沉淀滴定法.

沉淀滴定法.
沉淀滴定法.

第五节沉淀滴定法

教学目的:

1、掌握沉淀滴定法对反应的要求。

2、掌握银量法确定理论终点的方法原理。

3、明确分级沉淀及沉淀转化的概念。

4、理解测定氯化物的条件。

教学重点与难点:莫尔法(铬酸钾作指示剂)作为教学重点。

教学内容:

一、方法简介

沉淀滴定法(precipitation titration):也称容量分析法(volumetric precipitation method),以沉淀反应为基础的滴定分析方法。

用作沉淀滴定的沉淀反应必须满足以下条件:

(1)反应速度快,生成沉淀的溶解度小;

(2)反应按一定的化学式定量进行;

(3)有准确确定理论终点的方法。

应用范围:含量在1%以上的卤素化合物和硫氰化物的测定。

解释:沉淀反应很多,但能用于沉淀滴定的沉淀反应并不多,因为很多沉淀的组成不恒定,或溶解度较大,或形成过饱和溶液,或达到平衡速度慢,或共沉淀现象严重等。目前比较有实际意义的是生成微溶性银盐的沉淀反应。

Ag++ Cl- = AgCl↓

Ag++ SCN- =AgSCN↓

以这类反应为基础的沉淀滴定法称为银量法。主要测定Cl-、Br-、I-、Ag+及SCN-等。

如有一些沉淀HgS、PbSO4、BaSO4等也可用于沉淀滴定法,但重要性不及银量法。

二、银量法确定理论终点的方法

莫尔法

银量法佛尔哈德法

法杨司法

1、莫尔法

什么是莫尔法?以铬酸钾作指示剂的银量法称为“莫尔法”。

以铬酸钾为指示剂,在中性或弱碱性介质中,用硝酸银标准溶液测定卤素化合物含量。

(1)指示剂作用原理:

Ag+ + Cl- AgCl↓白Ksp(AgCl)= 1.8 ×10-9

Ag+ + CrO42-Ag2CrO4↓橙色Ksp(Ag2CrO4)= 2 ×10-12

因为AgCl和Ag2CrO4的溶度积不同,因而发生分级沉淀,当AgCl沉淀完全后,稍过量的AgNO3标准溶液与K2CrO4指示剂反应生成Ag2CrO4↓砖红色(量少时为橙色)。

平衡时,[Ag+]·[Cl-] = Ksp AgCl

设溶液中[Cl-] = [CrO4]2-= 0.1mol/L

Ksp AgCl 1.8 ×10-10

[Ag+]AgCl = = = 1.8×10-9(mol/L)

[Cl-] 0.1

Ksp(Ag2CrO4) 2 ×10-12

= = = 4.5×10-6(mol/L)[Ag+]Ag

2CrO4

[CrO42-] 0.1

由此可见:[Ag+][Cl-]首先大于Ksp AgCl,则AgCl开始沉淀。

[Cl-]消耗完之后,AgNO3和CrO42-生成Ag2CrO4沉淀。

(2)铬酸钾指示剂的适合用量的计算

根据溶度积原理:

Ag++ Cl- = AgCl K SP = 1.8×10-10

Ksp AgCl = [Ag+]·[Cl-]

沉淀平衡时:[Ag+] [Cl-] = Ksp AgCl = 1.8×10-10

[Ag+] = 1.34 ×10-5mol/L

到达理论终点时:2Ag++ CrO4- === Ag2CrO4↓砖红色Ksp = 2×10-12 [Ag+]2[CrO4-] ≥Ksp(Ag2CrO4)开始沉淀Ag2CrO4

Ksp(Ag2CrO4)2×10-12

[CrO4-] ≥= = 1.1×10-2mol/L

[Ag+]2 1.8×10-10

实际工作中:最适宜的用量是5%K2CrO4溶液,每次加1~2ml(约0.3mol/L)。(3)溶液的酸度:

Ag2CrO4易溶于酸:Ag2CrO4+ H+=== 2Ag++ HCrO4-

所以滴定不能在酸性条件下进行。

碱性太强时:2Ag+ + 2OH-2AgOH↓

Ag2O + H2O

通常莫尔法测Cl-的最适宜pH = 6.5 ~ 10.5

当有铵离子时Cl-的最适宜pH = 6.5 ~ 7.2

调节方式:碱性强时:用HNO3调节

酸性强时:NaHCO3或NaB4O7调节。

注意:[Ag(NH4)2]+影响滴定。

2、佛尔哈德法

佛尔哈德法:用铁铵矾作指示剂的银量法称为“佛尔哈德法”。

铁铵矾指示剂组成为NH4Fe(SO4)2。

(1)直接滴定法测定Ag+

在含有Ag+的酸性溶液中,以铁铵矾作指示剂用NH4SCN的标准溶液滴定。

Ag + SCN- === AgSCN↓(白色)Ksp = 1.2×10-12

Fe3+ + SCN- === [Fe(SCN)]2+(红色)Ksp= 138

其中过量(终点)1滴NH4SCN溶液与Fe3+生成红色络合物,即为终点。

(2)返滴定法测定卤素原子

测定Cl-,首先向试液中加入已知量过量的AgNO3标准溶液,然后以铁铵矾作指示剂,用NH4SCN标准溶液滴定过量的Ag+。

Ag++ Cl- === AgCl↓白

Ag+(过)+ SCN- === AgSCN↓白

终点时:Fe3++ SCN === [Fe(SCN)]2+ 红色,量少时橙色。

注意:到达理论变色点时,溶液呈橙色,如用力摇动沉淀,则橙色又消失,再加入NH4SCN标准溶液时,橙色又出现。如此反复进行给测定结果造成极大误差。

现象的解释:沉淀转化作用。

Ag++ Cl- = AgCl↓Ksp = 1.8×10-10

Ag++ SCN- = AgSCN↓Ksp = 1.2×10-12

Ksp AgSCN << Ksp AgCl

说明AgCl的溶解度比AgSCN大,因此过量的SCN-将与AgCl发生反应,使AgCl沉淀转化为溶解度更小的AgSCN↓

AgCl↓+ SCN- === AgSCN↓+ Cl-

沉淀的转化作用是慢慢进行的,使[Fe(SCN)]2+的络合平衡被破坏。

AgCl === Cl-+ Ag+

[Fe(SCN)]2+ === Fe3++ SCN-

橙‖

AgSCN↓(白色)

直到被转化出来的[Cl-]为[SCN-]浓度的180倍,转化作用才停止。

上述现象在实验中应避免。

为避免上述现象的发生,在AgCl沉淀完全后,加入NH4SCN标准溶液之前,加入1~2ml,1,2—二氯乙烷有机溶剂,使AgCl沉淀进入1,2—二氯乙烷液层中不与SCN-接触。

