第六章生物合成技术
第六章 蛋白质的生物合成2(第四版)(1)

欢 迎
第三节
蛋白质合成后的折叠与修饰加工
基因经转录、翻译形成蛋白质,一般而言,新形 成的蛋白质不具备生物活性。必须折叠成正确的 空间构象,然后在经过一系列的成熟后加工,才 能成为真正有活性的蛋白质。加工过程包括前体 加工(切除信号肽)、蛋白质的化学修饰(磷酸 化、糖基化) 和蛋白质的剪接等。
(一) 信号肽理论
• 定义:所有靶向输送的蛋白质结构中存在分选信号, 主要为N末端特异氨基酸序列,可引导蛋白质转 移到细胞的适当靶部位,这一序列称为信号序列 (signal sequence)。 • 作用:使核蛋白体与内质网上的受体结合;肽链进 入内质网后经其运至靶器官,后经信号肽酶切除. • 结构:由13—35个氨基酸组成,分为三个区: N端为亲水区,含有碱性氨基酸,提供正电荷. 中间为疏水区,为中性或疏水性氨基酸(10—15个 ). C端 小分子氨基酸(信号肽酶裂解部位)
第三节蛋白质合成后的转运
• 在核糖体上新合成的多肽被送往细胞的 各个部分,以行使各自的生物功能,大 肠杆菌新合成的多肽,一部分仍停留在 胞浆之中,一部分则被送到质膜、外膜 或质膜与外膜之间的空隙,有的也可分 泌到胞外。真核细胞中新合成的多肽被 送往溶酶体、线粒体、叶绿体胞核等细 胞器。所以新合成的多肽的输送是有目 的、定向地进行的。(蛋白质的分拣和靶 向)
(PPI)
• 脯氨酸为亚氨基酸,多肽链中的肽酰-脯氨 酸间的肽键绝大部分为反式构型。肽-脯氨 酸顺反异构酶可促进顺反两种异构体之间 的转换。
蛋白质翻译后的加工修饰方式
• (一) 一级结构的修饰 • (二) 空间结构的修饰
1. N端甲酰蛋氨酸或蛋氨酸的切除 • N端甲酰蛋氨酸或蛋氨酸残基,必须在多肽链 折迭成一定的空间结构之前被切除。
生物化学试题及答案分章节

生物化学试题及答案分章节第一章生物化学基础知识1.1 生物分子的组成和性质1.2 生物中的化学键和化学反应1.3 生物大分子的结构和功能1.4 酶的性质和功能1.5 生物物质的能量转换第二章蛋白质和氨基酸2.1 蛋白质的结构和功能2.2 氨基酸的结构和分类2.3 蛋白质的合成和降解2.4 蛋白质的修饰和折叠第三章核酸和遗传信息3.1 核酸的结构和功能3.2 DNA的复制和修复3.3 RNA的合成和修饰3.4 遗传信息的传递和表达第四章碳水化合物和能量代谢4.1 碳水化合物的分类和结构4.2 糖原的合成和分解4.3 糖酵解和乳酸发酵4.4 呼吸链和氧化磷酸化第五章脂质和生物膜5.1 脂质的分类和结构5.2 细胞膜的组成和功能5.3 生物膜的通透性和传递5.4 脂质代谢和调节第六章生物化学技术6.1 蛋白质的分离和纯化6.2 核酸的提取和分析6.3 生物大分子的定量和检测6.4 基因工程和蛋白质工程第七章生物化学与健康7.1 营养与健康7.2 代谢疾病与调控7.3 肿瘤生物化学7.4 药物与生物化学第八章生物化学实验与技巧8.1 常用生物化学实验方法8.2 数据处理与统计分析8.3 实验安全与操作注意事项8.4 实验设计与结果解读每个章节通过介绍相关的基础知识、原理和应用,来提供生物化学试题及答案,以便读者全面理解和掌握生物化学的相关内容。
文章整体排版整洁美观,语句通顺,流畅易读。
每个小节提供详细的内容,但不以"小节一"、"小标题"等词语出现。
这样的格式和内容安排可以满足对生物化学试题及答案的需求,同时使文章清晰易读。
第六章植物原生质体融合技术黄秀梅(共49张PPT)

B. 高Ca2+和高pH值融合
