx + xdy , L 是从点 A (-a , 0) 沿上半圆周 x 2 + y 2 = a 2 到点 B (a , 0) 的一段弧; 解 ?L ydx + xdy = 0. (4) xy 2dy - x 2 ydx ,其中 L 沿右半圆 x 2 + y 2 = a 2 以点 A (0, a ) 为起点,经过点C (a , 0) L 到终点 B (0, -a ) 的路径; 解 ?L xy 2dy - x 2 ydx = -a 4 。 4 (5) ? L x dx + 3zy dy - x ydz ,其中 L 为从点 A (3, 2,1) 到点 B (0, 0, 0) 的直线段 AB ; 3 2 2 0 3 87 解 ? x 3dx + 3zy 2dy - x 2 ydz = 87? t dt = - 。 L 1 4 ?x 2 + y 2 = 1 , (6) I = (z - y )dx + (x - z )dy + (x - y )dz , L 为椭圆周? 且从 z 轴 ? 正方向看去, L 取顺时针方向。 解: = -2 。 习题 10—3 1. 利用曲线积分求下列平面曲线所围成图形的面积:

第十章重积分自测题(答案)

第十章《重积分》自测题 一、单项选择题 1.设1D 是正方形域,2D 是1D 的内切圆,3D 是1D 的外接圆,1D 的中心点在(1,1)-,记 22 1 221y x y x D I e dxdy ---= ??,22 2 222y x y x D I e dxdy ---= ??,22 2233 y x y x D I e dxdy ---= ??则123,,I I I 大小 顺序为( B )。 (A )123I I I ≤≤;(B) 213I I I ≤≤;(C )321I I I ≤≤;(D )312I I I ≤≤。 2.D=}2 1 ,1),{(22-≥≤+x y x y x 则σd y x D )(2 2??+=( A ) (A)? - 1 2 1dx dy y x x x )(2 2 112 2? ---+ (B) dy x x ? ---2 2 11? - +12 12 2)(dx y x (C) ? - 12 1dx dy y x x )(2 12 12 2? -- + (D) ? - 12 1dx dy y x )(1 2 12 2? - + 3.改变12 2 2 111 2 (,)(,)y y dy f x y dx dy f x y dx + ??? ?的积分次序,则下列结果正确的是(A ) (A )??21 1),(x x dy y x f dx (B )??2 1 1 ),(x x dy y x f dx (C )??31 1),(x x dy y x f dx (D )??1 3 11 ),(x x dy y x f dx 4.已知D 是正方形域:11,02x y -≤≤≤≤,则2 D I y x dxdy = -?? 的值为( D ) (A ) 23 ; (B ) 43 ; (C ) 2115 ; (D ) 4615 5.设D :2222 ,,(0)x y ax x y ay a +≤+≤>,则(,)D f x y dxdy ??可化为( D )。 (A )cos 20sin (cos ,sin )a a d f r r rdr π θθθ θθ?? ; (B )sin 402(cos ,sin )a a d f r r rdr π θθ θθ?? ; (C )sin 400 (cos ,sin )a d f r r rdr π θ θ θθ?? +sin 2 cos 4 (cos ,sin )a a d f r r rdr π θπθ θ θθ?? ; (D ) sin 40 (cos ,sin )a d f r r rdr π θθ θθ? ? + cos 2 4 (cos ,sin )a d f r r rdr π θπ θ θθ?? 6.Ω由不等式2 2 y x z +≥,222 (1)1x y z ++-≤确定,则???Ω dv z y x f ),,(=(D )

