北航数学分析期末考试卷
北航高数07-08试题 答案

sin x
x3
lim x0
2 x2 cos x 2 sin2 x 3x2
2[1 1 x2 o( x2 )] [1 1 x2 o( x2 )] 2[1 1 x2 o( x2 )]
lim
2
x0
2
2
3x2
2
6
4
四、求导数(每小题5 分, 共 10 分)
x0 )
f
(1 2!
) (0
x0
)2
,1
(0,
x0
),
f (1)
f (x0 )
f ( x0 )(1
x0 )
f (2 ) (1 2!
x0 )2 ,2 ( x0 ,1),
于是f
(1
)
2 x2
,
0
f
( 2
)
(1
2 x0
)2
.
故 min{ 0 x1
f
( x)}
min{
f
(1 ),
f
(2 )}
min {
0 x01
2 x2
0
,
(1
2 x0 )2
}
8.
13
高等数学期末考试试题 2008-1-24
一、填空(每小题 4 分,共 20 分)
11
1. lim x sin cos __________.
x
xx
2. 1 (sin 5 x 1 x 2 )dx 1
.
3.曲线 y 2 ( x )3 (0 x 1) 的弧长为
.
3
1月北京航空航天大学数学分析期末试题答案

北京航空航天大学2005-2006学年第一学期考试统一用答题册考试课程数学分析B班级成绩姓名学号20XX年1月数学分析(上)期终考试试题班级 学号 姓名 日期:2006.1.20一、填空题(每小题4分,共20分)1. sin 0tan 00limx →+⎰⎰= 12. 不定积分dx x ⎰sec = ln sec tan x x C ++3. 设()f x 有一阶连续导数,则'()d f x x ⎰=()f x C +,10'(2)d f x x ⎰=[]1(2)(0)2f f -。
4. 设函数()2xf x xe -=,则()f x 在0=x 处的5阶带Peano 余项的泰勒公式为()3551()2f x x x x o x =-++ 5. 111lim ......12n n n n n →∞⎛⎫+++⎪+++⎝⎭= ln 2 二、单项选择(每小题4分,共20分)1. 设()f x 连续, 220()()d x F x f t t =⎰, 则 '()F x 等于 【 C 】A. 4()f xB. 24()x f xC. 42()xf xD. 22()xf x2.下列命题中正确的是 【 B 】.A 若级数1n nn u v∞=∑收敛,则2211,nnn n uv∞∞==∑∑一定都收敛。
B .若级数2211,nnn n uv∞∞==∑∑收敛,则1n nn u v∞=∑ 一定收敛 。
.C 若正项级数1n n u ∞=∑发散,则必有 1,1,2,3n u n n>= 。
.D 若1nn u∞=∑收敛,且,1,2,3,.....n n u v n ≥=,则1nn v∞=∑也收敛。
3. 设正项数列{}n a 单调递减 ,()11nn n a ∞=-∑发散,则级数111nn n a ∞=⎛⎫⎪+⎝⎭∑ 【 C 】A. 和等于1 B . 发散C . 收敛 D. 收敛性不能确定4. 设 1220011()d d 11xxF x t t t t =+++⎰⎰,则 【 B 】 A .()0F x ≡ B.()2F x π≡C. ()arctan F x x =D.()2arctan F x x =5. 设⎪⎩⎪⎨⎧=≠=0,00 ,1sin )(x x x x x f , 则⎰=x dt t f x F 0)()(在x = 0处 【 D 】A.不连续 B. 连续但不可导C.连续且可导 D . 导函数连续三、计算题(每小题6分,共24分)1.x x d arctan⎰1arctan 11arctan (1)x x dx x dx x xx C x C=-=+++=+=+⎰⎰ 2. 221d (1)(2)x x x x +++⎰ 2245112(1)24ln 15ln 21dx x x x x C x⎛⎫=-+ ⎪+++⎝⎭=--+++++⎰3.x x xd ln 12⎰∞+221111211ln -1ln 1d ln d d x 11d 1x x x x x x x x x x x +∞+∞+∞+∞+∞+∞⎛⎫==-+ ⎪⎝⎭==-=⎰⎰⎰⎰4. 设D 是由曲线 1sin +=x y 与三条直线 0,,0===y x x π 所围成的曲边梯形,求D 绕x 轴旋转一周所生成的旋转体的体积。
北航数理统计期末考试题