• Ca2+浓度 0.05 mol/L
具体做法(以烟草为例)
• 取分离、纯化好的两种亲本原生质体以1:1的 比例混合;
• 加入2.2H2O和甘露醇; • 再用甘氨酸钠缓冲pH值到,成为融合液,同
时在37℃下保温0.5h; • 用甘露醇洗净高CaCl2和高pH值; • 两种原生质体的融合率达到10%。
3. 平行多电极融合装置法:经过1兆赫如150V/cm交流电场发生双向 电脉冲,原生质体在电场力的作用下,极化产生偶极子,原生 质体紧密排开成串珠状。在适当时间和强度的直流电脉冲
(50ms,1.2-2KV/cm)作用下,质膜发生被击穿,进一步形成融合体
细胞电融合过程
原生质体的融合过程包括3个主要阶段: 1)两个或多个原生质体的质膜彼此靠近;
最后用原生质体培养液离心一次
分离、洗涤、纯化原生质体的试剂
与分离试剂相同 与分离试剂相同
试剂
KH2PO4
KNO3
CaCl2.2H2O
MgSO4.7H2O KI CuSO4.5H2 甘露醇
纤维素酶
果胶酶
蔗糖
分离 27.2 mg 101 mg
1480 mg
240 mg 0.16 mg
13% 4%
0.4%
– 原生质体按照一定细胞起始密度,均匀分 布于薄层固体培养基中
– 此法优点有利于对单个原生质体的胞壁 再生和对细胞团形成的全过程进行定点观 察
• 双层培养法 – 在固体培养基上,加入适宜原生质体胞 壁再生和细胞分裂的液体培养基
• 细胞壁再生:
– 体积膨大,叶绿体重新排列,新 的细胞壁开始合成,细胞由球形 变成椭圆形。
4、原生质体的纯化
第六章 生物合成技术

生物合成技术生物技术,又称生物工程或生物工程技术,就是生物科学与工程技术相结合而形成的新学科。
生物技术主要包括基因工程、蛋白质工程、细胞工程、酶工程与发酵工程。
基因工程又称为重组DNA技术,就是通过人工操作,在分子水平上进行基因重组、改造与转移,以获得具有新的遗传特性的细胞,合成人们所需物质的技术过程。
酶工程就是酶的生产与应用的技术过程。
即就是通过人工操作,获得人们所需的酶,并通过各种方法使酶发挥其催化功能的技术过程。
细胞工程就是在细胞水平上改变细胞的遗传特性或通过大规模细胞培养以获得人们所需物质的技术过程。
发酵工程又称为微生物工程,就是在人工控制的条件下,通过微生物的生命活动而获得人们所需物质的技术过程。
发酵方式主要分为固体发酵与液体发酵两大类。
生物技术可以定向改造生物、加工生物材料,有目的地利用生命过程,广泛应用于医药、农林牧渔、生态、轻工食品、化工、能源、材料、海洋开发及环境保护等领域,涉及面广,促进传统产业的改造与新型产业的形成。
实验1 大肠杆菌感受态细胞的制备及转化一、实验目的1、学习氯化钙法制备大肠杆菌感受态细胞的方法。
2、学习将外源质粒DNA转入受体菌细胞并筛选转化体的方法。
二、实验原理转化就是将异源DNA分子引入另一细胞品系,使受体细胞获得新的遗传性状的一种手段,它就是微生物遗传、分子遗传、基因工程等研究领域的基本实验技术之一。
转化过程所用的受体细胞一般就是限制-修饰系统缺陷的变异株,即不含限制性内切酶与甲基化酶的突变株。
受体细胞经过一些特殊方法处理后,细胞膜的通透性发生变化,成为能容许外源DNA分子通过感受态细胞。
在一定条件下,将外源DNA分子与感受态细胞混合保温,使外源DNA分子进入受体细胞。
进入细胞的DNA分子通过复制、表达实现遗传信息的转移,使受体细胞出现新的遗传性状。
将经过转化后的细胞在选择性培养基中培养即可筛选出转化体。