第二类曲线积分的计算

第二类曲线积分的计算 Jenny was compiled in January 2021

第二类曲线积分的计算 定义 设),(y x P ,),(y x Q 为定义在光滑或分段光滑平面有向曲线AB L 上的函数,对AB L 任一分割T ,它把AB L 分成n 个小弧段i i M M 1-),,2,1(n i =;其中 A =n M B M =,0.记各个小弧段i i M M 1-弧长为i s ?,分割T 的细度为 }{max 1i n i S T ?=≤≤,又设T 的分点的坐标为),(i i i y x M ,并记 11,---=?-=?i i i i i i y y y x x x ,),,2,1(n i = . 在每个小弧段i i M M 1-上任取一点()i i ηξ,,若极限 ∑=→?n i i i i T x P 1 ),(lim ηξ∑=→?+n i i i i T y Q 1 ),(lim ηξ 存在且与分割T 与点()i i ηξ,的取法无关,则称此极限为函数),(y x P ,),(y x Q 在有向线段AB L 上的第二类曲线积分,记为 ?+L dy y x Q dx y x P ),(),(或 ?+AB dy y x Q dx y x P ),(),( 也可记作 ??+L L dy y x Q dx y x P ),(),( 或 ??+AB AB dy y x Q dx y x P ),(),( 注:(1) 若记()y x F , =()),(),,(y x Q y x P ,()dy dx s d ,= 则上述记号可写成向量 形式:??L s d F . (2) 倘若L 为光滑或分段光滑的空间有向连续曲线, ),,(z y x P ,),,(z y x Q ,),,(z y x R 为定义在L 上的函数,则可按上述办法定义沿 空间有向曲线L 的第二类曲线积分,并记为 dz z y x R dy z y x Q dx z y x P L ),,(),,(),,(++? 按照这一定义 , 有力场()),( , ),(),(y x Q y x P y x F =沿平面曲线L 从点A 到点B 所作的功为?+=AB Qdy Pdx W .第二类曲线积分的鲜明特征是曲线的

高等数学 习题册解答_10.重积分(青岛理工大学)

第十章 重积分 § 1 二重积分的概念与性质 1、由二重积分的几何意义求二重积分的值 dxdy y x I D ??+=22 其中D 为:422≤+y x ( dxdy y x I D ??+=22=πππ3 16 2.4..312.4.= -) 2、设D 为圆域,0,222>≤+a a y x 若积分 dxdy y x a D ?? --2 2 2 =12π,求a 的值。 解: dxdy y x a D ?? --2 2 2 =3 .34.21a π 81 =a 3、设D 由圆,2)1()2(22围成=-+-y x 求??D dxdy 3 解:由于D 的面积为π2, 故??D dxdy 3=π6 4、设D :}10,53|),{(≤≤≤≤y x y x , ????+=+=D D dxdy y x I dxdy y x I 221)][ln(,)ln(,比较1I , 与2I 的大小关系 解:在D 上,)ln(y x +≤ 2)][ln(y x +,故1I ≤2I 5、 设f(t)连续,则由平面 z=0,柱面 ,122=+y x 和曲面2)]([xy f z =所围的 立体的体积,可用二重积分表示为??≤+=1 :222)]([y x D dxdy xy f V 6、根据二重积分的性质估计下列积分的值 ??D ydxdy x 22sin sin ππ≤≤≤≤y x D 0,0: (≤ 0??D ydxdy x 22sin sin 2π≤) 7、设f(x,y)为有界闭区域D :222a y x ≤+上的连续函数,求 ??→D a dxdy y x f a ),(1 lim 2 0π 解:利用积分中值定理及连续性有)0,0(),(lim ),(1lim 8 2 0f f dxdy y x f a a D a ==→→??ηξπ

第二类曲线积分的计算

第二类曲线积分的计算 作者:钟家伟 指导老师:张伟伟 摘要:本文结合第二类曲线积分的背景用定义的方法进行第二类曲线积分的计算,重点是利用对称性, 参数方程,格林公式斯托克斯公式以及两类曲线积分之间的联系对第二类曲线积分进行计算。 关键词:第二类曲线积分 二重积分 参数积分 对称性原理 斯托克斯公式 第二类曲面积分 1 引言 本文介绍第二类曲线积分的定义以及与两类曲线积分之间的联系,重点介绍若干种主要的计算方法。 1.1 第二类曲线积分的概念 介绍了第二类曲线积分的物理学背景,平面和空间第二类曲线积分的定义以及对坐标的第二类曲线积分的定义。 1.2第二类曲线积分的计算方法 介绍了关于第二类曲线积分的参数计算法,利用格林公式和斯托克斯公式计算的方法以及利用对称性简化或计算的方法。 2.1第二类曲线积分的物理学背景 力场()),( , ),(),(y x Q y x P y x F =沿平面曲线L 从点A 到点B 所作的功 一质点受变力()y x F , 的作用沿平面曲线L 运动,当质点从L 之一端点A 移动到另一端B 时,求力()y x F , 所做功W . 大家知道,如果质点受常力F 的作用从A 沿直线运动到B ,那末这个常力F 所做功为 W =AB F ? . 现在的问题是质点所受的力随处改变,而所走路线又是弯弯曲曲.怎么办呢? 为此,我们对有向曲线L 作分割},,.....,,{110n n A A A A T -=,即在AB 内插入1-n 个分点 ,,.....,,121-n M M M 与A =n M B M =,0一起把曲线分 成n 个有向小曲线段 i i M M 1-),,2,1(n i = ,记 小曲线段i i M M 1-的弧长为i S ?.则分割 },,.....,,{110n n A A A A T -=的细度为}{max 1i n i S T ?=≤≤. 设力()y x F , 在x 轴和y 轴方向上的投影分别为),(y x P