做法:充分摇动AgCl沉淀,使AgCl沉淀的表面上覆盖上一层有机溶剂,避

Cl - 免和阻止NH 4SCN 与AgCl 发生转化反应。

实际应用中测定Br -,I -时

∵ Ksp AgI = 8.3×10-17 < Ksp AgBr = 5.2 ×10-13 < Ksp AgSCN =1.2×10-12 ∴ 不会发生沉淀转化。

该法的优点:在酸性溶液中测定,可以避免一些离子干扰。

3、法扬司法

法扬司法:用吸附指示剂指示滴定终点的银量法称“法杨司法”。

什么是吸附指示剂:一类有机染料,在溶液中能被胶体沉淀表面吸附,发生结构的改变,从而引起颜色的变化。

例:用AgNO 3标准溶液测定Cl -生成AgCl ↓,指示剂荧光黄为吸附指示剂。 首先:Ag + + Cl - AgCl ↓

①理论终点前:

Cl Cl -

Cl - Cl -

Cl - Cl -

此时,AgCl 胶粒沉淀的表面吸附未被滴定的Cl -,带有负电荷({(AgCl)m}Cl - ),荧光黄的阴离子Fl -受排斥而不被吸附。溶液呈现荧光黄阴离子的黄绿色。

②理论终点后:Ag +过量,AgCl 胶体沉淀表面吸附Ag +,带正电荷,荧光黄的阴离子Fl -被带正电荷胶体吸引,呈现粉红色。

-

-

Fl - Fl -

-

吸附

此时:{(AgCl)n}·Ag++ Fl- ==== {(AgCl)n}Ag·Fl

粉红色

滴定过程中溶液由黄绿色变为粉红色,指示滴定终点的到达。

注意事项:

①吸附指示剂颜色的变化发生在胶体表面,因此应尽量使胶体沉淀的表面积大一些防止沉淀凝聚。

②必须控制酸度,以使吸附指示剂离解出更多的阴离子。

③滴定过程中应尽量避光,否则AgCl分解出金属银黑色沉淀。

教学总结:

莫尔法→分级沉淀→K2CrO4

沉淀滴定法银量法佛尔哈德法→沉淀转化作用→NH4Fe(SO4)2

法扬司法→吸附指示剂→荧光黄

讲课后评:溶度积的概念要复习,尤其是在讲解分步沉淀需要讲解;莫尔法作重点讲解时,需要突出分步沉淀的内容,要理论联系实际。

高密度沉淀池工作原理及优缺点

高密度沉淀池工作原理及优缺点 石英砂,纤维球高密度沉淀池属于水处理领域中最先进的技术一族。高密度沉淀池是沉淀技术进化和发展的最新阶段,在水处理技术中,属于三代沉淀池中最新的一代。二十世纪二三是年代采用的是第一代沉淀技术——“静态车垫”;五十年代开发了称为“污泥接触层”的第二代沉淀池并投入使用;八十年代被称为“污泥循环型”的第三代沉底池登上了历史舞台,以密度沉淀池为代表。 石英砂,纤维球高密度沉淀池的原理 用沉淀筒实验说明,在充满悬浮物的量筒内进行沉淀观察,上端为自由沉淀,特点是悬浮物浓度低,颗粒小,沉降速度慢;下端主要是集团沉淀,特点是悬浮物凝聚,颗粒大,沉降速度快。所以要提高沉降速度,要求将悬浮物凝聚成大颗粒。 石英砂,纤维球优点: 高密度沉淀池自20世纪90年代中期从欧洲引入国内。其特点是集良好的机械混合、絮凝、澄清和高效混合于一体,分离效率高、陪你水量低、占地面积小,出水浊度低。 石英砂,纤维球特点: 最佳的絮凝性能,矾花密集、结实。在装置中回流一部分沉淀污泥至絮凝段,利用回流污泥与金水混合,使金水中的脱稳微粒与活性泥渣充分接触,再加上高分子助凝剂的吸附架桥作用,有利于使水中的脱稳微粒形成大颗粒絮凝,提高絮凝沉淀效果。 石英砂,纤维球回流污泥中的混凝剂、助凝剂在絮凝池中得到充分利用,节约混凝剂及助凝剂的投加量。沉淀池采用斜管沉淀,可达到泥水快速分离的目的,水力停留时间明显减少,使沉淀池的占地面积明显减少,节约工程费,经初步工程方案比较,相对于平流沉淀池,高效沉淀池可降低工程造价约20%。斜板分离,水力配水设计周密,原水在整个溶气内被均匀分配。提高的上升流速,上升速度在15~35m/h之间。外部污泥循环,污泥从浓缩区到反应池。集中污泥浓缩。高密度沉淀池排泥浓度较高高你读沉底池具有以下优点:优质的出水;除去剩余的矾花;适用于多类型的原水;由于循环使污泥和水之间的接触时间较长,从而使耗药量低于其他的沉淀装置,在特点条件下达30%;节约用地,高密度沉淀池的沉淀速度较高,它是世界上结构最紧凑的沉淀池,结构紧凑减少了土建造价,并且解药安装用地无以下负作用:原水水质变化,药处理率调节不好,关机后再启动流量变化;由于污泥循环,反应

沉淀滴定法.

第五节沉淀滴定法 教学目的: 1、掌握沉淀滴定法对反应的要求。 2、掌握银量法确定理论终点的方法原理。 3、明确分级沉淀及沉淀转化的概念。 4、理解测定氯化物的条件。 教学重点与难点:莫尔法(铬酸钾作指示剂)作为教学重点。 教学内容: 一、方法简介 沉淀滴定法(precipitation titration):也称容量分析法(volumetric precipitation method),以沉淀反应为基础的滴定分析方法。 用作沉淀滴定的沉淀反应必须满足以下条件: (1)反应速度快,生成沉淀的溶解度小; (2)反应按一定的化学式定量进行; (3)有准确确定理论终点的方法。 应用范围:含量在1%以上的卤素化合物和硫氰化物的测定。 解释:沉淀反应很多,但能用于沉淀滴定的沉淀反应并不多,因为很多沉淀的组成不恒定,或溶解度较大,或形成过饱和溶液,或达到平衡速度慢,或共沉淀现象严重等。目前比较有实际意义的是生成微溶性银盐的沉淀反应。 Ag++ Cl- = AgCl↓ Ag++ SCN- =AgSCN↓ 以这类反应为基础的沉淀滴定法称为银量法。主要测定Cl-、Br-、I-、Ag+及SCN-等。 如有一些沉淀HgS、PbSO4、BaSO4等也可用于沉淀滴定法,但重要性不及银量法。

