水质--溶解性总固体的测定-生活饮用水标准检验方法-(GBT-5750.4-2006-8.1)-称量法-方法确认

水质--溶解性总固体的测定-生活饮用水标准检验方法-(GBT-5750.4-2006-8.1)-称量法-方法确认
水质--溶解性总固体的测定-生活饮用水标准检验方法-(GBT-5750.4-2006-8.1)-称量法-方法确认

水质溶解性总固体的测定生活饮用水标准检验方法(GB/T 5750.4-2006 8.1) 称量法方法确认

1 目的

通过精密度测试来验证水样中的溶解性总固体GB/T 5750.4-2006 8.1,判断本实验室的检测方法是否合格。

2适用范围

本标准试用于饮用水及水源水中溶解性总固体。

3 方法原理

3.1水样经过过滤后,在一定温度下烘干,所得的固体残渣称为溶解性总固体,包括不易挥发的可溶性盐类、有机物及能通过滤器的不溶性微粒等。

3.2 烘干温度一般采用105℃+3℃。但105℃的烘干温度不能彻底除去高矿化水样中盐类所含的结晶水。采用180℃+3℃的烘干温度,可得到较为准确的结果。

3.3 当水样的溶解性总固体中含有多量氯化钙、硝酸钙、氯化镁、硝酸镁时,由于这些化合物具有强烈的吸湿性使称量不能恒定质量。此时可在水样中加入适量碳酸钠溶液而得到改进。

4分析方法

4.1 测量方法简述

溶解性总固体(在105℃+3℃烘干)

4.1.1将蒸发皿洗净,放在105℃+3℃烘箱内30min。取出,于干燥器内冷却30min。

4.1.2 在分析天平上称量,再次烘烤、称量,直至恒定质量(两次称量相差不超过0.0004 g )

4.1.3 将水样上清液用滤器过滤。用无分度吸管吸取过滤水样100ml 于蒸发皿中,如水样的溶解性总固体过少时可增加水样体积。

4.1.4 将蒸发皿置于水浴上蒸干(水浴液面不要接触皿底)。将蒸发皿移入105℃+3℃烘箱内,1h 后取出。干燥器内冷却30min ,称量。

4.1.5将称过质量的蒸发皿再放入105℃+3℃烘箱内30min ,干燥器内冷却30min ,称量,直至恒定质量。

4.2 溶解性总固体(在180℃+3℃烘干)

4.2.1按(

5.1)步骤将蒸发皿在180℃+3℃烘干并称重至恒定质量。

4.2.2吸取100mL 水样于蒸发皿中,精确加入2

5.0mL 碳酸钠溶液于蒸发皿内,混匀。同时做一个只加25.0mL 碳酸钠溶液的空白。计算水样结果时应减去碳酸钠空白的质量。

5. 计算

5.1 溶解性总固体的计算公式

V

m m TDS 10001000)()(01??-=ρ 公式中:

)(TDS ρ—水样中溶解性总固体的质量浓度,单位为毫克每升(mg/L )

; 0m —蒸发皿的质量,单位为克(g );

1m —蒸发皿和溶解性总固体的质量,单位为克(g );

V —水样体积,单位为毫升(ml )

6实验结果

选取10份样品加标,使溶解性总固体值为170.5mg/L,按4进行测试。由附表可知,精密度RSD<4.9%,满足GB/T 5750.4-2006 8.1要求。

水质--溶解性总固体的测定-生活饮用水标准检验方法-(GBT-5750.4-2006-8.1)-称量法-方法确认

水质溶解性总固体的测定生活饮用水标准检验方法(GB/T 5750.4-2006 8.1) 称量法方法确认 1 目的 通过精密度测试来验证水样中的溶解性总固体GB/T 5750.4-2006 8.1,判断本实验室的检测方法是否合格。 2适用范围 本标准试用于饮用水及水源水中溶解性总固体。 3 方法原理 3.1水样经过过滤后,在一定温度下烘干,所得的固体残渣称为溶解性总固体,包括不易挥发的可溶性盐类、有机物及能通过滤器的不溶性微粒等。 3.2 烘干温度一般采用105℃+3℃。但105℃的烘干温度不能彻底除去高矿化水样中盐类所含的结晶水。采用180℃+3℃的烘干温度,可得到较为准确的结果。 3.3 当水样的溶解性总固体中含有多量氯化钙、硝酸钙、氯化镁、硝酸镁时,由于这些化合物具有强烈的吸湿性使称量不能恒定质量。此时可在水样中加入适量碳酸钠溶液而得到改进。 4分析方法 4.1 测量方法简述 溶解性总固体(在105℃+3℃烘干) 4.1.1将蒸发皿洗净,放在105℃+3℃烘箱内30min。取出,于干燥器内冷却30min。

4.1.2 在分析天平上称量,再次烘烤、称量,直至恒定质量(两次称量相差不超过0.0004 g ) 4.1.3 将水样上清液用滤器过滤。用无分度吸管吸取过滤水样100ml 于蒸发皿中,如水样的溶解性总固体过少时可增加水样体积。 4.1.4 将蒸发皿置于水浴上蒸干(水浴液面不要接触皿底)。将蒸发皿移入105℃+3℃烘箱内,1h 后取出。干燥器内冷却30min ,称量。 4.1.5将称过质量的蒸发皿再放入105℃+3℃烘箱内30min ,干燥器内冷却30min ,称量,直至恒定质量。 4.2 溶解性总固体(在180℃+3℃烘干) 4.2.1按( 5.1)步骤将蒸发皿在180℃+3℃烘干并称重至恒定质量。 4.2.2吸取100mL 水样于蒸发皿中,精确加入2 5.0mL 碳酸钠溶液于蒸发皿内,混匀。同时做一个只加25.0mL 碳酸钠溶液的空白。计算水样结果时应减去碳酸钠空白的质量。 5. 计算 5.1 溶解性总固体的计算公式 V m m TDS 10001000)()(01??-=ρ 公式中: )(TDS ρ—水样中溶解性总固体的质量浓度,单位为毫克每升(mg/L ) ; 0m —蒸发皿的质量,单位为克(g ); 1m —蒸发皿和溶解性总固体的质量,单位为克(g ); V —水样体积,单位为毫升(ml ) 。