曲线积分的计算法

曲线积分 第一类 ( 对弧长 ) 第二类 ( 对坐标 ) ? ??转化 定积分 (1) 选择积分变量 用参数方程 用直角坐标方程 用极坐标方程 (2) 确定积分上下限 第一类: 下小上大 第二类: 下始上终 对弧长曲线积分的计算 定理 ) ()()()](),([),(,],[)(),()(),(), (, ),(22βαψ?ψ?βαψ?βαψ?β α <'+'=≤≤? ? ?==?? dt t t t t f ds y x f t t t t y t x L L y x f L 且 上具有一阶连续导数在其中的参数方程为上有定义且连续在曲线弧设注意: ;.1βα一定要小于上限定积分的下限. ,,),(.2而是相互有关的不彼此独立中y x y x f 特殊情形 . ) (:)1(b x a x y L ≤≤=ψ. )(1)](,[),(2dx x x x f ds y x f b a L ?? '+=ψψ. )(:)2(d y c y x L ≤≤=?. )(1]),([),(2dy y y y f ds y x f d c L ?? '+=??

).(, sin ,cos :,象限第椭圆求I ? ? ?===?t b y t a x L xyds I L 解 dt t b t a t b t a I 2220 )cos ()sin (sin cos +-?=?π dt t b t a t t ab 222220 cos sin cos sin +=?π ?-= a b du u b a ab 22 2) cos sin (2222t b t a u +=令. ) (3) (22b a b ab a ab +++=例2 . )2,1()2,1(,4:, 2 一段到从其中求-==?x y L yds I L x y 42=解 dy y y I 222)2 (1+=?-. 0=例3 ) 20(., sin ,cos :, πθθθθ≤≤===Γ=?Γ 的一段其中求k z a y a x xyzds I 解 θ θθθd k a k a 222sin cos +?? =π 20 I . 2 1 222k a ka +-=π例4 ?? ?=++=++Γ=?Γ . 0, , 22 2 2 2z y x a z y x ds x I 为圆周其中求解 由对称性, 知 . 22 2 ???Γ ΓΓ==ds z ds y ds x ?Γ ++=ds z y x I )(312 22故例1

高数教案第十章重积分

高等数学教案

第十章重积分 §10-1 二重积分的概念与性质 一、二重积分的概念 (一)引例 1. 曲顶柱体的体积 设有一空间立体 ,它的底是xoy面上的有界区域D,它的侧面是以D的边界曲线为准

线,而母线平行于z轴的柱面,它的顶是曲面(.) z f x y =。 当(,) x y D ∈时,(,) f x y在D上连续且(,)0 f x y≥,以后称这种立体为曲顶柱体。 曲顶柱体的体积V可以这样来计算: (1) 用任意一组曲线网将区域D分成n个小区域1σ ?, 2 σ ?,, n σ ?,以这些小区域的边界曲线为准线,作母线平行于z轴的柱面,这些柱面将原来的曲顶柱体Ω分划成n个小曲 顶柱体 1 ?Ω, 2 ?Ω,, n ?Ω。 (假设 i σ ?所对应的小曲顶柱体为 i ?Ω,这里 i σ ?既代表第i个小区域,又表示它的面积值, i ?Ω既代表第i个小曲顶柱体,又代表它的体积值。) 图10-1-1 从而 1 n i i V = =?Ω ∑ (将Ω化整为零) (2) 由于(,) f x y连续,对于同一个小区域来说,函数值的变化不大。因此,可以将小曲顶柱体近似地看作小平顶柱体,于是 ?Ω?? i i i i i i i f ≈?∈ ()() () ξησξησ (以不变之高代替变高, 求 i ?Ω的近似值) (3) 整个曲顶柱体的体积近似值为 V f i i i i n ≈ = ∑() ξησ ? 1 (4) 为得到V的精确值,只需让这n个小区域越来越小,即让每个小区域向某点收缩。为此,我