二、银量法确定理论终点的方法 莫尔法 银量法佛尔哈德法 法杨司法 1、莫尔法 什么是莫尔法?以铬酸钾作指示剂的银量法称为“莫尔法”。 以铬酸钾为指示剂,在中性或弱碱性介质中,用硝酸银标准溶液测定卤素化合物含量。 (1)指示剂作用原理: Ag+ + Cl- AgCl↓白Ksp(AgCl)= 1.8 ×10-9 Ag+ + CrO42-Ag2CrO4↓橙色Ksp(Ag2CrO4)= 2 ×10-12 因为AgCl和Ag2CrO4的溶度积不同,因而发生分级沉淀,当AgCl沉淀完全后,稍过量的AgNO3标准溶液与K2CrO4指示剂反应生成Ag2CrO4↓砖红色(量少时为橙色)。 平衡时,[Ag+]·[Cl-] = Ksp AgCl 设溶液中[Cl-] = [CrO4]2-= 0.1mol/L Ksp AgCl 1.8 ×10-10 [Ag+]AgCl = = = 1.8×10-9(mol/L) [Cl-] 0.1 Ksp(Ag2CrO4) 2 ×10-12 = = = 4.5×10-6(mol/L)[Ag+]Ag 2CrO4 [CrO42-] 0.1 由此可见:[Ag+][Cl-]首先大于Ksp AgCl,则AgCl开始沉淀。 [Cl-]消耗完之后,AgNO3和CrO42-生成Ag2CrO4沉淀。 (2)铬酸钾指示剂的适合用量的计算 根据溶度积原理: Ag++ Cl- = AgCl K SP = 1.8×10-10

沉淀滴定法的原理

沉淀滴定法的原理 沉淀滴定法是以沉淀反应为基础的滴定分析方法,能用于沉淀滴定法的沉淀反应必须符合下列条件: (1)反应必须按一定的化学式定量进行,生成沉淀的溶解度要小。 (2)沉淀反应的速度要快。 (3)能够用适当的指示剂或其它方法确定滴定的理论终点。 (4)沉淀的共沉淀现象不影响滴定结果。 沉淀的反应虽然很多,但由于上述条件的限制,能够应用于滴定分析法的沉淀反应并不多。常用的沉淀法有生成难溶盐的银量法,例如 Ag + + Cl - =AgCl ↓ 白色 2Ag + + CrO 42- = Ag 2Cr 2O 4↓ 红色 当在含Cl -的水溶液中,预先加入CrO 4-,再加入硝酸银时,由于AgCl 的 溶解度比Ag 2Cr 2O 4小,所以先生成白色AgCl 沉淀,理论终点后,过量的银 离子就与铬酸根离子生成了红色的铬酸银沉淀,因此我们以溶液中出现红色为滴定终点,根据消耗酸银标准溶液的量计算溶液中氯离子的含量。 本方法适用于测定氯化物含量为5~100mg/L 水样,并要求测定条件为中性溶液,因为酸性溶液中,红色的铬酸银溶解,在碱性溶液中会生成Ag 2O 沉淀。 二、试剂 (1)氯化钠标准溶液(1ml 含1mgCl -)。取基准试剂或优级纯的氯化钠3~4g 置于瓷坩埚内,于高温炉内升温至500℃灼烧10min ,然后在干燥器内冷却至室温,准确称取1.649g 氯化钠,先用少量蒸馏水溶解再稀释至1000mL 。 (2)硝酸银标准溶液(1mL 相当于1mgCl -)。称取5.0g 硝酸银溶于1000mL 蒸馏水中,以氯化钠标准溶液标定,标定方法如下: 于三个锥形瓶中,用移液管分别注入10mL 氯化钠标准溶液,再加入90mL 蒸馏水及1ml 的ρ=100g/L 铬酸钾指示剂,均以硝酸银溶液滴定至橙色(AgCl 的白色与Ag 2Cr 2O 4的红色的混合色)为终点,分别记录消耗硝酸银 溶液的体积,计算其平均值。三个标样平行试验的相对偏差小于0.25%。 另取100mL 蒸馏水,不加氯化钠标准溶液,作空白试验,记录消耗硝酸银标准溶液体积b 。 硝酸银溶液的滴定度T (mg/mL )按下式计算 b c T -?=0.110 式中 b -空白消耗硝酸银标准溶液的体积,mL ; c -氯化钠标准溶液消耗硝酸银标准溶液的体积,mL ; 10-氯化钠标准溶液的体积,mL ; 1 -氯化钠标准溶液的浓度,mg/mL 。 最后按下述方法调整硝酸银的滴定度,使其滴定度为1mL 相当于1mgCl -的标准溶液。 调整方法: 1)T >1,每1000mLAgNO 3溶液应加x 毫升蒸馏水稀释 x=1000(T-1)

《分析化学》第七章沉淀滴定法2

广东省高级技工学校文化理论课教案(首页)(代号A——3)

【组织教学】 1、师生互致问候语 2、考勤、组织教学。 【导入】 用于沉淀滴定法的沉淀反应必须符合下列几个条件: 1. 生成的沉淀应具有恒定的组成,而且溶解度必须很小; 2. 沉淀反应必须迅速、定量地进行; 3. 能够用适当地指示剂或其他方法确定滴定地终点。 其中,银量法应用较为广泛,根据滴定方式、滴定条件和选用指示剂的不同,将银量法分为莫尔法、佛尔哈德法及发扬司法,本次课程主要学习这三类方法,并通过习题巩固本章知识点。 【课堂教学】 沉淀滴定法 摩尔法(Mohr )-用铬酸钾作指示剂 AgNO 3滴定NaCl 1.原理:Ag + + Cl - = AgCl (白色) — 滴定反应 Ag + + CrO 42- = Ag 2CrO 4(砖红色 ) — 指示剂反应 计量点时:[][] 4.710sp Ag Cl K +--==== 10-5mol/L 2.指示剂浓度:K 2CrO 4的最佳浓度为 10-3mol/L3. pH :最宜范围为(中性或弱碱性). 4.适用范围:直接滴定Cl -、Br -。 5.干扰:凡能与CrO 42-或 Ag +生成沉淀的离子都干扰测定。如:Ba 2+、Pb 2+、Hg 2+以及PO 43-、AsO 43-、S 2-、C 2O 42-等。