混凝土原材料与配合比检验质量标准和检验方法

混凝土原材料及配合比检验质量标准和检验方法

个月。2、安定性:体积安定性不良主要是指水泥硬化和产生不均匀的体积变化。一般是由于熟料中所含的游离氧化钙、游离氧化镁、或掺入的石膏过多。 3、不合格品和废品:凡氧化镁、三氧化硫、初凝时间、安定性中任一项不符合标准规定时,均为废品;凡细度、终凝时间中的任一项不符合标准规定或混合材料掺加量超过最大限和强度低于商品强度等级的指标时为不合格品。水泥包装标志中水泥品种、强度等级、生产者名称和出厂编号不全的也属于不合格品。 4、混凝土的取样:每100盘,且不超过100m3的同配合比的混凝土,取样次数不得少于一次;每一工作班拌制的同配合比的混凝土不足100盘时,其取样次数不得少于一次;一次浇筑1000m3以上同配合比的混凝土,每200m3取样次数不得少于一次;每层楼或每工作台班浇筑浇筑同配合比的混凝土时,其取样次数不得少于一次。混凝土抽样在浇筑地点随机抽取。

混凝土施工工程质量检验标准及检验方法

现浇混凝土结构外观质量和尺寸偏差检验标准及检测方法

现浇结构外观质量缺陷 注:用于检查结构构件混凝土强度的试件,应在混凝土的浇筑地点随机取样,取样与留置应符合下列规定:①每拌制100盘且不超过100m3的同配合比混凝土,取样不得少于一次。②每工作班拌制的同一配合比混凝土不足100盘时,取样不得少于一次。③每一次浇筑超过1000m3时,同一配合比的混凝土每200m3取样不得少于一次。④每一楼层、同配合比的混凝土,取样不得少于一次。⑤每次取样至少留置一组标准养护试件,同条件养护试件的留置组数应根据实际需要确定。

溶解性总固体

溶解性总固体:曾称总矿化度。指水中溶解组分的总量,包括溶解于水中的各种离子、分子、化合物的总量,但不包括悬浮物和溶解气体。 矿化度以克/升表示。一般测定矿化度是将一升水加热到105~110℃,使水全部蒸发,剩下的残渣质量即是水的矿化度。也可以将分析所得水中各种离子的含量相加,再减去hco3含量的二分之一求得。地下水按矿化度(M)的大小,一般分为:淡水,M<1克/升;微咸水,M=1~3克/升;咸水,M=3~10克/升; 盐水,M=10~50克/升;卤水,M>50克/升。地下水中所含主要盐分的类型常随矿化度的增减而变化。 中文的意思是溶解于水中的总固体含量,TDS计是针对此设计的计量器,可看出水中无机物或有机物的ppm值。但这只是初期性的检验,无法提供完全正确的资料及内含物是什么?若需要正确的内含物成分,仍以送检为准。检测水中总溶解固体值(TDS)即检验出在水中溶解的各类有机物或无机物的总量,使用单位为ppm或毫克/升(mg/l)。它的导电仪器能测出水中的可导电物质,如悬浮物、重金属和可导电离子。如何使用呢?(一)测量时的水温应维持在摄氏25度左右,切记,温度过高会使TDS值增加,影响正确性。(二)液晶屏幕所显示的数值即为TDS值,若TDS计显示100度数字,那代表溶于水中的物质含量正离子或负离子总数为100ppm(公差为±5ppm),数字愈高,表示水中的物质愈多。(三)北京市地区自来水平均在250ppm左右,RO纯水能减至30ppm 以下,当数值超过30ppm时,就必须考虑更换RO滤膜或请技术人员验修。当然TDS计也非万能,它也有其盲点与缺点:(一)TDS仅能测出水中的可导电物质,但无法测出细菌、病毒等物质。(二)单独依赖TDS水质测试来判断水质是否能生饮,并不是最正确的作法;经高温无法灭绝的细菌或病毒,必须透过更精密的仪器才能测出来。 工业循环冷却水中溶解性总固体含量的测量: 1 主题内容与适用范围 本标准规定了工业循环冷却水中溶解性固体的重量法测定方法。 本标准适用于溶解性固体不低于25mg/L 的水样。 2 引用标准 GB /T 6682 分析实验室用水规格和试验方法

水质检测标准、检测方法

水环境监测方法标准 标准编号标准名称实施日期 HJ/T338-2007饮用水水源地保护区划分技术规范2007-2-1 HJ/T341-2007水质汞的测定冷原子荧光法(试行)2007-5-1 HJ/T342-2007水质硫酸盐的测定铬酸钡分光光度法(试行)2007-5-1 HJ/T343-2007水质氯化物的测定硝酸汞滴定法(试行)2007-5-1 HJ/T344-2007水质锰的测定甲醛肟分光光度法(试行)2007-5-1 HJ/T345-2007水质铁的测定邻菲啰啉分光光度法(试行)2007-5-1 HJ/T346-2007水质硝酸盐氮的测定紫外分光光度法(试行)2007-5-1 HJ/T347-2007水质粪大肠菌群的测定多管发酵法和滤膜法(试行)2007-5-1 HJ/T191-2005紫外(UV)吸收水质自动在线监测仪技术要求2005-11-1 HJ/T195-2005水质氨氮的测定气相分子吸收光谱法2006-1-1 HJ/T196-2005水质凯氏氮的测定气相分子吸收光谱法2006-1-1 HJ/T197-2005水质亚硝酸盐氮的测定气相分子吸收光谱法2006-1-1 HJ/T198-2005水质硝酸盐氮的测定气相分子吸收光谱法2006-1-1 HJ/T199-2005水质总氮的测定气相分子吸收光谱法2006-1-1 HJ/T200-2005水质硫化物的测定气相分子吸收光谱法2006-1-1 HJ/T164-2004地下水环境监测技术规范2004-12-9 HJ/T132-2003高氯废水化学需氧量的测定碘化钾碱性高锰酸钾法2004-1-1 HJ/T96-2003pH水质自动分析仪技术要求2003-7-1 HJ/T97-2003电导率水质自动分析仪技术要求2003-7-1 HJ/T98-2003浊度水质自动分析仪技术要求2003-7-1 HJ/T99-2003溶解氧(DO)水质自动分析仪技术要求2003-7-1 HJ/T100-2003高锰酸盐指数水质自动分析仪技术要求2003-7-1 HJ/T101-2003氨氮水质自动分析仪技术要求2003-7-1 HJ/T102-2003总氮水质自动分析仪技术要求2003-7-1 HJ/T103-2003总磷水质自动分析仪技术要求2003-7-1 HJ/T104-2003总有机碳(TOC)水质自动分析仪技术要求2003-7-1 HJ/T86-2002水质生化需氧量(BOD)的测定微生物传感器快速测定法2002-7-1 HJ/T91-2002地表水和污水监测技术规范2003-1-1 HJ/T92-2002水污染物排放总量监测技术规范2003-1-1 HJ/T70-2001高氯废水化学需氧量的测定氯气校正法2001-12-1 HJ/T71-2001水质总有机碳的测定燃烧氧化-非分散红外吸收法2002-1-1 中心以化工行业技术需求和科技进步为导向,以资源整合、技术共享为基础,分析测试、技术咨询为载体,致力于搭建产研结合的桥梁。以“专心、专业、专注“为宗旨,致力于实现研究和应用的对接,从而推动化工行业的发展。