材料学院研究生会学术部2011年12月2007-2008学年第一学期期末试卷一、(6分,A 班不做)设x 1,x 2,…,x n 是来自正态总体2(,)N μσ的样本,令)x x T -=,试证明T 服从t -分布t (2)二、(6分,B 班不做)统计量F-F(n,m)分布,证明111(,)F F n m αααα-的(0<<1)的分位点x 是。
三、(8分)设总体X 的密度函数为其中1α>-,是位置参数。
x 1,x 2,…,x n 是来自总体X 的简单样本,试求参数α的矩估计和极大似然估计。
四、(12分)设总体X 的密度函数为1x exp x (;) 0 , p x μμσσσ⎧⎧-⎫-≥⎨⎬⎪=⎭⎨⎩⎪⎩,其它,其中,0,μμσσ-∞<<+∞>已知,是未知参数。
x 1,x 2,…,x n 是来自总体X 的简单样本。
(1)试求参数σ的一致最小方差无偏估计σ∧; (2)σ∧是否为σ的有效估计?证明你的结论。
五、(6分,A 班不做)设x 1,x 2,…,x n 是来自正态总体211(,)N μσ的简单样本,y 1,y 2,…,y n 是来自正态总体222(,)N μσ的简单样本,且两样本相互独立,其中221122,,,μσμσ是未知参数,2212σσ≠。
为检验假设012112:, :,H H μμμμ=≠可令12, 1,2,..., , ,i i i z x y i n μμμ=-==-则上述假设检验问题等价于0111:0, :0,H H μμ=≠这样双样本检验问题就变为单检验问题。
基于变换后样本z 1,z 2,…,z n ,在显著性水平α下,试构造检验上述问题的t-检验统计量及相应的拒绝域。
六、(6分,B 班不做)设x 1,x 2,…,x n 是来自正态总体20(,)N μσ的简单样本,0μ已知,2σ未知,试求假设检验问题22220010:, :H H σσσσ≥<的水平为α的UMPT 。
北航数理统计期末考试题

材料学院研究生会学术部2011 年12 月2007-2008学年第一学期期末试卷一、(6 分,A 班不做)设x1,x2,⋯,x n是来自正态总体N( , 2) 的样本,令2(x1 x2)T(x3 x4)2 (x5 x6)2 ,试证明T 服从t-分布t(2)二、( 6 分, B 班不做 ) 统计量F-F(n,m) 分布,证明1的 (0< <1)的分位点x 是1。
F F1 (n,m) 。
三、(8分)设总体X 的密度函数为其中1,是位置参数。
x1,x2,⋯,x n是来自总体X 的简单样本,试求参数的矩估计和极大似然估计。
四、(12分)设总体X 的密度函数为1xexp ,xp(x; )0 , 其它其中, 已知,0, 是未知参数。
x1,x2,⋯,x n 是来自总体X 的简单样本。
1)试求参数的一致最小方差无偏估计;2) 是否为的有效估计?证明你的结论。
五、(6分,A 班不做)设x1,x2,⋯,x n是来自正态总体N( 1, 12) 的简单样本,y1,y2,⋯,y n 是来自正态总体N( 2, 22) 的简单样本,且两样本相互独立,其中1, 12, 2, 22是未知参数,1222。
为检验假设H0 :可令z i x i y i, i 1,2,..., n ,1 2 ,1 2, H1 : 1 2,则上述假设检验问题等价于H0 : 1 0, H1: 1 0,这样双样本检验问题就变为单检验问题。
基于变换后样本z1,z2,⋯,z n,在显著性水平下,试构造检验上述问题的t-检验统计量及相应的拒绝域。
六、(6 分,B 班不做)设x1,x2,⋯,x n是来自正态总体N( 0, 2) 的简单样本,0 已知,2未知,试求假设检验问题H0: 202, H1: 202的水平为的UMPT。
七、(6 分)根据大作业情况,试简述你在应用线性回归分析解决实际问题时应该注意哪些方面?八、(6 分)设方差分析模型为总离差平方和试求E(S A ) ,并根据直观分析给出检验假设H0 : 1 2 ... P 0的拒绝域形式。
航空航空数学期末考试试题及答案