本实验以E、coli DH 5α菌株为受体细胞,用氯化钙处理受体菌使其处于感受态,然后在一定条件下与pBR322质粒携带有抗氨苄青霉素与抗四环素的基因,因而使接受了该质粒的受体菌也具有抗氨苄青霉素与抗四环素的特性,常用Amp r,Tet r符号表示。
高中生物物质合成教案

高中生物物质合成教案
教学目标:
1. 了解生物物质合成的定义和意义。
2. 掌握光合作用和呼吸作用在生物物质合成中的作用。
3. 熟悉DNA合成和蛋白质合成的过程和机制。
教学内容:
1. 生物物质合成的概念和分类。
2. 光合作用和呼吸作用在生物物质合成中的作用。
3. DNA合成和蛋白质合成的过程和机制。
教学重点:
1. 生物物质合成的概念和意义。
2. 光合作用和呼吸作用在生物物质合成中的作用。
3. DNA合成和蛋白质合成的过程和机制。
教学方法:
1. 教师讲解结合示例,激发学生的兴趣。
2. 设计实验、观察数据,引导学生积极参与探究。
3. 小组合作,讨论问题,培养学生的合作意识。
教学过程:
1. 导入:通过提问引导学生思考“生物物质合成是什么?”
2. 学习:讲解生物物质合成的定义、重要性和分类。
3. 实践:设计实验,观察光合作用和呼吸作用对于生物物质合成的作用。
4. 探究:分组讨论DNA合成和蛋白质合成的过程和机制。
5. 总结:学生归纳总结本节课的重点内容。
作业安排:
1. 阅读相关课外资料,了解生物物质合成的更深层次的知识。
2. 找出三种植物,搜集它们的光合作用和呼吸作用的相关资料。
课后反思:
1. 本堂课设计是否符合学生的思维习惯和学习能力?
2. 学生在学习过程中是否能够主动探究、积极参与?
3. 如何进一步提高生物物质合成教学效果?。
第六章__蛋白质的合成――翻译

1、大小:75~95个核苷酸组成的小分子RNA 2、结构:虽然不同来源的tRNA各自的序列 不同,但有很多共同特征: (1)碱基成分相近,含有稀有碱基,且很稳 定。
这些稀有(或特殊)碱基是多核苷酸链的正常碱基 在转录后由酶的修饰作用形成的,例如假尿嘧啶 (ψU)就是尿苷经异构化作用使尿嘧啶与核糖结 合的位置从环1位的N转移到环5位的C而形成的; 双氢尿嘧啶是尿苷经酶的作用使5位和6位之间的C 双键减为单键而而形成的。
A 或 Ala
R 或 Arg N 或 Asn D 或 Asp C 或 Cys Q 或 Gln E 或 Glu G 或 Gly H 或 His I 或 Ile L 或 Leu K 或 Lys M 或 Met F 或 Phe P 或 Pro S 或 Ser T 或 Thr W 或 Trp Y 或 Tyr V 或 Val
三、氨基酸与tRNA的连接
1、氨基酰tRNA的合成 氨基酸通过高能酰基连接到tRNA 3′端的腺 苷酸上使tRNA负载,连接了氨基酸的tRNA 分子称为负载的(charged)tRNA,未连接 氨基酸的tRNA分子称为空载的(uncharged) tRNA。 负载过程需要氨基酸的羧基与tRNA受体臂 末端突出的腺苷酸的2′或3′羟基形成酰基。
二、tRNA的结构与功能
tRNA是密码子和氨基酸之间的转配器。蛋 白质合成的核心是将核苷酸序列的信息 (以密码子的形式)翻译成氨基酸,这是 由tRNA分子完成的,它担当密码子及其所 指定的氨基酸直接的转配器。tRNA分子有 多种,但每一种仅与一个特定的氨基酸结 合并识别mRNA的一个或几个特定的密码子 (多数tRNA识别一个以上密码子)。