水磨石面层质量标准和检验方法

水磨石地面施工质量标准 ⑴面层的材料、强度(配合比)密实度必须符合设计要求和施工规范规定。 ⑵面层与基层结合必须牢固,无空鼓。(空鼓面积不大于400c无裂纹,且在一个检查范围内不多于二处者,可不计) 基本项目 ⑴水磨石面层表面质量应符合下列规定: 合格:表面基本光滑,无明显裂纹和起砂,石粒密实,分格条牢固。 优良:表面光滑,无裂纹、砂眼和磨纹,石粒密实,显露均匀;颜色图案一致,不混色;分格条牢固、顺直和清晰。 检验方法:观察检查。 ⑵地漏和泛水应符合以下规定: 合格:坡度满足排水要求,不倒泛水,无渗漏 优良:坡度符合设计要求,不倒泛水,无渗漏、无积水、与地漏(管道)结合处严密平顺。 检验方法:观察或泼水检查。 ⑶踢脚线质量应符合以下规定: 合格:高度一致;与墙柱面结合牢固,局部空鼓长度不大于400mm,且在一个检查范围内不多于二处。 优良:高度一致,出墙厚度均匀;与墙柱面结合牢固;局部空鼓长度不大于200mm,且在一个检查范围内不多于二处。 检验方法:用小锤轻击,尺量和观察检查。 ⑷踏步、台阶应符合以下规定: 合格:宽度基本一致,相邻两步宽度和高差不超过20mm,齿角基本整齐,防滑条顺直。 优良:宽度一致,相邻两步宽度和高差不超过10mm,齿角整齐,防滑条顺直。 检验方法:观察和尺量检查。

⑸镶边应符合以下规定: 合格:面层邻接处镶边用料及尺寸符合设计要求和施工规范规定。优良:在合格的基础上,边角整齐光滑,不同颜色的邻接处不混色。检验方法:观察和尺量检查。 允许偏差 水磨石面层的允许偏差和检验方法应符合下表的规定。 水磨石面层的允许偏差和检验方法 表水磨石面层质量标准和检验方法

溶解性总固体原始记录表格

仅供个人参考 XX市自来水公司水质监测站 溶解性总固体测定记录 样品处理方法: 检测人:校核人:

仅供个人用于学习、研究;不得用于商业用途。 For personal use only in study and research; not for commercial use. Nur für den pers?nlichen für Studien, Forschung, zu kommerziellen Zwecken verwendet werden. Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales. толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях. For personal use only in study and research; not for commercial use 以下无正文

仅供个人用于学习、研究;不得用于商业用途。 For personal use only in study and research; not for commercial use. Nur für den pers?nlichen für Studien, Forschung, zu kommerziellen Zwecken verwende t werden. Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales. толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях. 以下无正文

水质 溶解性总固体 作业

溶解性总固体的测定作业指导书 1适用范围 本标准规定了用称量法测定生活饮用水及其水源水的溶解性总固体。本法适用于测定生活饮用水及其水源水的溶解性总固体。 2 原理 2.1水样经过滤后,在一定温度下烘干,所得的固体残渣称为溶解性总固体,包括不易挥发的可溶性盐类、有机物及能通过滤器的不溶解微粒等。 2.2烘干温度一般采105±3℃。但105℃的烘干温度不能彻底除去高矿化度水样中盐类所含的结晶水。采用180±3017的烘干温度,可得到较为准确的结果。 2.3当水样的溶解性总固体中含有多量氯化钙、硝酸钙、氯化镁、硝酸镁时,由于这些化合物具有强烈的吸潮性使称量不能恒重。此时可在水样中加入适量碳酸钠溶液而得到改进。 3 仪器 3.1 分析天平,感量0.1mg。 3.2 水浴锅。 3.3 电热恒温干燥箱。 3.4 瓷蒸发皿:100mL。 3.5 干燥器:用硅胶作干燥剂。 3.6 中速定量滤纸或滤膜(孔径0.45um)及相应滤器。 4 试剂 碳酸钠溶液(10g/L):称取10g无水碳酸钠(Na2CO3),溶于纯水中稀释1000mL。5分析步骤 5.1 溶解性总固体在105±3℃烘干。 5.1.1 将蒸发皿洗净,放在105±3℃烘箱内30min。取出放在干燥器内冷却30min。 5.1.2在分析天平上称其重量,再次烘烤,称量直至恒重(两次称重相差不超过0.0004g)。 5.1.3将水样上清液用滤器滤过。用无分度吸管吸取振荡均匀的滤过水样100ml 于蒸发皿内,如果水样的溶解性总固体过少时可增加水样体积。 5.1.4 将蒸发皿置干水浴上蒸干(水浴液面不要接触皿底)。将蒸发皿移入105±3℃烘箱内,1h后取出。放入干燥器内,冷却30min,称量。 5.1.5 将称过重量的蒸发皿再放入105±3℃烘箱内30min,再放入干燥器内冷却30min,称量直至恒重。 5.2 溶解性总固体在180±3℃烘干。 5.2.1按(5.1)步骤将蒸发皿在180±3℃烘干并称量至恒重。 5.2.2用无分度吸管吸取100mL水样于蒸发皿中,精确加加入 25.0m碳酸钠溶液于蒸发皿内,混匀。同时做一对只加25.0mlL碳酸钠溶液的空白。计算水样结果时应