佛尔哈德法(Volhard)-铁铵矾(NH4Fe(SO4)2)作指示剂1.直接滴定法-在硝酸介质中,用NH4SCN标准溶液滴定Ag+。(1)原理:Ag+ + SCN-= AgSCN(白)滴定反应 Fe3+ + SCN-= FeSCN2+(红)指示剂反应 (2)溶液酸度控制在L之间 (3)Fe3+浓度一般控制在mol/L 2.返滴定法-测定鹵素离子(1)优点:选择性高。 (2)缺点:终点时,过量的SCN-易使下列反应发生: AgCl + SCN-=AgSCN+ Cl– 所以,溶液出现的红色不稳定,随着不断地摇动溶液,红色又逐渐消失,得不到正确的终点。 解决措施:分离AgCl沉淀 b.用有机溶剂将AgCl沉淀表面覆盖,使其不与溶液接触。 C.提高Fe3+的浓度以减小终点时SCN-的浓度,从而减小滴定误差。 法扬司法(Fajans)-吸附指示剂吸附指示剂是一类有机燃料,当它被吸附在胶粒表面之后,可能是由于形成某种化合物而导致指示剂分子结构的变化,因而引起颜色的变化。 AgNO3滴定Cl-,用荧光黄作指示剂。HFI=H++FI- AgCl Ag++FI-(黄绿色)=AgCl Ag+FI-(淡红色) 注意: (1)应尽量使沉淀的比表面大一些。 (2)被滴定离子的浓度不能太低 (3)避免在强的阳光下进行滴定。

高效沉淀池

高效沉淀池工艺 工艺概述: 高效沉淀池工艺是依托污泥混凝、循环、斜管分离及浓缩 等多种理论,通过合理的水力和结构设计,开发出的集泥 水分离与污泥浓缩功能于一体的新一代沉淀工艺。该工艺 特殊的反应区和澄清区设计,尤其适用于中水回用和各类 废水高标准排放领域。 工艺原理: 高效沉淀池由反应区和澄清区两部分组成。反应区包括混合反应区和推流反应区;澄清 区包括入口预沉区、斜管沉淀区及浓缩区。 在混合反应区内,靠搅拌器的提升混合作用完成泥 渣、药剂、原水的快速凝聚反应,然后经叶轮提升至推 流反应区进行慢速絮凝反应,以结成较大的絮凝体。整 个反应区(混合和推流反应区)可获得大量高密度均质 的矾花,这种高密度的矾花使得污泥在沉淀区的沉降速 度较快,而不影响出水水质。 高效沉淀池工艺结构图在澄清区,矾花慢速地从预沉区进入到沉淀区 使大部分矾花在预沉区沉淀,剩余矾花进入斜管沉 淀区完成剩余矾花沉淀过程。矾花在沉淀区下部累 积成污泥并浓缩,浓缩区分为两层,一层位于排泥 斗上部,经泵提升至反应池进水端以循环利用;一 层位于排泥斗下部,由泵排出进入污泥处理系统。 澄清水通过集水槽收集进入后续处理构筑物。 优点: ●絮凝体循环使用提高了絮凝剂的使用效果,节约10%至30%的药剂; ●斜管的布置提升了沉淀效果,具有较高的沉淀速度,可达20 m/h-40m/h; ●排放的污泥浓度高:可达30-550克/升。一体化污泥浓缩避免了后续的浓缩工艺,产生 的污泥可以直接进行脱水处理。

处理效率高,单位面积产水量大,占地面积小,土建投资低,尤其适用于改扩建工程;▲应用领域: ◎饮用水:地表水的澄清和(或)软化; ◎工业自来水:工业自来水的制备; ◎城镇污水:初级沉淀和(或)深度除磷; ◎雨水处理:雨水收集处理后回用; ▲配套设备 1、反应区设备 高效沉淀池反应区设备由导流筒及提升式混合搅拌机组成。 结构说明: 导流筒由圆筒体、锥体及稳流栅组成。稳流栅的作用是消除上升流体的旋涡。 提升式混合搅拌机主要由减速机、立轴、搅拌桨叶(轴流式)及电控箱组成。减速机采用搅拌专用减速机,能同时承受弯矩和扭矩作用;立轴采用管轴结构,具有足够的刚度和强度;搅拌桨叶采用轴流提升设计,具有低扬程,大流量的特性;电控箱内设变频装置,可通过调节搅拌机的转速,实现最佳的搅拌、混合效果。 主要特点: ①特殊的轴流叶轮设计,提供大循环流量。 ②变频调速,适应性强。 ③搅拌专用减速机结构简单。 ④叶轮与导流筒间隙的合理设计,极大的提高了原水、絮凝剂和回流污泥的混合。 ⑤稳流栅内外双层的特殊设计,完全达到消除漩涡的目的。 2、澄清区设备 高效沉淀池澄清区设备主要由中心传动浓缩刮泥机、出水槽、斜管及支撑板组成。

沉淀滴定法

沉淀滴定法—银量法 一、定义 以硝酸银液为滴定液,测定能与Ag+反应生成难溶性沉淀的一种容量分析法。 二、原理 以硝酸银液为滴定液,测定能与Ag+生成沉淀的物质,根据消耗滴定液的浓度和毫升数,可计算出被测物质的含量。 反应式: Ag++ X-→ AgX↓ X-表示Cl-、Br-、I-、CN-、SCN-等离子。 三、指示终点的方法 (一)铬酸钾指示剂法 1.原理 用AgNO3滴定液滴定氯化物、溴化物时采用铬酸钾作指示剂的滴定方法。滴定反应为:终点前 Ag++ Cl-→ AgCl↓ 终点时 2Ag++ CrO42-→ Ag2CrO4↓(砖红色) 根据分步沉淀的原理,溶度积(K sp)小的先沉淀,溶度积大的后沉淀。由于AgCl的溶解度小于Ag2CrO4的溶解度,当Ag+进入浓度较大的Cl-溶液中时,AgCl将首先生成沉淀,而[Ag+]2[CrO42-]<K sp,Ag2CrO4不能形成沉淀;随着滴定的进行,Cl-浓度不断降低,Ag+浓度不断增大,在等当点后发生突变,[Ag+]2[CrO42-]>K sp,于是出现砖红色沉淀,指示滴定终点的到达。 2.滴定条件 (1)终点到达的迟早与溶液中指示剂的浓度有关。为达到终点恰好与等当点一致的目的,必须控制溶液中CrO42-的浓度。每50~100ml滴定溶液中加入5%(W/V)K2CrO4溶液1ml 就可以了。 (2)用K2CrO4作指示剂,滴定不能在酸性溶液中进行,因指示剂K2CrO4是弱酸盐,在酸性溶液中CrO42-依下列反应与H+离子结合,使CrO42-浓度降低过多,在等当点不能形成Ag2CrO4沉淀。 2CrO42-+ 2H+→←2HCrO4-→←Cr2O72-+ H2O 也不能在碱性溶液中进行,因为Ag+将形成Ag2O沉淀: Ag++ OH-→ AgOH 2AgOH → Ag2O↓+ H2O 因此,用铬酸钾指示剂法,滴定只能在近中性或弱碱性溶液(pH6.5~10.5)中进行。如果溶液的酸性较强可用硼砂、NaHCO3或CaCO3中和,或改用硫酸铁铵指示剂法。 滴定不能在氨性溶液中进行,因AgCl和Ag2CrO4皆可生成[Ag(NH3)2]+而溶解。 3.主要应用