受体臂:结合氨基酸的位点而得名,由5′和 3′端的碱基配对而成,3′端的5′-CCA-3′序列 伸出双链外; ψU环:因特殊碱基ψU(假尿嘧啶)的存在 而得名; D环:因双氢尿嘧啶的存在而得名; 反密码子环:包含反密码子,即一个通过 碱基配对识别mRNA的密码子的三核苷酸解 码单位。反密码子的两端由5′端的尿嘧啶和 3′端的嘌呤界定; 可变环:位于反密码子环和ψU环之间,从 3~12bp不等。
生物化学第六章(1)

尿酸生成
生物化学第六章(1)
嘌 呤 核 总苷 酸 的 结分 解 代 谢
生物化学第六章(1)Fra bibliotek 尿酸尿囊素 尿囊酸
尿素 氨[铵]
的不 分同 解生 产物 物嘌 不呤 同核
苷 酸
生物化学第六章(1)
尿酸与疾病
嘌呤核苷酸的分解代谢主要在肝脏、小肠及肾脏 中进行。生理情况下嘌呤合成与分解处于相对 平衡状态,尿酸的生成与排泄也较恒定。正常 人血浆中尿酸含量约0.12-0.36mmol/L,男性平 均0.27mmol/L ,女性平均0.21mmol/L 。当体 内核酸大量分解(白血病、恶性肿瘤等)或食入 高嘌呤食物时,血中尿酸水平升高,超过 0.48mmol/L时,尿酸盐过饱和形成结晶,沉积 于关节、软组织、软骨及肾等处,而导致关节 炎、尿路结石及肾疾患,称为痛风症。
一、嘧啶核苷酸的从头合成
n 首先合成嘧啶环,然后与PRPP 中的磷酸核糖连接起来形成嘧啶 核苷酸。
n 从头合成首先合成UMP,然后由
它转变为其它嘧啶核苷酸。
n 合成的原料有氨基甲酰磷酸和天冬 氨酸
生物化学第六章(1)
嘧啶环元素的来源
生物化学第六章(1)
氨甲酰磷酸合成氨甲酰Asp
生物化学第六章(1)
概述
生物体普遍存在的磷酸单酯酶或 核苷酸酶可催化核苷酸的水解, 而特异性强的磷酸单酯酶只能水 解3’-Nt或5’-Nt。 催化核苷水解的酶有2类,即核 苷磷酸化酶和核苷水解酶
生物化学第六章(1)
局限,只对核 糖Ns发生作用
广泛存在, 反应可逆
核 苷 酸 及 核 苷 分 解
生物化学第六章(1)
二、嘧啶核苷酸的降解 不同生物嘧啶碱的分解过程也不一
分子生物学 第六章

摆动性
• 反密码子与密码子之间的配对并不完全遵照 碱基互补规律,称为摆动配对。
二、tRNA
(一)结构特点 1.二级结构:三叶草结构
四环: 二氢尿嘧啶环 反密码子环 额外环 胸腺嘧啶假尿嘧啶胞嘧啶环 一臂: 氨基酸接受臂
2.三级结构——“倒L型”
(二)起始tRNA
密码子 氨基酸 表示方法
(二)延伸
1.进位 • 氨酰-tRNA 按照mRNA 分子的编码 信息进入并 结合到核糖 体A位。
(二)延伸
2.成肽
• 转肽酶催化 肽酰-tRNA 上的肽酰基 转移到A位 氨酰-tRNA 上的氨基酸 α-氨基上。
(二)延伸
3.转位
• 转位酶催化核 糖体沿mRNA 的3‘方向移动 一个密码子的 距离,使 mRNA上的下 一个密码子进 入A位,肽酰tRNA由A位移 入P位。
三、修饰
(一)磷酸化 是指在蛋白激酶的催化作用下,ATP的γ-磷酸 基被转移到蛋白质特定位点上的过程。 通常蛋白质的丝氨酸、苏氨酸和在糖基转移酶的作用下,蛋白质的特定 氨基酸残基被共价连接上寡糖链的过程。 • 糖链与氨基酸的连接主要有O型连接和N型 连接两种方式。
终止密码子: 琥珀石(UAG) 赭石(UAA) 卵白石(UGA)
起始密码子: AUG(甲硫氨酸)
2.特性
(1)完整性:有始有终 (2)方向性:5’到3’ (3)连续性:不中断、无重叠 (4)简并性:多对一 (5)统一性:万物统一 (6)摆动性::3’位可变 (7)偏爱性:使用频率各异
简并性
• 一种氨基酸具有 两个或两个以上 的密码子为其编 码,这一特性称 为遗传密码的简 并性。