航空《航空数学》期末考试试题及答案基本信息:[矩阵文本题] *1. 下列语句是命题的是(). [单选题] *A. 4大于3吗?B. 请关门C. x大于yD. 4>3(正确答案)2. 下列命题是真命题的是() [单选题] *A. 正方形是矩形,且正方形是菱形(正确答案)B. -1<0,且-1是正数C. π>3,且π是有理数D. 3是偶数,且2是奇数3. 下列命题是假命题的是() [单选题] *A. 5>4,或5=4B. 5>5,或5=5C. 5<4,或5=4(正确答案)D. 实数a的绝对值等于a或-a.4.下列命题不是简单命题的是() [单选题] *A. 5>4B. 5=5C. 5<4D. 4≤5(正确答案)5. 下列不是复合命题的联结词的是() [单选题] *A. 且B. 或C. 不是D. 联结(正确答案)6. 当p为真,q为假时,下列复合命题是真命题的是() [单选题] *A. p且qB. p或q(正确答案)C. 非pD. 以上都不是7. 设p和q是两个命题,如果p q,那么称p是q的()[单选题] *A. 充分条件(正确答案)B. 必要条件C. 充分必要条件D.等价条件8. ab>0是a>0且b>0的() [单选题] *A. 充分条件B. 必要条件(正确答案)C. 充分必要条件D.等价条件9. (1) 如果p,那么q;(2) 如果q,那么p,则(2)叫做(1)的() [单选题] *A. 逆命题(正确答案)B. 否命题C. 逆否命题D.假命题10.如果原命题是真,下列正确的是() [单选题] *A. 逆命题一定真B.否命题一定假C. 逆否命题一定真(正确答案)D.逆命题一定假11. (1) 如果p,那么q; (2) 如果非q,那么非P。
则 (2)叫做(1)的() [单选题] *A. 逆命题B. 否命题C. 逆否命题(正确答案)D.假命题12. (1) 如果p,那么q; (2) 如果非p,那么非q; 则 (2)叫做(1)的() [单选题] *A. 逆命题B. 否命题(正确答案)C. 逆否命题D.假命题13. 若植树这件事的算法表示为:挖坑→栽树苗→填土→浇水,这种算法结构为() [单选题] *A. 顺序结构.(正确答案)B. 条件结构C. 循环结构.D.模块结构14.不属于算法的三种结构的是() [单选题] *A. 顺序结构.B. 条件结构C. 循环结构.D.模块结构(正确答案)15.有关数组,下列叙述不正确的是() [单选题] *A. 两个数组之和即两个数组的对应分量相加,得到的新数组B. 两个数组之差即两个数组的对应分量相减,得到的新数组C. 数组中分量的个别数叫做数组的维数D. 数组的加、减运算的维数不必相同.(正确答案)16. 有关数乘,下列说法不正确的是() [单选题] *A. 数乘就是一个实数乘一个数组B.数乘的法则就是把实数分别与分量相乘C.数乘后还是一个数组D.数乘后数组的维数会改变.(正确答案)17.有关数组的内积,下列说法正确的是() [单选题] *A. 内积即是数乘,即一个实数与数组的乘积B. 不同维数的数组可以求内积C. 两数组的内积还是一个数组D.内积的结果是一个实数(正确答案)18.对编制计划的理解下列不正确的是() [单选题] *A.编制计划就是对工作进行合理的安排B. 一个合理的计划不需考虑工期。
北航2015-2016年工科数分(1)期末_A卷_答案

北航2015-2016年⼯科数分(1)期末_A卷_答案北京航空航天⼤学2015-2016 学年第⼀学期期末考试《⼯科数学分析(Ⅰ)》(A卷)班号学号姓名主讲教师考场成绩2016年01⽉20⽇1. 下列命题中错误的是(D )A. 若()f x 在区间(,)a b 内的原函数是常数,则()f x 在(,)a b 内恒为0;B. 若],[)(b a x f 在上可积, 则],[)(b a x f 在上必有界;C. 若],[)(b a x f 在上可积, 则()f x 在区间[,]a b 上也可积;D. 若],[)(b a x f 在上不连续,则],[)(b a x f 在上必不可积 . 2. 设()f x 满⾜等式120()2()d f x x f x x =-?,则1()d f x x ?=( B )A. 1;B. 1;9C. 1;-D. 1.3-3. 设函数()f x 可导,则( C ) A.()d ();f x x f x =?B.()d ();f x x f x '=?C. ()d()d ();d f x x f x x=?D.()d ()d ().d f x x f x C x=+?4. 下列⼴义积分中,发散的是( C )A.1dx +∞; B.211dx x+∞?; C. 11sin d xx x+∞+?; D. 1sin d .x e x x +∞-?5. 瑕积分 31ln dxx x=?( C )A. l n l n 3;B. 0;C. ;+∞D. 1.1.22325x dx x x -++?解:2222223(22)52525(25)152525x x dx dxx x x x d x x dx x x x x -+-=++++++=-++++2221ln(25)512x x dx x =++-++?() 251ln(25)arctan .22x x x C +?? =++-+建议:拆成两项2分,积分计算各2分。