检测标准和方法

各种水质检测方法 1、【pH值】水质pH值的测定玻璃电极法GB/T6920-1986 2、【溶解氧】水质溶解氧的测定电化学探头法GB/T11913-1989 碘量法《水和废水监测分析方法》(第四版)国家环保总局2002年 3、【臭和味】文字描述法《水和废水监测分析方法》(第四版)国家环保总局2002年 4、【侵蚀性二氧化碳】甲基橙指示剂滴定法《水和废水监测分析方法》(第四版)国家环保总局2002年 5.【酸度】酸度指示剂滴定法《水和废水监测分析方法》(第四版)国家环保总局2002年 6.【碱度(总碱度、重碳酸盐和碳酸盐)】酸碱指示剂滴定法《水和废水监测分析方法》(第四版)国家环保总局2002年 7.【色度】水质色度的测定GB/T11903-1989 8.【浊度】水质浊度的测定GB/T13200-1991 9.【悬浮物(SS)】水质悬浮物的测定重量法GB/T11901-1989 10.【总可滤残渣】重量法《水和废水监测分析方法》(第四版)国家环保总局2002年 11.【总残渣】重量法《水和废水监测分析方法》(第四版)国家环保总局2002年 12.【全盐量(溶解性固体)】水质全盐量的测定重量法HJ/T51-1999 13.【总硬度(钙和镁总量)】水质钙和镁总量的测定 EDTA滴定法GB/T7477-1987 14.【高锰酸盐指数】水质高锰酸盐指数的测定GB/T11892-1989 15.【化学需氧量(COD)】水质化学需氧量的测定:重铬酸盐法GB/T11914-1989 16.【生物需氧量】水质生物需氧量的测定稀释与接种法GB/T7488—1987 17.【氨氮】水质铵的测定纳氏试剂比色法GB/T7479-1987 水杨酸-次氯酸盐光度法《水和废水监测分析方法》(第四版)国家环保总局2002年 18.【硝酸盐氮】水质硝酸盐氮的测定酚二磺酸分光光度法》GB/T7480-1987 水质硝酸盐氮的测定紫外分光光度法》HJ/T346-2007 19.【亚硝酸盐氮】《水质亚硝酸盐氮的测定分光光度法》GB/T7493-1987 20.【六价铬】水质六价铬的测定二苯碳酸二肼分光光度法GB/T7467-1987 21.【总氮】水质总氮的测定碱性过硫酸钾消解紫外分光光度法》GB/T11894-1989 22.【总磷】水质总磷的测定钼酸铵分光光度法》GB/T11893-1989 23.【磷酸盐】钼酸铵分光光度法《水和废水监测分析方法》(第四版)国家环保总局(2002年) 24.【硝基苯类】还原-偶氮光度法《水和废水监测分析方法》(第四版)国家环保总局(2002年) 25.【苯胺类】水质苯胺类化合物的测定N-(1-萘基)乙二胺偶氮分光光度法GB/T11889-1989 26.【游离氯】水质游离氯和总氯的测定N,N-二乙基-1,4-苯二胺滴定法GB/T11897-1989 27.【总氯】水质游离氯和总氯的测定N,N-二乙基-1,4-苯二胺滴定法GB/T11897-1989 28.【氟化物】水质氟化物的测定离子选择电极法GB/T7484-1987 29.【氯化物】水质氯化物的测定硝酸银滴定法GB/T11896-19879 30.【硫酸盐】水质硫酸盐的测定重量法GB/T11899-89 铬酸钡分光光度法《水和废水监测分析方法》(第四版)国家环保总局(2002年)

质量标准检测标准测试手段及验收方式

质量标准、检测标准、测试手段及验收方式 1、货物质量按招标文件要求执行,货物的价格,按《中标通知书》中的价格执行。 2、所提供的货物的名称、型号、规格、技术条件、供应范围及数量、交货时间、交货地点应符合谈判文件及有关承诺内容要求。 3、全部货物采用相应标准的保护措施进行包装,并具备防湿、防潮、防震、防锈、防装卸等保护措施;如果由于货物包装不良或采用不充分、不妥善的防护措施而造成的损失,供应商将承担由此产生的一切费用;在每一包装件中,有详细装箱清单,并在每件包装上标有引人注目的发货标记。 4、货物到采购人指定交货地点后,采购人对货物凭现状验收,在原装、原封、原标记完好无损情况下,采购人对货物的件数,外观进行初步验收。 5、验收货物发生短缺、损坏等问题时,采购人收到货物后10天内通知我公司,否则,视为采购人初步验收无误;我公司接到采购人通知后,在10天内答复处理,否则,视为我公司已默认采购人的通知。 6、我公司交货时,出具货物符合国家规定的合格证书,货物由我公司负责现场安装调试及人员操作培训,但不解除我公司在货物质量保证期的责任。 7、货物的质量保证期,按我公司在投标文件中的承诺内容执行。 8、因采购人原因造成货物损伤、损坏,我公司协助修复,费用由采购人承担。

9、货物由我公司负责运输,装运过程中发生的丢失、损坏等,由我公司自行承担其经济损失。 10、根据采购人要求,我公司及时派出售后服务人员,给予技术指导。对不合格的货物,属我公司问题的,由我公司及时无偿更换;属于采购人问题的,我公司积极协助解决,费用由采购人承担。 11、由于人力不可抗拒事故,中标供应交货迟延或不能交货时,我公司立即将事故原因通知采购人,并有采取一切必要措施从速交货责任。如果事故持续时间超过交货期限,采购人有权撤销合同,如不可抗拒影响采购人履约,则亦照此办理。