们引入区域直径的概念: 一个闭区域的直径是指区域上任意两点距离的最大者。 所谓让区域向一点收缩性地变小,意指让区域的直径趋向于零。 设n个小区域直径中的最大者为λ, 则 V f n i i i i = →= ∑ lim() , λ ξησ 01 ? 2.平面薄片的质量 设有一平面薄片占有xoy面上的区域D, 它在() ,x y处的面密度为() ,x y ρ,这里(),0 x y ρ≥,而且(),x y ρ在D上连续,现计算该平面薄片的质量M。 图10-1-2 将D分成n个小区域1σ ?, 2 σ ?,, n σ ?,用 i λ记 i σ ?的直径, i σ ?既代表第i个小区域又代表它的面积。 当{} 1 max i i n λλ ≤≤ =很小时, 由于(),x y ρ连续, 每小片区域的质量可近似地看作是均匀的, 那么第i小块区域的近似质量可取为 ρξησξησ (,)(,) i i i i i i ?? ?∈ 于是∑ = ? ≈ n i i i i M 1 ) , (σ η ξ ρ M i i i i n = →= ∑ lim(,) λ ρξησ 01 ? 两种实际意义完全不同的问题, 最终都归结同一形式的极限问题。因此,有必要撇开这类极限问题的实际背景, 给出一个更广泛、更抽象的数学概念,即二重积分。 (二)二重积分的定义

高等数学 习题册解答_10.重积分(青岛理工大学).

第十章重积分 § 1 二重积分的概念与性质 1、由二重积分的几何意义求二重积分的值dxdy y x I D ??+=22 其中D 为:422≤+y x ( dxdy y x I D ??+=22=πππ3 16 2. 4. . 312. 4. = - 2、设D 为圆域, 0, 222>≤+a a y x 若积分 dxdy y x a D ?? --2 2 2 =12π,求a 的值。 解: dxdy y x a D ?? --2

2 2 =3 . 34. 21a π 81 =a 3、设D 由圆, 2 1( 2(22围成=-+-y x 求??D dxdy 3 解:由于D 的面积为π2, 故??D dxdy 3=π6 4、设D :}10, 53| , {(≤≤≤≤y x y x , ????+=+=D D dxdy y x I dxdy y x I 221][ln(, ln(,比较1I , 与2I 的大小关系 解:在D 上,ln(y x +≤ 2][ln(y x +, 故1I ≤2I 5、设f(t连续,则由平面 z=0,柱面 , 122=+y x 和曲面2]([xy f z =所围的立体的体积,可用二重积分表示为??≤+=1 :222]([y x D dxdy xy f V 6、根据二重积分的性质估计下列积分的值 ??D

ydxdy x 22sin sin ππ≤≤≤≤y x D 0, 0: (≤ 0??D ydxdy x 22sin sin 2π≤ 7、设f(x,y为有界闭区域D :222a y x ≤+上的连续函数,求??→D a dxdy y x f a , (1 lim 2 0π 解:利用积分中值定理及连续性有 0, 0( , (lim , (1lim 8 2 0f f dxdy y x f a a D a ==→→??ηξπ § 2 二重积分的计算法 1、设?? +=D dxdy y x I 1,其中D 是由抛物线12+=x y 与直线y=2x,x=0所围成的区域,则I=() A : 2

习题册重积分答案

第十章 总积分习题解答 第12次课 二重积分的概念及性质 1、 略 2、根据这三点可知区域: 2 120ln()10[ln()]ln() x y x y x y x y ≤+≤?<+