北京大学《数学分析(Ⅲ)》2020-2021学年第一学期期末试卷 (2)
北京大学《数学分析(Ⅲ)》2020-2021学年第一学期期末试卷《数学分析(Ⅲ)》院/系——年纪——专业——姓名——学号——一、选择题(每题2分,共20分)1. 设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且f'(x) > 0,则下列结论正确的是( )A. f(x)在[a,b]上单调递增B. f(x)在(a,b)上单调递增C. f(x)在[a,b]上单调递减D. f(x)在(a,b)上单调递减2. 设f(x)在[a,b]上连续,在(a,b)内可导,且f(a) = f(b) = 0,则在(a,b)内至少存在一点ξ,使得( )A. f'(ξ) = 0B. f'(ξ) > 0C. f'(ξ) < 0D. 以上都不一定3. 关于函数极限的ε-δ定义,以下说法正确的是( )A. 对任意ε>0,总存在δ>0,使得当|x-x0|<δ时,有|f(x)-A|<εB. 对任意δ>0,总存在ε>0,使得当|x-x0|<δ时,有|f(x)-A|<εC. 对任意ε,δ>0,当|x-x0|<δ时,有|f(x)-A|<εD. 以上都不对4. 设z = f(x,y)在点(x0, y0)处可微,则( )A. dz在(x0, y0)处连续B. dz在(x0, y0)处有界C. dz在(x0, y0)处可导D. dz在(x0, y0)处存在偏导数5. 设u = u(x,y,z)有连续的二阶偏导数,则( )A. u关于x的二阶偏导数与关于y的二阶偏导数一定相等B. u关于x的二阶偏导数与关于y的二阶偏导数一定不相等C. u关于x,y的二阶混合偏导数与关于y,x的二阶混合偏导数一定相等D. 以上都不一定6. 设函数$f(x)$在$[a, b]$上连续,在$(a, b)$内可导,若$f'(x) > 0$对所有$x \in (a, b)$成立,则$f(x)$在$[a, b]$上( )A. 单调递增B. 单调递减C. 可能递增也可能递减D. 为常数7. 设$f(x)$在$x = x_0$处可导,且$f'(x_0) > 0$,则对于充分小的$\Delta x > 0$,有( )A. $f(x_0 + \Delta x) < f(x_0)$B. $f(x_0 + \Delta x) > f(x_0)$C. $f(x_0 + \Delta x) = f(x_0)$D. 无法确定8. 若$\lim_{{x \to \infty}} f(x) = L$,则下列说法正确的是( )A. $f(x)$在$x \to \infty$时单调B. $\lim_{{x \to -\infty}} f(x) = L$C. $f(x)$在$x \to \infty$时一定有界D. $\lim_{{x \to x_0}} f(x)$不一定存在9. 设函数$z = f(x, y)$在点$(x_0, y_0)$处可微,则$f$在$(x_0, y_0)$处的全微分$dz$可以表示为( )A. $dz = f_x(x_0, y_0) dx + f_y(x_0, y_0) dy$B. $dz = f_x(x_0, y_0) + f_y(x_0, y_0)$C. $dz = f_x(x_0, y_0) dy + f_y(x_0, y_0) dx$D. $dz = \frac{\partial f}{\partial x}(x_0, y_0) + \frac{\partial f}{\partial y}(x_0, y_0)$10.设$f(x)$在$[a,b]$上连续,在$(a,b)$内可导,且对任意$x \in (a,b)$,有$f(x) \geq 0$和$f'(x) \leq 0$,则:A. $f(x)$在$[a,b]$上单调递增B. $f(x)$在$[a,b]$上单调递减C. $f(x)$在$[a,b]$上恒为常数D. $f(x)$在$[a,b]$上无单调性二、填空题(每题3分,共15分)1. 设f(x)在[a,b]上连续,在(a,b)内可导,且f'(x) < 0,则f(x)在[a,b]上的最小值为_______。
北航数学分析期末考试卷