一、mRNA (一)结构特点
原核 生物
真核 生物
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物合成技术生物技术,又称生物工程或生物工程技术,是生物科学与工程技术相结合而形成的新学科。
生物技术主要包括基因工程、蛋白质工程、细胞工程、酶工程和发酵工程。
基因工程又称为重组DNA技术,是通过人工操作,在分子水平上进行基因重组、改造和转移,以获得具有新的遗传特性的细胞,合成人们所需物质的技术过程。
酶工程是酶的生产与应用的技术过程。
即是通过人工操作,获得人们所需的酶,并通过各种方法使酶发挥其催化功能的技术过程。
细胞工程是在细胞水平上改变细胞的遗传特性或通过大规模细胞培养以获得人们所需物质的技术过程。
发酵工程又称为微生物工程,是在人工控制的条件下,通过微生物的生命活动而获得人们所需物质的技术过程。
发酵方式主要分为固体发酵和液体发酵两大类。
生物技术可以定向改造生物、加工生物材料,有目的地利用生命过程,广泛应用于医药、农林牧渔、生态、轻工食品、化工、能源、材料、海洋开发及环境保护等领域,涉及面广,促进传统产业的改造和新型产业的形成。
实验1 大肠杆菌感受态细胞的制备及转化一、实验目的1. 学习氯化钙法制备大肠杆菌感受态细胞的方法。
2. 学习将外源质粒DNA转入受体菌细胞并筛选转化体的方法。
二、实验原理转化是将异源DNA分子引入另一细胞品系,使受体细胞获得新的遗传性状的一种手段,它是微生物遗传、分子遗传、基因工程等研究领域的基本实验技术之一。
转化过程所用的受体细胞一般是限制-修饰系统缺陷的变异株,即不含限制性内切酶和甲基化酶的突变株。
受体细胞经过一些特殊方法处理后,细胞膜的通透性发生变化,成为能容许外源DNA 分子通过感受态细胞。
在一定条件下,将外源DNA分子与感受态细胞混合保温,使外源DNA分子进入受体细胞。
进入细胞的DNA分子通过复制、表达实现遗传信息的转移,使受体细胞出现新的遗传性状。
将经过转化后的细胞在选择性培养基中培养即可筛选出转化体。
本实验以E. coli DH 5α菌株为受体细胞,用氯化钙处理受体菌使其处于感受态,然后在一定条件下与pBR322质粒携带有抗氨苄青霉素和抗四环素的基因,因而使接受了该质粒的受体菌也具有抗氨苄青霉素和抗四环素的特性,常用Amp r,Tet r符号表示。
将经过转化后的全部受体细胞经过适当稀释后,在含有氨苄青霉素抗四环素的平板培养基上培养,只有转化体才能存活,而未受转化的受体细胞则因无抵抗氨苄青霉素和四环素的能力都被杀死,所有带有抗药基因的质粒DNA 能使受体菌从对抗菌素敏感(Amp s,Tet s)转变为具有抗药性(Amp r,Tet r),即表明了该质粒具有生物活性。
这种转化活性是检查质粒DNA生物活性的重要指标。
转化体经过进一步纯化扩增后,再将转入的质粒DNA分离提取出来,可进行重复转化、电泳、电镜观察及做限制性内切酶酶解图谱、分子杂交、DNA测序等实验鉴定。
为提高转化率,实验中要注意以下几个重要因素:(1)细胞生长状态和密度:不要用已经过多次转接及贮存在4℃或室温的培养菌液;细胞生长密度以每毫升培养液中的细胞数在5×107个左右为最佳(可通过测定培养液A600nm控制),密度不足或过高均会使转化率下降。
(2)转化的质粒DNA的质量和浓度:用于转化的质粒DNA应主要是共价闭环DNA(即cccDNA,又称超螺旋DNA),转化率与外源DNA的浓度在一定范围内成正比,但当加入的外源DNA的量过多或体积过大时则会使转化率下降。