水中溶解性总固体测定方法探讨

水中溶解性总固体测定方法探讨 秦瑞春 (新疆哈密水务有限公司,哈密839000) 摘要:溶解性总固体含量是衡量杂用水水质好坏的重要指标之一。溶解性总固体测定方法中烘干温度有105℃和180℃两种,就两种烘干温度下的结果做了数据对比和分析,以及对碳酸钠的加入方式和加入量进行了讨论,旨在找出更准确的测定溶解性总固体的方法。 关键词:生活饮用水;溶解性总固体;烘干温度;碳酸钠 On Determination Method of Total Dissolved Domestic And Drinking Water Qin Ruichun (Xinjiang hami water co., LTD,Hami, XinJiang,839000) Abstract: the soluble total solid content is measure of mixed water one of the important indexes of water quality. The determination method of total soluble solids in the drying temperature is 105 ℃and 180 ℃, is the results of two kinds of drying temperature do data contrast and analysis, as well as the mode of the addition of sodium carbonate and discussed the dosage, aims to find out a more accurate method of determining total solid solubility. Key words: drinking water; Total soluble solids; Drying temperature; Sodium carbonate 前言 水样经过滤后,在一定温度下烘干所得的不可滤固体残渣称为溶解性总固体,包括不易挥发的可溶性盐类、有机物及能通过过滤器的不溶性微粒等。溶解性总固体含量是衡量水质好坏的重要指标之一。 笔者依据GB/T5750.4(8.1)-2006生活饮用水标准检验方法:感官性状和物理指标称量法[1](以下简称《饮用水标准》),对水中溶解性总固体的测定方法进行研究。 1 试验准备 1.1试验条件的选择 上述两个标准中试验条件略有不同,将其不同之处及该试验采用的试验条件列于表1 表1 试验条件的选择 项目《饮用水标准》该试验采用的方法空白烘干时间/min 30 30 空白冷却时间/min 30 30 水样烘干时间/h 1 1 水样冷却时间/min 30 30 恒重允差值/g 0.0004 0.0005 称取0.05g碳酸钠粉末 碳酸钠加入量及加入方式100mL水样中加入25mL (10g/L)碳酸钠溶液 计算公式C=(m1-m0)×106/V(1)C=(m1-m0)×106/V(1)注:计算公式(1)中各符号的意义及单位见2.4;

实用文库汇编之水质检测的标准和方法

*作者:座殿角* 作品编号48877446331144215458 创作日期:2020年12月20日 实用文库汇编之水质检测的标准和方法 生活饮用水卫生标准GB5749-85 生活饮用水水质,不应超过下表所规定的限量。生活饮用水水质标准 项目标准 感官性状和一般化学指标 色色度不超过15度,并不得呈现其他异色浑浊度度不超过3度,特殊情况不超过5度 嗅和味不得有异臭、异味 肉眼可见物不得含有 PH 6.5-8.5 总硬度以CzCO3,计mg/L 450 铁Femg/L 0.3 锰Mnmg/L 0.1 铜Cumg/L 1.0 锌Znmg/L 1.0 挥发性酚类以苯酚计mg/L 0.002 硫酸盐mg/L 250 氯化物mg/L 250 溶解性总固体mg/L 1000 毒理学指标 氟化物mg/L 1.0 氰化物mg/L 0.05 砷Asmg/L 0.05 硒Semg/L 0.01 汞Hgmg/L 0.001 镉Cdmg/L 0.01 铬六价Cr6+mg/L 0.05 铅Pbmg/L 0.05 银 0.05

硝酸盐以N计mg/L 20 氯仿μg/L 60 四氯化碳*μg/L 3 苯并(a)芘*μg/L 0.01 滴滴滴*μg/L >1.0 六六六*μg/L >5.0 细菌学指标 菌落总数cfu/mL 100 总大肠菌群(MPN/100mL) 3 游离余氯 在与水接触30min后应不低于0.3mg/L。集中式给水除出厂水应符合上述要求外,管网末梢水不应低于0.05mg/L 放射性指标总σ放射性Bq/L 0.1 总β放射性Bq/L 1.0 检验项目在一般情况下,细菌学指标和感官性状指标列为必检项目,其他指标可根据当地水质情况和需要选定。对水源水、出厂水和部分有代表性的管网末梢水,每月进行一次全分析。 自备给水和农村集中式给水水质检验的采样点数、采样次数和检验项目,可根据具体情况参照上述要求确定。 作者:座殿角 作品编号48877446331144215458 创作日期:2020年12月20日

水质检测标准

水质检测标准 概况: 水质是指水与水中杂质共同表现的综合特征。评价水质优劣受污染程度的 参数,称为水质指标。水质指标通常可分为物理性指标、化学性指标和生物性 指标三类。常见的水质指标见下表。 2、水质检测中常用的水质分析方法有哪些? (1)国家标准分析方法:我国已编制60多项包括采样在内的标准分析方法,这些方法比较经典、准确度较高,是环境污染纠纷法定的仲裁方法,也是 用于评价其他分析方法的基本方法。 (2)统一分析方法:有些项目的检测方法尚不够成熟,没有形成国家标准,但经过研究可以作为统一方法予以推广,在使用中积累经验,不断完善,为上 升为国家标准方法创造条件。

(3)等效方法:与前两类方法的灵敏度、准确度具有可比性的分析方法。等效方法必须经过方法验证和对比实验,证明其与标准方法或统一方法是等效 时才能使用。 按照检测方法所依据的原理,水质检测常用的方法有化学法、电化学法、 原子吸收分光光度法、离子色谱法、气相色谱法、等离子体发射光谱(ICP-AE S)法等。其中,化学法包括重量法、容量滴定法和分光光度法,目前在国内外水质常规检测中被普遍采用。 3、怎样选择水质检测分析方法? 正确选择检测分析方法,是获得准确结果的关键因素之一。选择分析方法 应遵循的原则是:灵敏度能满足定量要求;方法成熟、准确;操作简便,易于 普及;抗干扰能力好。 非饮用水检测标准 1.污水检测 污水通常指受一定污染的、来自生活和生产的废弃水。污水主要有生活污水, 工业废水和初期雨水。污水的主要污染物有病原体污染物,耗氧污染物,植物 营养物,有毒污染物等.主要检测标准的依据是:污水综合排放标准GB 8978-1 996。该标准中已经部分被本标准部分内容被GB 20425-2006 皂素工业水污 染物排放标准、GB 20426-2006 煤炭工业污染物排放标准代替。 2.地下水检测 是贮存于包气带以下地层空隙,包括岩石孔隙、裂隙和溶洞之中的水。地下水 是水资源的重要组成部分,由于水量稳定,水质好,是农业灌溉、工矿和城市的重要水源之一,但在一定条件下,地下水的变化也会引起沼泽化、盐渍化、滑坡、地面沉降等不利自然现象。主要依据:GB/T14848—2017.旧版是GB/T14848—1993