一、填空题(每题5分,共30分)1. 设向量场),,(222xyz z xy yz x A =,求=divA=rotA2.求=+⎰→xx dx ααcos 12100lim 3.设),(y x f 在原点领域连续, 求极限=⎰⎰≤+→dxdy y x f y x ),(122220lim ρρπρ4.设为自然数,n z y x z y x D },10,10,10|),,{(≤≤≤≤≤≤= 求=+++⎰⎰⎰dxdydz zy x y x n n n n n D 5.设,)(2)1(cos sin dt ex f t x x +⎰= 求=)('x f 6.)为右半单位圆 设L (,sin cos :⎩⎨⎧==θθy x L 求=⎰ds y L || 二、(本题满分10分)设Ω为椭球体,1222222≤++c z b y a x 计算dxdydz xy z I )2(2+=⎰⎰⎰Ω三(本题满分10分)计算曲面积分,)(dS z y x ++⎰⎰∑其中∑是平面5=+z y 被柱面2522=+y x 所截得的部分。
四(本题满分30分,每题10分)1. 计算曲线积分2.计算曲面积分.zdxdy ydzdx xdydz ++⎰⎰∑其中)0(:22h y z x y ≤≤+=∑,方向取左侧。
⎰-+-+-=Ldz y x dy x z dx z y I ,)()()(02222=++=++z y x a z y x L 与平面是球面其中取逆时针方向。
轴正向看去的交线,从L z3.计算,4)4()(.22yx dy y x dx y x L +++-⎰其中L 为单位圆周,.122=+y x 方向为逆时针方向。
五、(本题10分)A .叙述在平面单连通区域D 上的曲线积分与路径无关的等价命题。
B 验证曲线积分⎰--L x ydy x f ydx e x f cos )(sin ])([与路径无关,且,0)0(,=f f 有一阶连续导数求).(x f六、证明题(本题10分).d )(2d )(,]1,0[)(1010⎰⎰≤x x f x x x f x f 式利用二重积分证明不等上连续且单调增加在设一元函数。
北航有限元分析与应用期末复习题答案
Ni ( x j , y j ) =
N i ( xm , ym ) =
即 另外
Ni + N j + N m =
N i ( x j , y j ) = δ ij
1 (ai + bi x + ci y + a j + b j x + c j y + am + bm x + cm y ) 2∆ 1 [(ai + a j + am ) + (bi + b j + bm ) x + (ci + c j + cm ) y ] = 2∆ 1 (2∆ + 0 ⋅ x + 0 ⋅ y ) = 1 = 2∆
时的等效结点载荷, 假设结点坐标已知, 单元厚度为 t。 解:设三角形面积坐标为 L1、L2、L3,则形函数:
y 5
2
(x2,y2) q 4
N1 = L1 (2 L1 − 1) 、N 2 = L2 (2 L2 − 1) 、N 3 = L3 (2 L3 − 1) N 4 = 4 L1 ⋅ L2 、 N 5 = 4 L2 ⋅ L3 、 N 6 = 4 L3 ⋅ L1
∂u ∂x 0 ∂v {ε } = = 0 y ∂ 0 ∂u ∂x + ∂y ∂x
0 {σ } = [ D]{ε } = 0 0
∴
∴ ∴
单元中不产生应力。
6
8、求图示二次三角形单元在 142 边作用有均布侧压 q
xi yi yj ym
2∆ = 1 x j 1 xm
根据行列式的性质:行列式的任一行(或列)的元素与其相应的代数余子式 乘积之和等于行列式的值,而任一行(或列)的元素与其他行(或列)的元素的 代数余子式乘积之和等于零。所以
北航-工科数学分析2010-2011期末试题
A一、计算题(每小题6分,共60分)1、已知函数2u x yz =+,求梯度grad u 及其梯度的散度().div grad u 解:,2,,u u u x z y x y z∂∂∂===∂∂∂{2,,},grad u x z y =---------------------------------------------------------3分()()()() 2.grad u grad u grad u div grad u x y z∂∂∂=++=∂∂∂--------------------3分2、设曲线22:=14x L y +的周长为l ,求2(2).Lx y ds +⎰ 解:222(2)(4)444.LLLLx y ds x y ds xyds ds l +=++==⎰⎰⎰⎰ 3、设D 是由1,0==y x 及x y =围成的区域,计算22.y