沉淀滴定法和滴定分析小结

沉淀滴定法和滴定分析小结 思考题 8-1 用银量法测定下列试样中的Cl-时,选用什么指示剂指示滴定终点比较合适? a. CaCl2 b. BaCl2 c. FeC12 d. NaCl+Na3PO4 e. NH4Cl f. NaCl+Na2SO4 g. Pb(NO3)2+NaCl h. CuCl2 答:a. 三种方法均可。 b. 由于Ba2+与Cr2O42-生成沉淀,干扰滴定,所以采用莫尔法时,应先加入过量的Na2SO4。也可采用佛尔哈德法和法扬司法。 c. 吸附指示剂。 d. 铁铵矾指示剂。 e. 铁铵矾指示剂,采用莫尔法须控制pH6.5~7.2 。 f. 铬酸钾指示剂。 g. 铁铵矾指示剂或吸附指示剂。 h. 吸附指示剂。 8-3 在下列各种情况下,分析结果是准确的,还是偏低或偏高,为什么? a. pH≈4时用莫尔法滴定Cl-; 答:结果偏高。因为pH≈4时,CrO42-的酸效应较大,溶液中CrO42-浓度减小,指示终点的AgCrO4沉淀出现过迟。 b. 如果试液中含有铵盐,在pH≈10时,用莫尔法滴定Cl-; 答:结果偏高。因为在pH≈10时,溶液中NH3型体的浓度较高,形成Ag-NH3络合物,需加入过量的Ag+才能出现终点,故结果偏高。 c. 用法扬司法滴定Cl-时,用曙红作指示剂; 答:结果偏低。因为AgCl对曙红的吸附能力大于待测Cl-, 所以在化学计量点前,就有一部分指示剂阴离子取代Cl-进入到吸附层,使终点提前。 d. 用佛尔哈德法测定Cl-时,未将沉淀过滤也未加1,2一二氯乙烷; 答:结果偏低。因为用佛尔哈德法测定Cl-时,若未将沉淀过滤也未加1,2一二氯乙烷,那么AgCl沉淀将发生转化,成为AgSCN,消耗过多滴定剂SCN-,由于是返滴定,故结果偏低。 e. 用佛尔哈德法测定I-时,先加铁铵钒指示剂,然后加入过量AgNO3标准溶液。 答:结果偏低。这是由于Fe3+将氧化I-为I2,消耗了部分I-,使测得的结果偏低。

沉淀池设计计算设计参数

平流式沉淀池的基本要求有哪些 平流式沉淀池表面形状一般为长方形,水流在进水区经过消能和整流进入沉淀区后,缓慢水平流动,水中可沉悬浮物逐渐沉向池底,沉淀区出水溢过堰口,通过出水槽排出池外。平流式沉 淀池基本要求如下: (1)平流式沉淀池的长度多为30~50m,池宽多为5~10m,沉淀区有效水深一般不超过3m,多为2.5~3.0m。为保证水流在池内的均匀分布,一般长宽比不小于4:1,长深比为8~12。 (2)采用机械刮泥时,在沉淀池的进水端设有污泥斗,池底的纵向污泥斗坡度不能小于0.01,一般为0.01~0.02。刮泥机的行进速度不能大于1.2m/min,一般为0.6~0.9m /min。 (3)平流式沉淀池作为初沉池时,表面负荷为1~3m3/(m·h),最大水平流速为7mm/s;作为二沉池时,最大水平流速为5mm/s。 (4)人口要有整流措施,常用的人流方式有溢流堰一穿孔整流墙(板)式、底孑L人流一挡板组合式、淹没孔人流一挡板组合式和淹没孔人流一穿孔整流墙(板)组合式等四种。使用穿孔整流墙(板)式时,整流墙上的开孔总面积为过水断面的6%~20%,孔口处流速为0.15~0.2m/s,孔口应当做成渐扩形状。 (5)在进出口处均应设置挡板,高出水面0.1~0.15m。进口处挡板淹没深度不应小于0.25m,一般为0.5~1.0m;出口处挡板淹没深度一般为0.3~0.4m。进口处挡板距进水口0.5~1.0m,出口处挡板距出水堰板0.25~0.5m。 (6)平流式沉淀池容积较小时,可使用穿孔管排泥。穿孔管大多布置在集泥斗内,也可布置在水平池底上。沉淀池采用多斗排泥时,泥斗平面呈方形或近于方形的矩形,排数一般不能超过两排。大型平流式沉淀池一般都设置刮泥机,将池底污泥从出水端刮向进水端的污泥斗,同时将浮渣刮向出水端的集渣槽。 (7)平流式沉淀池非机械排泥时缓冲层高度为0.5m,使用机械排泥时缓冲层上缘宜高出刮泥板0.3m。 例:某城市污水处理厂的最大设计流量Q=0.2m3/s,设计人数N=10万人,沉淀时间t=1.5h。采用链带式机刮泥,求平流式沉淀池各部分尺寸。 1.池子的总表面积 设表面负荷q'=2m3/m2.h A=Q*3600/q=360m2 2.沉淀部分有效水深h2=q't=2*1.5= 3.0m 3.沉淀部分有效容积V=Qt*3600=1080m3 4.池长设水平流速u=3.7mm/s L=3.7*1.5*3600/1000=20m 5.池子总宽度B=A/L=360/20=18m 6.池子个数,设每格池宽b=4.5m,n=B/b=18/4.5=4个 7.校核长宽比,长深比长宽比:L/B=20/4.5=4.4>4 (符合要求) 长深比:L/h2=20/2.4=8.3 (符合要求) 8.污泥部分所需的总容积