(3)试剂的质量:所用的试剂,如氯化钙等,应是高质量的,且最好分装保存于干燥的暗处。
(4)防止杂菌和其它外源DNA的污染:所有器皿,如离心管、分装用的Eppendorf管等,一定要干净,最好是新的。
整个实验过程中要注意无菌操作。
氯化钙转化法由Cohen等首创。
其转化率一般能达到每1 μg超螺质粒DNA产生5×106~2×107个转化体,足以满足常规基因克隆试验的需要。
该法具有简单、快速、稳定、重复性好、菌株适用范围广等优点而被广泛采用。
三、仪器、材料与试剂材料:E. coli DH 5α受体菌(Amp s,Tet s),pBR322质粒试剂:含抗菌素的LB平板培养基:将配好的LB固体培养基高温灭菌20 min后,冷却至60℃左右,加入氨苄青霉素和四环素贮存液,使终浓度分别为50 μg/mL和μg/mL,摇匀后铺板。
LB液体培养基:胰蛋白胨10 g/L,酵母浸膏5 g/L,氯化钠 10 g/L,用氢氧化钠调节至pH 。
120℃高温灭菌20 min。
氨苄青霉素和四环素贮存液:用50%乙醇配制。
mol/L 氯化钙溶液:每100 mL溶液中含无水氯化钙 g,用无菌重蒸水配制,灭菌处理。
仪器:恒温摇床、电热恒温培养箱、无菌操作超净台、电热恒温水浴箱、分光光度计、台式离心机、带盖离心管、吸量管或自动加样器、Eppendorf管等。
四、实验内容1. 感受态细胞的制备(1)从新活化的E. coli DH 5α菌平板上挑取一单菌落,接种于3 mL LB液体培养基中,37℃振荡培养12 h左右至对数生长期。
将该菌悬浮液以1:100接种量转接于100 mL LB液体培养基中,37℃振荡扩大培养,当培养液开始出现混浊后,每隔20~30 min测一次A600nm ,至A600nm≤停止培养。
(2)培养液转入离心管中,在冰上冷却片刻后,于0~4℃,4000 r/min离心10 min。
倒出上清培养液,并将离心管倒置在滤纸片上1 min,使残留的培养液流尽。
用10 mL冰冷的 mol/L 氯化钙溶液轻轻悬浮细胞,冰上放置15~30 min。
于0~4℃,4000 r/min离心10 min。
弃去上清液,加入2 mL冰冷的 mol/L 氯化钙溶液,小心悬浮细胞,冰上放置片刻后即制成了感受态细胞悬液。
(3)以上制备好的感受态细胞悬液可在冰上放置,24 h后直接用于转化实验,也可加入等体积30%灭菌甘油,混匀后,分装于 mLEppendorf管中,每管含100~200 μL感受态细胞悬液,置于-70℃条件下保存半年至一年。
2. 转化(1)取100 μL摇匀后的感受态细胞悬液(如是冷冻保存液,则需化冻后马上进行下面操作),加入pBR322质粒DNA溶液2 μL(含量不超过50 ng,体积不超过10 μL),此管为转化实验组。
同时做两个对照管。
受体菌对照组:100 μL 感受态细胞悬液+2 μL 无菌重蒸水。
质粒DNA 对照组:100 μL mol/L 氯化钙溶液+2 μLpBR322质粒溶液。
(2)将以上各样品轻轻摇匀,冰上放置30 min 后,于42℃水浴中保温 min ,然后迅速在冰上冷却3~5 min 。
(3)上述各管中分别加入100 μL LB 液体培养基,则总体积为 mL ,该溶液称为转化反应原液。
混匀,于37℃水浴中温浴45 min (欲获得更高的转化率,此步也可恒温摇动培养),使受体菌恢复正常生长状态,并使转化体产生抗药性(Amp r ,Tet r )。
3. 稀释和平板培养(1)将上述经培养的转化反应原液摇匀后,进行梯度稀释,方法见表1.表1 转化反应原液梯度稀释表(2)分别取适当稀释度的各样品培养液 mL ,接种于两种(含抗菌素和不含抗菌素)LB 平板培养基上,涂匀。