Dx e dxdy -⎰⎰解:因为2_y e dy ⎰无法用初等函数表示,所以积分时必须考虑次序,2222321112_2200..3312(1).3yy y y y Dy y x edxdy dy x edx ee dy e---====-⎰⎰⎰⎰⎰⎰4、设222:,r D x y r +≤求22201lim cos().rx y r D ex y dxdy r+-→+⎰⎰解:由积分中值定理,存在(,),r D ξη∈使得22222cos()cos().rx y D e x y dxdy e r ξηξηπ--+=+⎰⎰于是原式=2220lim cos()..r e r ξηξηππ+-→+=5、设Ω为椭球体,1222222≤++c z b y a x 计算2().x y z dxdydz Ω++⎰⎰⎰解法一:作广义极坐标变换:Asin cos :sin sin cos x ar T y br z cr ϕθϕθϕ=⎧⎪=⎨⎪=⎩则T 的Jacobi 行列式为2J(,,)sin r abcr ϕθϕ=所以2222222()[()222]()x y z dxdydzx y z xy xz yz dxdydz x y z dxdydzΩΩΩ++=+++++=++⎰⎰⎰⎰⎰⎰⎰⎰⎰2122222222402222222222002222220222(sin cos sin sin cos )sin 2(sin cos sin sin cos )sin 52(2cos 2sin )54().15d d a b c abcr drabc d a b c d abc a b c d abc a b c πππππθϕϕθϕθϕϕθϕθϕθϕϕϕθθθπ=++=++=++=++⎰⎰⎰⎰⎰⎰解法二因为2222()()222,x y z x y z xy xz yz ++=+++++且,,xy xz yz 分别关于,,x y z 的奇函数,所以20,20,20.xydxdydz xzdxdydz yzdxdydz ΩΩΩ===⎰⎰⎰⎰⎰⎰⎰⎰⎰于是2222222()[()222]()x y z dxdydzx y z xy xz yz dxdydz x y z dxdydzΩΩΩ++=+++++=++⎰⎰⎰⎰⎰⎰⎰⎰⎰又因为22zccD z dxdydz z dz dxdy-Ω=⎰⎰⎰⎰⎰⎰其中222222{(,)|1}.z x y z D x y a b c=+≤-于是2222324(1),15zccc c D z z dxdydz z dz dxdy ab z dz abc c ππ--Ω==-=⎰⎰⎰⎰⎰⎰⎰同理,232344,1515x dxdydz a bc y dxdydz ab c ππΩΩ==⎰⎰⎰⎰⎰⎰故22224()().15x y z dxdydz abc a b c πΩ++=++⎰⎰⎰6、计算积分22(),x y dxdydz Ω+⎰⎰⎰其中Ω是由2z z ==围成的区域.解:作柱面坐标变换:cos ,sin ,T x r y r z zθθ===则积分区域Ω的表达式变为{(,,)|2,02,02},r z r z r θθπΩ=≤≤≤≤≤≤因此222223016().5rx y dxdydz dr d r dz πθπΩ+==⎰⎰⎰⎰⎰⎰7、计算22,Lxydx x dy +⎰其中L 为有向折线OAB ,这里,,O A B 依次是点(0,0),(1,0),(1,1).解:222222LOAABxydx x dy xydx x dy xydx x dy+=+++⎰⎰⎰100(2.01)1.y dy=++=⎰8、设Ω是由球面2224x y z ++=和平面0,0,0x y z ===所围成的在第一卦限的空间区域,则三重积分222()d f x y z V Ω++⎰⎰⎰在球坐标系下的累次积分为解222220()sin d d f r r drππϕθθ⎰⎰⎰9、计算曲面积分222,x dydz y dzdx z dxdy ∑++⎰⎰其中∑是球面2222(0)x y z R z ++=≥的上侧.