质量规格要求和检验方法质量规格要求应符合GB17201998

一、质量规格要求和检验方法 1.质量规格要求 应符合GB 17203-1998《食品添加剂柠檬酸钙》标准要求: 2.检验方法 (A)鉴别 1 试剂和溶液 (1)盐酸(GB 622)。 (2)1 mol/L乙酸(GB 676)溶液。 (3)1 mol/L硫酸汞溶液。 (4)1 mol/L高锰酸钾(GB 643)溶液。 (5)1 mol/L草酸铵(HG 3-976)溶液。 (6)2 mol/L硝酸(GB 626)溶液:125mL浓硝酸加水稀释至1000mL。2鉴别试验 方法一:将0.5 g样品溶解于10mL 水和2.5mL的2mol/L硝酸的混合液中,加1mL 1mol/L硫酸汞溶液,加热至沸腾,再加1mL 1mol/L 高锰酸钾溶液,产生白色的沉淀物。 方法二:以尽量低的温度完全灼烧0.5 g样品,然后冷却,并将残余物溶于10mL的水和1mL 1mol/L乙酸的混合液中,经过滤后再把10mL 1mol/L草酸铵溶液加入滤液中,产生大容积的白色沉淀,并可溶解于盐酸中。

(B )含量的测定 1试剂和溶液 (1)3mol/L 盐酸溶液。 (2)6mol/L 盐酸溶液。 (3)1mol/L 氢氧化钠(GB 629)溶液:准确称取4g 氢氧化钠,溶于水,稀释至100mL 。 (4)30%三乙醇胺溶液:38mL 三乙醇胺加水稀释至100mL 。 (5)钙指示剂:称取10g 预先在105~110℃下烘干2h 的氯化钠,置于研钵内研细,加入0.1g 钙试剂,研细,混匀。 (6)0.05mol/L 乙二胺四乙酸二钠(EDTA-2Na )标准溶液 配制: 称取20g 乙二胺四乙酸二钠(GB 1401),加热溶于1000mL 水中,冷却,摇匀。 标定: 称取1g 于800℃灼烧至恒重的基准氧化锌,称准至0.0002g 。用少许水湿润,加6mol/L 盐酸至样品溶解,移入250mL 容量瓶中,稀释至刻度,摇匀。取30.00~35.00mL ,加70mL 水,用10%氨水中和至pH 7~8,加10mL 氨-氯化铵缓冲溶液甲(pH10),加5滴0.5%铬黑T 指示液,用0.05mol/L 乙二胺四乙酸二钠溶液滴定至溶液由紫色变为纯蓝色。同时做空白试验。 计算: c= (1) 式中:c ——乙二胺四乙酸二钠标准溶液的浓度; V 1——氧化锌溶液消耗的体积,mL ; m 1——氧化锌的质量,g ; V 2 ——乙二胺四乙酸二钠溶液消耗的体积,mL ; V 3 ——空白试验乙二胺四乙酸二钠溶液消耗的体积,mL ; 0.08138——每毫升1 mol/L 氧化锌的克数。 2测定方法 预先在 150℃下烘至恒重,准确称取 350~400mg 柠檬酸钙样品(称准至0.0001 g ),加水10mL ,3mol/L 盐酸至溶解(约2mL )后, m 1×(V 1/250) (V 2-V 3) ×0.08138

水质 溶解性总固体的测定 生活饮用水标准检验方法 GBT 称量法 方法确认

水质溶解性总固体的测定生活饮用水标准检验方法 (GB/T 5750.4-20068.1)称量法方法确认1 目的 通过精密度测试来验证水样中的溶解性总固体GB/T 5750.4-2006 8.1,判断本实验室的检测方法是否合格。 2适用范围 本标准试用于饮用水及水源水中溶解性总固体。 3 方法原理 3.1水样经过过滤后,在一定温度下烘干,所得的固体残渣称为溶解性总固体,包括不易挥发的可溶性盐类、有机物及能通过滤器的不溶性微粒等。3.2 烘干温度一般采用105℃+3℃。但105℃的烘干温度不能彻底除去高矿化水样中盐类所含的结晶水。采用180℃+3℃的烘干温度,可得到较为准确的结果。 3.3 当水样的溶解性总固体中含有多量氯化钙、硝酸钙、氯化镁、硝酸镁时,由于这些化合物具有强烈的吸湿性使称量不能恒定质量。此时可在水样中加入适量碳酸钠溶液而得到改进。 4分析方法 4.1 测量方法简述 溶解性总固体(在105℃+3℃烘干) ℃+3℃烘箱内30min。取出,于干燥器内冷却30min。 4.1.2 在分析天平上称量,再次烘烤、称量,直至恒定质量(两次称量相差不超过0.0004 g)

4.1.3 将水样上清液用滤器过滤。用无分度吸管吸取过滤水样100ml于蒸发皿中,如水样的溶解性总固体过少时可增加水样体积。 4.1.4 将蒸发皿置于水浴上蒸干(水浴液面不要接触皿底)。将蒸发皿移入105℃+3℃烘箱内,1h后取出。干燥器内冷却30min,称量。 ℃+3℃烘箱内30min,干燥器内冷却30min,称量,直至恒定质量。 4.2 溶解性总固体(在180℃+3℃烘干) ℃+3℃烘干并称重至恒定质量。 5. 计算 5.1 溶解性总固体的计算公式 公式中: —水样中溶解性总固体的质量浓度,单位为毫克每升(mg/L); ) (TDS m—蒸发皿的质量,单位为克(g); m—蒸发皿和溶解性总固体的质量,单位为克(g); 1 V—水样体积,单位为毫升(ml)。 6实验结果 选取10份样品加标,使溶解性总固体值为170.5mg/L,按4进行测试。由附表可知,精密度RSD<4.9%,满足GB/T 5750.4-2006 8.1要求。