第13次课 二重积分的计算法 1、 (1)根据积分区域: 11,11x y -≤≤-≤≤ 1 1 22221 1 8 ()()3 D x y d dy x y dy σ--+=+=???? 或者:根据对称性质: 2222882()233D D D y d x y d x d σσσ==+==?????? (2)根据积分区域: 0000 cos()(sin 2sin )11(cos 2cos 2cos cos ) 22() 232 x xdx x y dy x x x dx x x xdx x x xdx π π π π π π π π ππ+=-=---+=-+=? ???? (3)根据积分区域 3 2 22 2 22 0235222 22 2 00 2(4)311264 (4)(4)(4)335 15 D xy d xdx y dy x x dy x d x x σ==-=- --=--= ??? ?? (4)根据对称性: 1:0,0,1D x y x y ≥≥+≤ 1 110 1 12200()4()4()14 4((1)(1))2(1)23 y D D x y dxdy x y dxdy dy x y dx y y y dy y dy -+=+=+=-+-=-= ?????? ?? P45

第二类曲面积分的计算方法

第二类曲面积分的计算方法 赵海林 张纬纬 摘要 利用定义法,参数法,单一坐标平面投影法,分项投影法,高斯公式,Stokes 公式,积 分区间对称性,向量计算形式以及利用两类曲面积分之间的联系等方法进行求解. 关键词 第二类曲面积分 定义法 参数法 投影法 高斯公式 Stokes 公式 向量计算形 式 1 引言 曲面积分是多元函数积分学的重要组成部分,在曲面积分的计算中,综合运用着一元积分与重积分计算思路、方法与技巧,在第二型曲面积分的学习过程中,必须在理解概念和性质的同时,掌握求第二型曲面积分的方法和技巧.由于第二型曲面积分的概念抽象费解,计算方法灵活多变,而且涉及的数学知识面广,掌握起来有一定的难度,而且是数学分析学习中的难点,许多学生在求解这一类题型时感到相当困难,因此本文给出了第二型曲面积分计算的几种方法,并举例说明了这几种方法的应用,力图使学生能计算第二型曲面积分,并能进一步了解第一型曲面积分与第二型曲面积分,曲面积分、曲线积分与重积分之间的密切联系,让各种计算方法更加直观的呈现在读者面前,体现了第二型曲面积分计算方法的应用. 2 预备知识 2.1第二型曲面积分的概念 2.1.1 流量问题(物理背景) 设稳定流动的不可压缩流体(假定密度为1)的速度为 (,,)(,,)(,,)(,,)v x y z P x y z i Q x y z j R x y z k =++ , ∑是一光滑的有向曲面,求单位时间内从曲面∑一侧流向另一侧的流量Φ. 若∑为平面上面积为S 的区域,而流速v 是常向量,∑指定侧的单位法向量 cos cos cos n i j k αβ=++ 则 cos .S v S v n θΦ==?? 若∑为曲面,流速v 不是常向量,则用下面的方法计算流量Φ. (1) 分割 将∑任意分成小块(1,2i i S i n S ?=?…,),同时代表其面积.

数学分析20.1第一型曲线积分(含习题及参考答案)

第二十章 曲线积分 1第一型曲线积分 一、第一型曲线积分的定义 引例:设某物体的密度函数f(P)是定义在Ω上的连续函数. 当Ω是直线段时,应用定积分就能计算得该物体的质量. 当Ω是平面或空间中某一可求长度的曲线段时,可以对Ω作分割,把Ω分成n 个可求长度的小曲线段Ωi (i=1,2,…,n),并在每一个Ωi 上任取一点P i . 由f(P)为Ω上的连续函数知,当Ωi 的弧长都很小时,每一小段Ωi 的质量可近似地等于f(P i )△Ωi , 其中△Ωi 为小曲线段Ωi 的长度. 于是在整个Ω上的质量就近似地等于和式i n i i P f ?Ω∑=1)(. 当对Ω有分割越来越细密(即d=i n i ?Ω≤≤1max →0)时,上述和式的极限就是 该物体的质量. 定义1:设L 为平面上可求长度的曲线段,f(x,y)为定义在L 上的函数.对曲线L 作分割T ,它把L 分成n 个可求长度的小曲线段L i (i=1,2,…,n),L i 的弧长记为△s i ,分割T 的细度为T =i n i s ?≤≤1max ,在L i 上任取一点 (ξi ,ηi ),( i=1,2,…,n). 若有极限i n i i i T s f ?∑=→1 ),(lim ηξ=J ,且J 的值与分割T 与点(ξi ,ηi )的取法无关,则称此极限为f(x,y)在L 上的第一型曲线积分,记作:?L ds y x f ),(. 注:若L 为空间可求长曲线段,f(x,y,z)为定义在L 上的函数,则可类