第五章 重量滴定法和沉淀滴定法

第五章重量滴定法和沉淀滴定法 一、填空题 1.沉淀滴定法中摩尔法的指示剂是_; 2.沉淀滴定法中摩尔法滴定酸度pH是; 3.沉淀滴定法中铵盐存在时摩尔法滴定酸度pH是; 4.沉淀滴定法中佛尔哈德法的指示剂是; 5.沉淀滴定法中佛尔哈德法的滴定剂是__ ___; 6.沉淀滴定法中,法扬司法指示剂的名称是 __ ____; 7.沉淀滴定法中,摩尔法测定Cl - 的终点颜色变化是____; 8.重量分析法中,一般同离子效应将使沉淀溶解度_ __ _ 9.重量分析法中,沉淀阴离子的酸效应将使溶解度; 10.重量分析法中,络合效应将使沉淀溶解度_ ____; 11.重量分析法中,晶形沉淀的颗粒愈大,沉淀溶解度___ ___; 12.重量分析法中,无定形沉淀颗粒较晶形沉淀____ ___; 13.重量分析法中,溶液过饱和度愈大,分散度___ _____; 14.重量分析法中,溶液过饱和度愈大,沉淀颗粒____ ____; 15. 用佛哈德法测定Br-和I-时,不需要过滤除去银盐沉淀,这是因为、的溶解度比的小,不会发生反应。 16. 佛尔哈德法的滴定终点理论上应在到达,但实际操作中常常在到达,这是因为AgSCN沉淀吸附离子之故。 17. 荧光黄指示剂的变色是因为它的负离子被吸附了的沉淀颗粒吸附而产生。 18. 佛尔哈德法中消除AgCl沉淀转化影响的方法有除去AgCl沉淀或加入包 围AgCl沉淀。 19. 用摩尔法只能测定和而不能测定和 ,这是由于。 20. 法扬斯法测定Cl-时,在荧光黄指示剂溶液中常加人淀粉,其目的是保护,减少,增加。 二、选择题 1.为下列各滴定反应选择合适的指示剂: A.K2CrO4B.荧光黄(pKa=7.0)C.二氯荧光黄(pKa=4.0) D.曙红(pKa=2.0)E.(NH4)2SO4·Fe2(SO4)3 (1).AgNO3在pH=7.0条件下滴定Cl-离子() (2).AgNO3在pH=2.0条件下滴定Cl-离子() (3).KSCN在酸性条件下滴定的Ag+浓度() (4).AgNO3滴定BaCl2溶液() (5).AgNO3滴定FeCl3溶液() (6).NaCl滴定AgNO3(pH=2.0)() 2.晶形沉淀的沉淀条件是( ) A. 浓、冷、慢、搅、陈; B. 稀、热、快、搅、陈; C. 稀、热、慢、搅、陈; D. 稀、冷、慢、搅、陈; 3..法扬司法中应用的指示剂其性质属于() A.配位B.沉淀C.酸碱D.吸附 4. 沉淀的类型与定向速度有关,定向速度的大小主要相关因素是( ) A. 离子大小; B. 物质的极性; C. 溶液浓度; D.相对过饱和度;

平流式沉淀池工作原理

平流式斜管沉淀池的工作原理 平流式沉淀池应用很广,特别是在采用地面水源的电厂中常被采用。 一、平流池的结构 平流式蜂窝斜管填料沉淀池为矩形水池,基本组成如图3-5所示。上部为沉淀区,下部为污泥区,池前部有进水区,池后部有出水区。添加混凝剂后的原水流入沉淀池,沿进水区整个截面均匀分配进入沉淀区,然后缓慢地流向出口区。水中的颗粒沉于池底,沉积的污泥连续或定期排出池外。 1.进水区 通过混凝处理后的水先进入沉淀池的进水区,进水区内设有配水渠和穿孔墙,如图3-6所示。配水渠墙上配水孔的作用是使进水均匀分布在整个池子的宽度上,穿孔墙的作用是让水均匀分布在整个池子的断面上。为了保证穿孔墙的均匀布水作用,穿孔墙的开孔率应为断面面积的6%-8%,孔径为125mm左右。配水孔沿水流方向做成喇叭状,孔口流速在0.2-0.3m/s以内,最上一排孔淹没在水面下12-15cm处,最下一排孔距污泥区以上0.3-0.5m处,以免将已沉降的污泥再冲起来。 2.沉淀区 沉淀区是沉淀池的核心,作用是完成固体颗粒与水的分离。在沉淀区固体颗粒以水平流速-v和沉降速度u的合成速度,一边向前行进一边向下沉降。 3.出水区 出水区的作用是均匀收集经斜管填料沉淀区沉降后的出水,使其进入出水渠后流出池外。为保证在整个沉淀池宽度上均匀集水和不让水流将已沉到池底的悬浮固体带出池外,必须合理设计出水渠的进水结构。图3-7给出三种结构。图3-7(a)为溢流堰式,这种形式结构简单,但堰顶必须水平才能保证出水均匀。图3-7(b)为锯齿三角堰式,为保证整个堰口的流量相等,锯齿堰应该用薄壁材料制作,堰顶要在同一个水平线上,图3-7(c)为淹没孔口式,在出水渠内墙上均匀布孔,保证每个小孔流量

分析化学第七章(重量分析法和沉淀滴定法)答案

重量分析法和沉淀滴定法 思考题 1.沉淀形式和称量形式有何区别?试举例说明之。 答:在重量分析法中,沉淀是经过烘干或灼烧后再称量的。沉淀形式是被测物与沉淀剂反应生成的沉淀物质,称量形式是沉淀经过烘干或灼烧后能够进行称量的物质。有些情况下,由于在烘干或灼烧过程中可能发生化学变化,使沉淀转化为另一物质。故沉淀形式和称量形式可以相同,也可以不相同。例如:BaSO 4 ,其沉淀形式和称 量形式相同,而在测定Mg2+时,沉淀形式是MgNH 4PO 4 ·6H 2 O,灼烧后所得的称量形式却 是Mg 2P 2 O 7 。 2.为了使沉淀定量完全,必须加人过量沉淀剂,为什么又不能过量太多? 答:在重量分析法中,为使沉淀完全,常加入过量的沉淀剂,这样可以利用共同离子效应来降低沉淀的溶解度。沉淀剂过量的程度,应根据沉淀剂的性质来确定。若沉淀剂不易挥发,应过量20%~50%;若沉淀剂易挥发,则可过量多些,甚至过量100%。但沉淀剂不能过量太多,否则可能发生盐效应、配位效应等,反而使沉淀的溶解度增大。 3.影响沉淀溶解度的因素有哪些?它们是怎样发生影响的?在分析工作中,对于复杂的情况,应如何考虑主要影响因素? 答:影响沉淀溶解度的因素有:共同离子效应,盐效应,酸效应,配位效应,温度,溶剂,沉淀颗粒大小和结构等。共同离子效应能够降低沉淀的溶解度;盐效应通过改变溶液的离子强度使沉淀的溶解度增加;酸效应是由于溶液中H+浓度的大小对弱酸、多元酸或难溶酸离解平衡的影响来影响沉淀的溶解度。若沉淀是强酸盐,如BaSO 4 , AgCl等,其溶解度受酸度影响不大,若沉淀是弱酸或多元酸盐[如CaC 2O 4 、Ca 3 (PO 4 ) 2 ] 或难溶酸(如硅酸、钨酸)以及与有机沉淀剂形成的沉淀,则酸效应就很显著。除沉淀是难溶酸外,其他沉淀的溶解度往往随着溶液酸度的增加而增加;配位效应是配位剂与生成沉淀的离子形成配合物,是沉淀的溶解度增大的现象。因为溶解是一吸热过程,所以绝大多数沉淀的溶解度岁温度的升高而增大。同一沉淀,在相同质量时,颗粒越小,沉淀结构越不稳定,其溶解度越大,反之亦反。综上所述,在进行沉淀反应时,对无配位反应的强酸盐沉淀,应主要考虑共同离子效应和盐效应;对弱酸盐或难溶酸盐,多数情况应主要考虑酸效应,在有配位反应,尤其在能形成较稳定的配合物,而沉淀的溶解度又不太大时,则应主要考虑配位效应。 4.共沉淀和后沉淀区别何在?它们是怎样发生的?对重量分析有什么不良影响?在分析化学中什么情况下需要利用共沉淀?