硬度和溶解性总固体

什么是硬度和溶解性总固体 硬度和溶解性总固体是水质科学术语。硬度是指溶于水中的钙、镁等盐类的总量,以每升多少毫克(mg/L)表示。水的硬度是由溶解于水中的钙、镁组成, 并折合成碳酸钙mg/L 作为计量单位。饮用水的硬度如果过高,烧开水时壶内会结垢,也影响口感;硬度过低容易腐蚀管道。我国的饮用水硬度标准最高限值为450mg/L。世界卫生组织为500 mg/L。大多数国家的饮用水硬度标准设在400?500 mg/L。一般把30 mg/L 以内的水叫做软水, 30?80 mg/ L为低硬度水,80?200 mg/ L为适宜硬度水,200?450 mg/ L为高硬度水,大于450 mg/L 为极硬度水。 溶解性总固体也就是TDS,TDS 为Total Dissolved Solids 的缩写。是溶解在水里的无机盐和有机物的总称。也就是溶解于水中的固体的总量。其主要成分有钙、镁、钠、钾离子和碳酸离子、碳酸氢离子、氯离子、硫酸离子和硝酸离子。水中的溶解固体主要是一些钙和镁,且不是可测得的污染物质。溶解性总固体、硫酸盐、总硬度三者之间没有必然的关系,但如果硫酸盐、总硬度中有一项高的话,溶解性总固体必然高。 TDS 概念是个舶来品,在美国、台湾水处理领域广泛使用。TDS 值的测量工具一般是用TDS 笔,其测量原理实际上是通过测量水的电导率从而间接反映出TDS 值。在物理意义上来说,水中溶解物越多,水的TDS 值就越大,水的导电性也越好,其电导率值也越大。自来水一般大概有100~200mg/L、RO 处 理后的水能减至30 mg/L或以下、蒸馏后的水只有1 mg/L或以下,人体所需的矿物质亦同时除去。自然水的TDS 受不同地区矿石含盐量的影响差异十分巨大,可从 300mg/L到多达6000mg/L。我国标准为1000mg/L以内。 溶解性总固体的量与饮用水的味觉直接有关。以下是不同TDS 浓度与饮用水的味道之间的关系:少于300mg/L,极好;300?600mg/L,好;600?900mg / L, 一般;900?1200mg/ L,差;大于1200mg/ L,无法饮用。 不管是水的总硬度还是溶解性总固体,国家标准主要考虑的是对供水网管的影响。而且在国家标准范围内对健康没有负面影响。硬水口感不太好,喝得不太舒服,开水壶容易结垢;水要是过软的话,会腐蚀管道。管道腐蚀以后,腐蚀出来的东西进入到水里,大家喝了,间接地对健康产生影响。从供水来讲,就要控制水不能太软了。同样,饮用水中过高的TDS 浓度,会造成口味不佳和水管、热水器、热水壶及家用器具的使用寿命减短。TDS 浓度过低,也会因为过分平淡无味而不受人们欢迎,同时也会对输水管道造成腐蚀。因此我国《生活饮用水卫生规范》中溶解性总固体的限制标准为1000mg/L 。

明挖基坑施工质量标准和检验方法

明挖基坑施工质量标准和检验方法 1基坑定位检验方法 (一)观察法 1观察槽壁、槽底的土质情况,验证基槽开挖深度,初步验证基槽底部土质是否与勘察报告相符,观察槽底土质结构是否被人为破坏。 2基槽边坡是否稳定,是否有影响边坡稳定的因素存在,如地下渗水、坑边堆载或近距离扰动等(对难于鉴别的土质,应采用洛阳铲等手段挖至一定深度仔细鉴别)。 3基槽内有无旧的房基、洞穴、古井、掩埋的管道和人防设施等。如存在上述问题,应沿其走向进行追踪,查明其在基槽内的范围、延伸方向、长度、深度及宽度。 4在进行直接观察时,可用袖珍式贯人仪作为辅助手段。 (二)钎探法 1工艺流程 绘制钎点平面布置图→放钎点线→核验点线→就位打钎→记录锤击数→拔钎→盖孔保护→验收→灌砂。 2人工(机械)钎探 采用直径22~25mm钢筋制作的钢钎,使用人力(机械)使大锤(穿心锤)自由下落规定的高度,撞击钎杆垂直打人土层中,记录其单位进深所需的锤数,为设计承载力、地勘结果、基土土层的均匀度等质量指标提供验收依据。是在基坑底进行轻型动力触探的主要方法。 3作业条件 人工挖土或机械挖土后由人工清底到基础垫层下表面设计标高,表面人工铲平整,基坑(槽〕宽,长均符合设计图纸要求;钎杆上预先用钢锯锯出以300㎜为单位的横线,0刻度从钎头开始。 4根据基坑平面图。依次编号绘制钎点平面布置图 按钎点平面布置图放线。孔位洒上白灰点,用盖孔块压在点位上作好覆盖保护。盖孔块宜采用预制水泥砂浆块、陶瓷锦砖、碎磨石块、机砖等。每块盖块上面必须用粉笔写明钎点编号。 5就位打钎 钢钎的打入分人工和机械两种。

人工打钎:将钎尖对准孔位,一人扶正钢钎,一人站在操作处子上。用大锤打钢钎的顶端;锤举高度一般为50cm,自由下落,将钎垂直打人土层中。也可使用穿心锤打钎。 机械打钎:将触探杆尖对准孔位,再把穿心锤套在钎杆上,扶正钎杆,利用机械动力拉起穿心锤。使其自由下落,锤距为60cm,把触探杆垂直打入土层中。 6记录锤击数 钎杆每打入土层30cm时,记录一次锤击数。钎探深度以设计为依据。如设计无规定时,一般钎点按纵横间距梅花形布设。深度为。 7拔钎、移位 用麻绳或钢丝将钎杆绑好,留出活套,套内插人撬棍或钢管,利用杠杆原理,将钎拔出。每拔出一段将绳套往下移一段,依此类推,直至完全拔出为止;将钎杆或触探器搬到下一孔位。以便继续拔钎。 8灌砂 钎探后的孔要用砂灌实。打完的钎孔。经过质量检查人员和有关工长检查孔深与记录无误后。用盖孔块盖住孔眼。当设计、勘察和施工方共同验槽办理完验收手续后,方可灌孔。 9质量控制及成品保护 (1)同一工程中,钎探时应严格控制穿心锤的落距,不得忽高忽低。以免造成钎探不准。使用钎杆的直径必须统一。 (2)钎探孔平面布置图绘制要有建筑物外边线、主要轴线及各线尺寸关系,外圈钎点要超出垫层边线200~500mm。 (3)遇钢钎打不下去时。应请示有关工长或技术员。调整钎孔位置。并在记录单备注栏内做好记录。 (4)钎探前,必须将钎孔平面布置图上的钎孔位置与记录表上的钎孔号先行对照。无误后方可开始打钎;如发现错误,应及时修改或补打。 (5)在记录表上用有色铅笔或符号将不同的钎孔(锤击数的大小)分开。 (6)在钎孔平面布置图上,注明过硬或过软的孔号的位置,把枯井或坟墓等尺寸画上,以便设计勘察人员或有关部门验槽时分析处理。 (7)打钎时,注意保护已经挖好的基槽,不得破坏已经成型的基槽边坡;钎探完成后,应做好标记,用砖护好钎孔,未经勘察人员检验复核,不得堵塞或灌砂。