似地定义f(x,y,z)在空间曲线L 上的第一型曲线积分?L ds z y x f ),,(. 性质:1、若?L i ds y x f ),((i=1,2,…,k)存在,c i (i=1,2,…,k)为常数,则 ?∑=L k i i i ds y x f c 1 ),(=∑?=k i L i i ds y x f c 1 ),(. 2、若曲线L 由曲线L 1,L 2,…,L k 首尾相接而成,且?i L ds y x f ),((i=1,2,…,k) 都存在,则?L ds y x f ),(也存在,且?L ds y x f ),(=∑?=k i L i i ds y x f 1 ),(. 3、若?L ds y x f ),(与?L ds y x g ),(都存在,且f(x,y)≤g(x,y),则 ? L ds y x f ),(≤?L ds y x g ),(. 4、若?L ds y x f ),(存在,则?L ds y x f ),(也存在,且?L ds y x f ),(≤?L ds y x f ),(. 5、若?L ds y x f ),(存在,L 的弧长为s ,则存在常数c ,使得?L ds y x f ),(=cs, 这里),(inf y x f L ≤c ≤),(sup y x f L . 6、第一型曲线积分的几何意义:(如图)若L 为平面Oxy 上分段光滑曲线,f(x,y)为定义在L 上非负连续函数. 由第一型曲面积分的定义,以L 为准线,母线平行于z 轴的柱面上截取0≤z ≤f(x,y)的部分面积就是 ? L ds y x f ),(. 二、第一型曲线积分的计算 定理20.1:设有光滑曲线L:?? ?==) () (t y t x ψ?, t ∈[α,β],函数f(x,y)为定义在L 上的连续函数,则?L ds y x f ),(=?'+'β αψ?ψ?dt t t t t f )()())(),((22. 证:由弧长公式知,L 上由t=t i-1到t=t i 的弧长为△s i =?='+'i i t t dt t t 1 )()(22ψ?. 由)()(22t t ψ?'+'的连续性与积分中值定理,有

第二类曲线积分的计算

第二类曲线积分的计算 Revised as of 23 November 2020

第二类曲线积分的计算 定义 设),(y x P ,),(y x Q 为定义在光滑或分段光滑平面有向曲线AB L 上的函数,对 AB L 任一分割T ,它把AB L 分成n 个小弧段i i M M 1-),,2,1(n i =;其中 A =n M B M =,0.记各个小弧段i i M M 1-弧长为i s ?,分割T 的细度为}{max 1i n i S T ?=≤≤, 又设T 的分点的坐标为),(i i i y x M ,并记 11, ---=?-=?i i i i i i y y y x x x ,),,2,1(n i = . 在每个小弧段i i M M 1-上任取一点()i i ηξ,,若极限 ∑=→?n i i i i T x P 1 ),(lim ηξ∑=→?+n i i i i T y Q 1 ),(lim ηξ 存在且与分割T 与点()i i ηξ,的取法无关,则称此极限为函数),(y x P ,),(y x Q 在有向线段AB L 上的第二类曲线积分,记为 ?+L dy y x Q dx y x P ),(),(或 ?+AB dy y x Q dx y x P ),(),( 也可记作 ??+L L dy y x Q dx y x P ),(),( 或 ??+AB AB dy y x Q dx y x P ),(),( 注:(1) 若记()y x F , =()),(),,(y x Q y x P ,()dy dx s d ,= 则上述记号可写成向量形 式:??L s d F . (2) 倘若L 为光滑或分段光滑的空间有向连续曲线, ),,(z y x P ,),,(z y x Q ,),,(z y x R 为定义在L 上的函数,则可按上述办法定义沿空间有 向曲线L 的第二类曲线积分,并记为 dz z y x R dy z y x Q dx z y x P L ),,(),,(),,(++? 按照这一定义 , 有力场()),( , ),(),(y x Q y x P y x F =沿平面曲线L 从点A 到点B 所作的功为?+=AB Qdy Pdx W .第二类曲线积分的鲜明特征是曲线的方向性 . 对