(完整版)高密度沉淀池的工作原理

高密度沉淀池的工作原理 更新时间:3-4 15:55 高密度沉淀池主要的技术是载体絮凝技术,这是一种快速沉淀技术,其特点是在混凝阶段投加高密度的不溶介质颗粒(如细砂),利用介质的重力沉降及载体的吸附作用加快絮体的“生长”及沉淀。 美国EPA对载体絮凝的定义是通过使用不断循环的介质颗粒和各种化学药剂强化絮体吸附从而改善水中悬浮物沉降性能的物化处理工艺。其工作原理是首先向水中投加混凝剂(如硫酸铁),使水中的悬浮物及胶体颗粒脱稳,然后投加高分子助凝剂和密度较大的载体颗粒,使脱稳后的杂质颗粒以载体为絮核,通过高分子链的架桥吸附作用以及微砂颗粒的沉积网捕作用,快速生成密度较大的矾花,从而大大缩短沉降时间,提高澄清池的处理能力,并有效应对高冲击负荷。 与传统絮凝工艺相比,该技术具有占地面积小、工程造价低、耐冲击负荷等优点。自20世纪90年代以来,西方国家已开发了多种成熟的应用技术,并成功用于全球100多个大型水厂。 高密度沉淀池的典型工艺 更新时间:3-4 16:04 高密度沉淀池的典型工艺有: 1 Acfiflo?工艺 Actiflo?工艺是由OTV—Kruger公司(威立雅水务集团的工程子公司)开发,自1991年开始在欧洲用于饮用水及污水处理,其特点是以45~150 m的细砂为载体强化混凝,并选用斜管沉淀池加快固液分离速度,表面负荷为80~120 m/h,最高可达200 m/h,是目前应用最为广泛的载体絮凝技术。 国内已有部分水厂引进了该技术,如2004年上海浦东威立雅自来水有限公司临江工程项目中即采用了Actiflo?快速沉淀工艺;北京市第九水厂针对原水低温、低浊、高藻的情况,在二期沉淀池改造工程中采用了Actiflo?高效沉淀池工艺。 2 DensaDeg?工艺 DensaDeg?高密度澄清池是由法国Degremont(得利满)公司开发,可用于饮用水澄清、三次除磷、强化初沉处理以及合流制污水溢流(CSO)和生活污水溢流(SSO)处理。该工艺现已在法国、德国、瑞士得到推广应用。 随着近年来国外各大水务公司进入中国市场,国内也有个别水厂利用该技术对现有工艺进行了扩建改造,如乌鲁木齐石墩子山水厂的扩建改造工程中即采用了该项技术。 ACTIFO?高速沉淀池工艺流程 更新时间:3-4 16:26 ACTIFO?高速沉淀池工艺流程简介:

辐流式沉淀池原理介绍

辐流式沉淀池原理介绍 辐流式沉淀池一般为直径较大(20~30m)的圆池,最大直径达100m。中心深度为2.5~5.0m,周边深度为1.5~3.0m。污水从池中心进入,由于直径比深度大得多,水流呈辐射状向四周周边流动,沉淀后污水往四周集水槽排出。由于是辐射状流动,水流过水断面逐渐增大,水流速度逐步减小。池中心处设中心管,污水从池底进入中心管,或用明槽自池的上部进入中心管,在中心管的周围常有穿孔障板围成的流入区,使污水能沿圆周方向均匀分布。为阻挡漂浮物质,出水槽堰口前端宜加设挡板及浮渣收集与排出装置。 流式沉淀池大多采用机械刮泥(尤其在池直径大于20m时,几乎都用机械刮泥),将全池的沉积污泥收集到中心泥斗,再借静压力或污泥泵排除。刮泥机一般是一种桁架结构,绕中心旋转,刮泥刀安装在桁架上,可中心驱动或周边驱动。此时,池底坡度为0.05,坡向中心泥斗,中心泥斗的坡度为0.12~0.16。除了常用的中心进水,周边出水的辐流池外,还有周边进水、中部出水和外周边进水、内周边出水的辐流池。 除了机械刮泥的辐流式沉淀池外,也可以将辐流沉淀池建成方形,污水沿中心管流入,池底设多个泥斗,使污泥自动滑进泥斗,形成斗式排泥。这种情况大多用于直径小于20m的小型池。 流式沉淀池的有效水深一般不大于4m,池直径(或正方形的一边)与有效水深之比不小于6,一般为6~10。采用机械刮泥时,沉

淀池的缓冲层上缘应高出刮泥板0.3m,刮泥机械活动桁架的转数为每小时2~3 次。 辐流式沉淀池的设计方法很多,国内目前多采用与平流沉淀池相似的方法,取池半径1/2处的水流断面作为沉淀池的设计断面。也有采用表面负荷进行计算的。对生活污水或与之相似的污水进行处理的表面负荷可采用2~3.6m3/(m2·h),沉淀时间为1.5~2.0h。