解法一:因为∑是关于Oyz 平面对称的上半球面,所以∑上关于Oyz 平面对称的元素i ∆∑在Oyz 平面上的有向投影i σ∆正好抵消,被积函数关于x 是偶函数,故由定义可得,20.x dydz ∑=⎰⎰同理,20.y dzdx ∑=⎰⎰所以原式=22222222224()().2Rx y R z dxdy R x y dxdy d R r rdr R π∑πθ+≤=--=-=⎰⎰⎰⎰⎰⎰解法二222222224()().2xyxyD D Rz dxdy z dxdy R x y dxdyd R r rdr R ∑ππθ==--=-=⎰⎰⎰⎰⎰⎰⎰⎰又2222222()()0,yzyzD D x dydz R z y dydz R z y dydz ∑=-----=⎰⎰⎰⎰⎰⎰同理,2222222()()0,zxzxD D x dydz R z x dydz R z x dydz ∑=-----=⎰⎰⎰⎰⎰⎰所以,原式4.2R π=解法三原式=22222222222240{((}00()().2xyD Rx y Rx y z dxdyR x y dxdy d R r rdr ππθ+≤+-+=++--=-=⎰⎰⎰⎰⎰⎰10求向量场222(,,)A x yz xy z xyz =的旋度.解:222222222((),(),())ij k rotA x z y y x z z y x x y z x yzx y zx yz ∂∂∂==---∂∂∂二、(本题满分10分)设(,)f x y 在2214x y +≤上具有连续的二阶偏导数,L 是椭圆2214x y +=的顺时针方向,求[3(,)](,)xyLy f x y dx fx y dy ++⎰的值.(利用Green 公式)解:(,)3(,),(,)(,),x y P x y y f x y Q x y f x y =+=---------------------------------------2分则(,)(,)3(,),(,),xy yx P x y Q x y f x y f x y yx∂∂=+=∂∂----------------------------4分由Green 公式得,[3(,)](,)36.xyLDy f x y dx fx y dy dxdy π ++=--=⎰⎰⎰-----------------------10分三、(本题满分10分)利用Gauss 公式计算32222cos cos cos ,()x y z dS x y z αβγ∑++++⎰⎰其中∑是包含原点的曲面222(1)(2)(3)191625x y z ---++=的外侧,cos ,cos ,cos αβγ是其外法线向量的方向余弦.解:332222222232222(,,)(,,),()()(,,)()x y P x y z Q x y z x y z x y z z R x y z x y z ==++++=++-----------------------2分对充分小的0,ε>取22221:x y z ε∑++=(取内侧),-------------------------------4分使1∑位于∑内的内区域中,记Ω为∑与1∑所围有界区域,则11332222222232222cos cos cos cos cos cos ()()cos cos cos ()x y z x y z dS dSx y z x y z x y z dS x y z αβγαβγαβγ∑∑+∑∑++++=++++++-++⎰⎰⎰⎰⎰⎰-------7分1222233++10(cos cos cos )134.x y z dV x y z dSdV εαβγεπεΩ∑≤=-++==⎰⎰⎰⎰⎰⎰⎰⎰---------------------------------------------10分四、(本题满分10分)利用Stokes 公式计算积分222222()()()I y z dx z x dy x y dz Γ=-+-+-⎰ ,其中Γ为平面1x y z ++=与三个坐标平面的交线,从第一卦限向原点看逆时针方向.四、解:222222P(,,)=,(,,)R(,,)=,x y z y z Q x y z x z x y z y x +=++,且cos αβγ===---------------------------------------------4分则222222cos cos cos 3().2SSI dS x y z dS dS xyzy z z x x yαβγ∂∂∂==-++=-=-∂∂∂---⎰⎰-------10分或222222Sdydzdzdx dxdyI x y z y z z x x y∂∂∂∴=∂∂∂---⎰⎰2()()()...S y z dydz z x dzdx x y dxdy =-+++++=⎰⎰.五、(本题满分10分)设曲线积分2()Lxy dx yf x dy +⎰与路径无关,其中()f x 具有连续导数,且(0)0,f =求()f x 的表达式并计算(2,2)2(0,0)()xy dx yf x dy +⎰的值.