(高起专)第十章二重积分习题解答-6页文档资料

(高起专)第十章二重积分习题解答 (一) 选择题(在每小题给出的四个选项中,只有一项符合题目要求,选出正确的选项) 1 .1 220 I dy x y dx = ? ,则交换积分次序后得 C 。 (A )1 220 I dy x y dy =? ; (B )1 220 3I x y dy =?; (C )2 11220 3x I dx x y dx -= ?? ; (D )2 1 1220 3x I dx x y dy += ? ? 。 2.设积分域为{(,)|11,11}D x y x y =-≤≤-≤≤,则 x y D e dxdy +=?? D. . (A) 2)1(-e , (B)21)(2--e e , (C) 42)1(-e , (D) 21)(--e e ; 3. 设积分域D 由直线,2,2y x x y x =+==围成,则 (,)D f x y dxdy =?? C (A) 1 20 (,)x x dx f x y dy -?? , (B) 21 (,)y y dy f x y dx -?? , (C) 2 1 2(,)x x dx f x y dy -??, (D) 1 (,)x dx f x y dy ??.; 4.2 2 x y D I e dxdy --= ??,D :221x y +≤,化为极坐标形式是 D 。 (A )2 21 []r I e dr d π θ-= ? ?; (B )2 1 2 04[]r I e dr d π θ-=? ?; (C )2 1 20 2[]r I e rdr d π θ-=? ?; (D )2 21 []r I e rdr d π θ-= ??。 5. 2 D I xy d σ= ?? , 其中22:1D x y +≤的第一象限部分,则 C 。 (A )1 20 I dy xy dy =? ; (B )1 1 20 I dx xy dy =? ?; (C )1 2 I dx dy =? ; (D )1 232 cos sin I d r dr π θθθ= ? ?。 填空题 1. 交换二次积分次序,1 (,)x I f x y dy =?= 。故 2 1 1 (,)(,)y x y I dx f x y dy dy f x y dx ==??? 2.设积分域D 由11,22,x y -≤≤-≤≤围成,则 3 (2)D x y dxdy +=?? 0 3.设积分域为2 2 {(,)|14,}D x y x y y x =≤+≤≥,则积分 22()D f x y dxdy +=?? 在极坐标下的二次积分 为 。解 52 4 22 21 4 ()()D f x y d x d y d r f r d r ππ θ+=?? ??。 4.积分 224 ()x y x y dxdy +≤+?? 在极坐标下的二次积分为 。 2222 2 4 ()(cos sin )x y x y dxdy d r dr πθθθ+≤+= +?? ??

高数教案第十章重积分

高数教案第十章重积分 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高等数学教案

第十章 重积分 §10-1 二重积分的概念与性质 一、二重积分的概念 (一)引例 1. 曲顶柱体的体积 设有一空间立体Ω,它的底是xoy 面上的有界区域D ,它的侧面是以D 的边界曲线为准线,而母线平行于z 轴的柱面,它的顶是曲面(.)z f x y =。 当(,)x y D ∈时,(,)f x y 在D 上连续且(,)0f x y ≥,以后称这种立体为曲顶柱体。 曲顶柱体的体积V 可以这样来计算: (1) 用任意一组曲线网将区域D 分成n 个小区域1σ?,2σ?, ,n σ?,以这 些小区域的边界曲线为准线,作母线平行于z 轴的柱面,这些柱面将原来的曲顶柱体Ω分划成n 个小曲顶柱体1?Ω,2?Ω, ,n ?Ω。 (假设i σ?所对应的小曲顶柱体为i ?Ω,这里i σ?既代表第i 个小区域,又表示它的面积值, i ?Ω既代表第i 个小曲顶柱体,又代表它的体积值。)

图10-1-1 从而 1n i i V ==?Ω∑ (将Ω化整为零) (2) 由于(,)f x y 连续,对于同一个小区域来说,函数值的变化不大。因此,可以将小曲顶柱体近似地看作小平顶柱体,于是 ?Ω??i i i i i i i f ≈?∈()()( )ξησξησ (以不变之高代替变高, 求i ?Ω的近似值) (3) 整个曲顶柱体的体积近似值为 V f i i i i n ≈=∑()ξησ?1 (4) 为得到V 的精确值,只需让这n 个小区域越来越小,即让每个小区域向某点收缩。为此,我们引入区域直径的概念: 一个闭区域的直径是指区域上任意两点距离的最大者。 所谓让区域向一点收缩性地变小,意指让区域的直径趋向于零。 设n 个小区域直径中的最大者为λ, 则 V f n i i i i =→=∑lim (),λξησ01 ? 2.平面薄片的质量 设有一平面薄片占有xoy 面上的区域D , 它在(),x y 处的面密度为(),x y ρ,这里(),0x y ρ≥,而且(),x y ρ在D 上连续,现计算该平面薄片的质量M 。