溶解性总固体

溶解性总固体 一、名词定义 中文名称:溶解性总固体 英文名称:total dissoloved solids(rms) 别名:总矿化度 定义:曾称总矿化度。指水中溶解组分的总量,包括溶解于地下水中各种离子、分子、化合物的总量,但不包括悬浮物和溶解气体。 二、名词简介 溶解性总固体(TDS)是溶解在水里的无机盐和有机物的总称。其主要成分有钙、镁、钠、钾离子和碳酸离子、碳酸氢离子、氯离子、硫酸离子和硝酸离子。 矿化度的单位以g/L表示。一般测定矿化度是将1L水加热到l05~110℃,使水全部蒸发,剩下的残渣质量即是地下水的矿化度。地下水按矿化度(M)的大小,一般分为:淡水(M<1g/L);微成水(M=1~3g/L);咸水(M=3~10g/L);盐水(M=10~50g/L);卤水(M>50g/L)。地下水中所含主要盐分的类型常随矿化度的增减而变化。 TDS计是针对水中溶解性总固体设计的计量器,可看出水中无机物或有机物的ppm值。 它也有其盲点与缺点: 1.TDS仅能测出水中的可导电物质,但无法测出细菌、病毒等物质。 2.单独依赖TDS水质测试来判断水质是否能生饮,并不是最正确的作法;经高温无法灭绝的细菌或病毒,必须透过更精密的仪器才能测出来。 三、在环境污染中的表现形式及存在方式 水中的TDS来源于自然界、下水道、城市和农业污水以及工业废水。为了防止结冰在路面上铺洒的盐类也可增加水中TDS的量。自然来源的TDS受不同地区矿石含盐量的影响差异十分巨大,可从300mg/L到多则6000mg/L。 溶解性总固体的量与饮用水的味觉直接有关。以下列出了不同TDS浓度与饮用水的味道之间的关系:极好(少于300mg/L);好(300~600mg/L);一般(600~900mg/L);差(900~1200mg/L);无法饮用(大于1200mg /L)。同样,饮用水中TDS浓度过低,也会因为过分平淡无味而不受人们欢迎。 虽然各地情况并不完全相同,但总的来说饮用水中TDS含量小于1000mg/L时比较容易让人接受。因为过高的TDS浓度,会造成口味不佳和水管、热水器、热水壶及家用器具的使用寿命减短,因而引发居民的反感。同样饮用水中TDS浓度过低,也会因为过分平淡无味而不受人们欢迎,同时也会对输水管道造成腐蚀。因此我国《生活饮用水卫生规范》中溶解性总固体的限制标准为1000mg/L。在早期的研究中,曾报道饮用水中的TDS与癌症、冠状动脉疾病、动脉硬化和心血管疾病呈负相关。也有报道称饮用水中的TDS与死亡率亦呈负相关。已确认TDS中的组分,如氯化物、硫酸盐、镁、钙和碳酸盐会腐蚀输水管道或在管道中结垢。高质量浓度的TDS(>500mg/L)会减少水管、热水器、热水壶和诸如水壶、蒸汽熨斗等家庭用具的使用寿命。(刘平)

水质检验方法

水质检验方法 一、pH的测定GB/T6904-2008) 1 范围 本标准规定了工业循环冷却水及锅炉用水中pH的测定方法。 本标准适用于循环冷却水及锅炉用水中pH值在0~14范围内的测定,本标准还适用于天然水、污水、除盐水、锅炉给水以及纯水的pH的测定。 2 原理 将规定的指示电极和参比电极浸入同一被测溶液中,成一原电池,其电动势与溶液的pH有关。通过测量原电池的电动势即可得出溶液的pH。 3 试剂和材料 3.1 草酸盐标准缓冲溶液:c[KH3(C2O4)2·2H2O]=0.05 mol/L。 称取12.61 g四草酸钾溶于无二氧化碳的水中,稀释至1000m L.。 3.2酒石酸盐标准缓冲溶液:饱和溶液。 在25℃下,用无二氧化碳的水溶解过量的(约75 g/ L)酒石酸氢钾并剧烈振摇以制备其饱和溶液。 3.3 苯二甲酸盐标准缓冲溶液:c(C6H4CO2HCO2K)=0.05 mol/L。 称取10.24 g预先于(110±5)℃干燥1h的苯二甲酸氢钾,溶于无二氧化碳的水中,稀释至1000m L.。 3.4 磷酸盐标准缓冲溶液:c(KH2PO4)=0.025 mol/L;c(Na2HPO4)=0.025 mol/L。 称取3.39 g磷酸二氢钾和3.53 g磷酸氢二钠溶于无二氧化碳的水中,稀释至1000m L.。磷酸二氢钾和磷酸氢二钠需预先在(120±10)℃干燥2h。 3.4 硼酸盐标准缓冲溶液:c (Na2B4O7·10H2O)=0.01 mol/L. 称取3.80 g十水合四硼酸钠,溶于无二氧化碳的水中,稀释至1000m L.。 3.5 氢氧化钙标准缓冲溶液:饱和溶液。 在25℃时,用无二氧化碳的水制备氢氧化钙的饱和溶液。存放时应防止空气中二氧化碳进入。一旦出现混浊,应弃去重配。 不同温度时个标准缓冲溶液的pH值列于表1 4 仪器、设备 4.1 酸度计:分度值为0.02pH单位。

相关文档
最新文档