解:令2P(,)=,(,)()x y xy Q x y yf x =则'P(,)(,)2,()x y Q x y xy y f x y x∂∂==∂∂------------------------------------2分因为P(,)(,),x y Q x y y x∂∂=∂∂所以有'2(),x f x =-------------------------------------------------4分解得,2(),f x x C =+又由于(0)0,f =知20,().C f x x ==----------------------------------------------------------6分(2,2)(2,2)222(0,0)(0,0)222()(..)8.xy dx yf x dy xy dx yx dyx x x x dx +=+=+=⎰⎰⎰-------------------------------------------10分六、(附加题满分10分)设22:0L x y x y +++=的方向为逆时针方向,证明:22sin +cos 2L y x dx x y dy π≤-≤⎰证明:令由22:0L x y x y +++=围成的区域为,D 由GREEN 公式得222222sin +cos (sin cos )sin cos LDDDy x dx x y dy x y dxdyx dxdy x dxdy-=+=+⎰⎰⎰⎰⎰⎰⎰---------4分2),4Dx dxdy π=+⎰⎰-----------------------------------------6分又(,),x y D ∈于是有1||,2x ≤从而2,2x π≤所以23,444x πππ<+≤------------------------------------------------------8分于是2sin(1,24x π<+≤且2(),2S D ππ==---------------------------------------10分故命题得证.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A 一、填空题(每题5分,共30分)
1. 设向量场),,(222xyz z xy yz x A =,求=divA
=rotA 2.求=+⎰→x
x dx ααcos 12100lim 3.设),(y x f 在原点领域连续, 求极限=⎰⎰≤+→dxdy y x f y x ),(12222
0lim ρρπρ
4.设为自然数,n z y x z y x D },10,10,10|),,{(≤≤≤≤≤≤=
求=+++⎰⎰⎰dxdydz z
y x y x n n n n n D 5.设,)(2)1(cos sin dt e
x f t x x +⎰= 求=)('x f 6.)为右半单位圆 设L (,sin cos :⎩⎨⎧==θ
θy x L 求=⎰ds y L || 二、(本题满分10分)
设Ω为椭球体,1222222≤++c z b y a x 计算dxdydz xy z I )2(2+=⎰⎰⎰Ω
三(本题满分10分)
计算曲面积分,)(dS z y x ++⎰⎰∑
其中∑是平面5=+z y 被柱面2522=+y x 所
截得的部分。
四(本题满分30分,每题10分)
1. 计算曲线积分
⎰-+-+-=L
dz y x dy x z dx z y I ,)()()(02222=++=++z y x a z y x L 与平面是球面其中取逆时针方向。
轴正向看去的交线,从L z
2.计算曲面积分.zdxdy ydzdx xdydz ++⎰⎰∑
其中)0(:22h y z x y ≤≤+=∑,方
向取左侧。
3.计算,4)4()(.22y
x dy y x dx y x L +++-⎰其中L 为单位圆周,.122=+y x 方向为逆时针方向。
五、(本题10分)
A .叙述在平面单连通区域D 上的曲线积分与路径无关的等价命题。
B 验证曲线积分⎰--L x ydy x f ydx e x f cos )(sin ])([与路径无关,且
,0)0(,=f f 有一阶连续导数求).(x f
六、证明题(本题10分)
.d )(2d )( ,]1,0[)(1
010⎰⎰≤x x f x x x f x f 式利用二重积分证明不等上连续且单调增加在设一元函数。