第二类曲线积分的计算教案资料

第二类曲线积分的计 算

第二类曲线积分的计算 作者:钟家伟 指导老师:张伟伟 摘要:本文结合第二类曲线积分的背景用定义的方法进行第二类曲线积分的计算,重点是利用对称 性,参数方程,格林公式斯托克斯公式以及两类曲线积分之间的联系对第二类曲线积分进行计算。 关键词:第二类曲线积分 二重积分 参数积分 对称性原理 斯托克斯公式 第二类曲面积分 1 引言 本文介绍第二类曲线积分的定义以及与两类曲线积分之间的联系,重点介绍若干种主要的计算方法。 1.1 第二类曲线积分的概念 介绍了第二类曲线积分的物理学背景,平面和空间第二类曲线积分的定义以及对坐标的第二类曲线积分的定义。 1.2第二类曲线积分的计算方法 介绍了关于第二类曲线积分的参数计算法,利用格林公式和斯托克斯公式计算的方法以及利用对称性简化或计算的方法。 2.1第二类曲线积分的物理学背景 力场()),( , ),(),(y x Q y x P y x F =沿平面曲线L 从点A 到点B 所作的功 一质点受变力()y x F , 的作用沿平面曲线L 运动,当质点从L 之一端点A 移动到另一端B 时,求力()y x F , 所做功W . 大家知道,如果质点受常力F 的作用从A 沿直线运动到B ,那末这个常力F 所做功为 W =AB F ? . 现在的问题是质点所受的力随处改变,而所走路线又是 弯弯曲曲.怎么办呢?

为此,我们对有向曲线L 作分割},,.....,,{110n n A A A A T -=,即在AB 内插入1-n 个分点,,.....,,121-n M M M 与A =n M B M =,0一起把曲线分 成n 个有向小曲线段 i i M M 1-),,2,1(n i = ,记 小曲线段i i M M 1-的弧长为i S ?.则分割 },,.....,,{110n n A A A A T -=的细度为}{max 1i n i S T ?=≤≤. 设力()y x F , 在x 轴和y 轴方向上的投影分别为),(y x P 与),(y x Q ,那么()y x F , =()),(),,(y x Q y x P j y x Q i y x P ),(),(+=由于 ),,(),,(111i i i i i i y x M y x M ---则有向小曲线段i i M M 1-),,2,1(n i =在x 轴和y 轴方 向上的投影分别为11---=?-=?i i i i i i y y y x x x 与.记i i M M L 1- =),(i i y x ??从而力()y x F , 在小曲线段i i M M 1-上所作的功i W ?≈),(i F ηξ i i M M L 1- = ()i i P ηξ,i x ?+()i i Q ηξ,i y ? 其中(j i ηξ,)为小曲线段i i M M 1-上任一点,于是力()y x F , 沿L 所作的功可近似等 于 i W =∑=n i i W 1 i n i i i i n i i i y s Q x S P ?+?≈∑∑==1 1 ),(),(ηη当0→T 时,右端积分和式的 极限就是所求的功.这种类型的和式极限就是下面所要讨论的第二型曲线积分. 2.2 第二型曲线积分的定义 设),(y x P ,),(y x Q 为定义在光滑或分段光滑平面有向曲线AB L 上的函数,对 AB L 任一分割T ,它把AB L 分成n 个小弧段i i M M 1-),,2,1(n i =;其中 A =n M B M =,0.记各个小弧段i i M M 1-弧长为i s ?,分割T 的细度为}{max 1i n i S T ?=≤≤,又设T 的分点的坐标为),(i i i y x M ,并记 11,---=?-=?i i i i i i y y y x x x ,),,2,1(n i = . 在每个小弧段i i M M 1-上任取一点()i i ηξ,,若极限

相关文档
最新文档