以上各步操作均需在无菌超净台上进行。
(3)待菌液完全被培养基吸收后,倒置培养皿,于37℃恒温培养箱内培养24 h ,待菌落生长良好而又未相互重叠时停止培养,每组平行做两份。
4. 检出转化体和计算转化率统计每个培养皿中的菌落数,各实验组平皿内菌落生长情况应如表2所示。
表2 各实验组在培养皿内生长情况及结论不含抗菌素培养基 含抗菌素培养基 结果说明受体菌对照组 有大量菌落长出 无菌落长出 本实验中未产生抗药性突变株 质粒DNA 对照组 无菌落长出 无菌落长出 pBR322质粒DNA 溶液不含杂菌 转化实验组有大量菌落长出有菌落长出pBR322质粒进入受体细胞使其产生抗药性所以,转化实验组在含抗菌素培养基平皿中长出的菌落即为转化体,根据此皿中菌落数则可计算出转化体总数和转化率,计算公式如下:接种菌液体积转化反应原液总体积稀释倍数菌落数转化体总数⨯⨯=%100⨯=)质量(加入质粒转化体总数转化率g DNA μ再根据受体菌对照组不含抗菌素平皿中检出的菌落数,则可求出转化反应液内受体菌总数,进一步可计算出本实验条件下,由多少个受体菌可获得一个转化体。
五、注意事项(1)本实验涉及溶液的移取、分装等需敞开实验器皿的操作,均应在无菌超净台中进行,以防污染。
(2)衡量受体菌生长情况的A 600nm 和细胞数之间的关系随菌株的不同而不同,因此,不同菌株的合适A 600nm 是不同的。
(3)转化菌不宜培养时间过长,使其菌落过多而重叠,妨碍计数和单菌落的挑选。
六、思考题1. 如果一次实验的转化率偏低,应从哪些方面去分析原因2. 制备感受态细胞的基本原理是什么3. 如果在对照组不该长出菌落的平皿中长出了一些菌落,你该怎样分析你的实验结果,并进行下面的实验实验2 PCR 扩增基因特异片段一、实验目的1. 学习PCR 体外扩增的原理及其引物设计原则;2. 了解扩增过程中各因素对扩增结果的影响;3. 掌握PCR 的基本操作 二、实验原理PCR(polymerase chain reaction)是在体外进行的由引物介导的酶促DNA 扩增反应。
在分子生物学研究中,广泛地应用于研究基因突变,获取加上酶切位点的目的基因和DNA 序列测定等方面,是分子生物学中一项极为常用的技术。
PCR 的原理是在模板DNA 、引物和4种脱氧核糖核苷酸(dNTP)存在的条件下,依赖于DNA 聚合酶的体外酶促合成反应。
两个引物分别位于靶序列的两端,同两条模板的3'端互补,由此限定扩增片段。
PCR 反应由一系列的变性—退火—延伸反复循环构成,即在高温下模板双链DNA 变性解链,然后在较低的温度下同过量的引物退火,再在适中的温度下由DNA 聚合酶催化进行延伸。
由于每一循环的产物都可作为下一循环反应的模板,因此扩增产物的量以指数级方式增加。
理论上,经过N 次循环可使特定片段扩增到2n -1,考虑到扩增效率不可能达到100%,实际上要少些,通常经25~30次循环可扩增106倍,这个量足够分子生物学研究的一般要求。
(一)PCR 引物设计1. Tm 值 Tm 值是PCR 引物设计中的一个重要参数,是指引物与模板之间精确互补并且在模板过量的情况下有50%的引物与模板配对,而另外50%的引物处于解离状态时的温度,Tm值一般高于55℃。
合适的引物选择应需考虑到以下因素,如Taq酶的最适温度(TE)和Tm值等。
最常用的Taq酶的最适温度(TE )范围为70~74℃,根据TE可以先确定一个合适的退火温度范围(Ta)。