平流式沉淀池工作原理

平流式沉淀池应用很广,特别是在采用地面水源的电厂中常被采用。 一、平流池的结构 平流式蜂窝斜管填料沉淀池为矩形水池,基本组成如图3-5所示。上部为沉淀区,下部为污泥区,池前部有进水区,池后部有出水区。添加混凝剂后的原水流入沉淀池,沿进水区整个截面均匀分配进入沉淀区,然后缓慢地流向出口区。水中的颗粒沉于池底,沉积的污泥连续或定期排出池外。 1.进水区 通过混凝处理后的水先进入沉淀池的进水区,进水区内设有配水渠和穿孔墙,如图3-6所示。配水渠墙上配水孔的作用是使进水均匀分布在整个池子的宽度上,穿孔 墙的作用是让水均匀分布在整个池子的断面上。为了保证穿孔墙的均匀布水作用,穿孔墙的开孔率应为断面面积的6%-8%,孔径为125mm左右。配水孔沿水流方向做 成喇叭状,孔口流速在以内,最上一排孔淹没在水面下12-15cm处,最下一排孔距污泥区以上处,以免将已沉降的污泥再冲起来。 2.沉淀区 沉淀区是沉淀池的核心,作用是完成固体颗粒与水的分离。在沉淀区固体颗粒以水平流速-v和沉降速度u的合成速度,一边向前行进一边向下沉降。 3.出水区 出水区的作用是均匀收集经斜管填料沉淀区沉降后的出水,使其进入出水渠后流出池外。为保证在整个沉淀池宽度上均匀集水和不让水流将已沉到池底的悬浮固体带出池外,必须合理设计出水渠的进水结构。图3-7给出三种结构。图3-7(a)为溢流堰式,这种形式结构简单,但堰顶必须水平才能保证出水均匀。图3-7(b)为锯齿三角堰式,为保证整个堰口的流量相等,锯齿堰应该用薄壁材料制作,堰顶要在同一个水平线上,图3-7(c)为淹没孔口式,在出水渠内墙上均匀布孔,保证每个小孔流量相等。 4.存泥区和排泥措施 沉淀池排泥方式有静水压力斗形底排泥和机械排泥等。 ①静水压力法。利用池内的静水位,将污泥排出池外,见图3-8。排泥管1插入污 泥斗,上端伸出水面与大气相通。静水压力H(m)。为了使池底污泥能滑入污泥斗,池底有i=的坡度,也可采用多斗式平流沉淀池,以减小深度,见图3-9。 ②机械排泥法。链带式刮泥机见图3-10,链带装有刮板,沿池底缓慢移动,速度 1m/min,把沉泥级级推入污泥斗,当链带刮板转到水面时,又可将浮渣推向流出挡板处的浮渣槽。

污水处理沉淀池结构及原理

污水处理沉淀池结构及原理 沉淀池按工艺布置的不同,可分为初次沉淀池和二次沉淀池。初次沉淀池是一级污水处理厂的主体处理构筑物,或作为二级污水处理厂的预处理构筑物设在生物处理构筑物的前面。处理的对象是悬浮物质(英文缩写为Ss,约可去除40%~55%以上),同时可去除部BOD(约占总BOD3的20%~30%,主要是悬浮性BOD),可改善生物处理构筑物的运行条件并降低其BOD 负荷。初次沉淀池中的沉淀物质称为初次沉淀污泥;二次沉淀池设在生物处理构筑物(活性污泥法或生物膜法)的后面,用于沉淀去除活性污泥或腐殖污泥(指生物膜法脱落的生物膜),它是生物处理系统的重要组成部分。初沉池、生物膜法及其后的二沉池SS点去除率为60%~90%,BOD总去除率为65%~90%;初沉池、活性污泥法及其后的二沉池的总去除率为70%~90%和65%~95%。沉淀池按池内水流方向的不同,可分为平流式沉淀池、辐流式沉淀池和竖流式沉淀池。 平流式沉淀池 平流式沉淀池工艺,由流入装置、流出装置、沉淀区、缓冲层、污泥区及平流式沉淀池的构造排泥装置等组成。 流入装置由设有侧向或槽底潜孔流的配水槽、挡流板组成,起均匀布水与消能作用。挡流板入水深不小于0.25m,水面以上0.15~0.20m,距流入槽0.5m。 流出装置由流出槽与一挡板组成。流出槽设自由溢流堰,溢流堰严格水平,既可以保证水流均匀,又可以控制沉淀池水位。为此为此溢流堰常采用锯齿形堰,溢流堰最大负荷不宜大于2.91/a) (m·s)(初次沉淀池),1.7L/(m·s)(二次沉淀池)。为了减少负荷,改善出水水质,溢流堰可采用多槽沿程布置。如需阻挡浮渣随水流走,可在锯齿堰前设置挡渣板;或采用潜孔出流的流出堰。出流挡板入水深0.3~0.4m,距溢流堰0.25~0.5m。缓冲层的作用是避免已沉污泥被水流搅起以及缓解冲击负荷。

沉淀溶解平衡与沉淀滴定法

沉淀溶解平衡与沉淀滴 定法 -CAL-FENGHAI.-(YICAI)-Company One1

第十章 沉淀溶解平衡与沉淀滴定法 §10-1 溶度积原理教学目的及要求: 1. 理解溶度积常数。 2. 掌握溶度积与溶解度的相互换算。 3. 掌握溶度积规则。 4.了解影响溶解度的因素。 教学重点: 1.溶度积常数。 2.溶度积与溶解度的相互换算;溶度积规则。 教学难点:溶度积常数。 一、溶度积常数 溶解 AgCl (s )? Ag +(aq ) + Cl -(aq ) 沉淀 ) ()(Cl Ag AgCl sp ΘΘΘc /c c /c K -+?=, ΘAgCl s p,K 称为AgCl 的溶度积常数,简称溶度积。 A m B n (s )?mA n+(aq ) + nB m -(aq ) 不考虑Θsp K 的量纲时,n m c c K - +?=m n B A sp 注:(1)K sp 的大小主要决定于难溶电解质的本性,也与温度有关,而与离子浓度改变无关。 (2)在一定温度下,K sp 的大小可以反映物质的溶解能力和生成沉淀的难易。 二、溶度积与溶解度的相互换算 溶解度和溶度积都反映了物质的溶解能力,二者之间必然存在着联系,单位统一时,可以相互换算。

一般地:A m B n (s )?mA n+(aq ) + nB m -(aq ) 设溶解度为Smol/L 时,则n m n m S n m Ksp += 例 25℃时,AgBr 在水中的溶解度为1.33 × 10-4g·L -1,求该温度下AgBr 的溶度积。 例 25℃时,AgCl 的K sp 为1.8 × 10-10,Ag 2CO 3的K sp 为8.1 × 10-12,求AgCl 和Ag 2CO 3的溶解度。 溶度积大的难溶电解质其溶解度不一定也大,这与其类型有关。 三、溶度积规则 在某难溶电解质的溶液中,有关离子浓度幂次方的乘积称为离子积,用符号Q i 表示, A m B n (s)?mA n+ + nB m - n B m A m n - +?=c c Q i ①Q i <K sp 时,为不饱和溶液,若体系中有固体存在,固体将溶解直至饱和为止。所以Q i <K sp 是沉淀溶解的条件。 ②Q i =K sp 时,是饱和溶液,处于动态平衡状态。 ③Q i >K sp 时,为过饱和溶液,有沉淀析出,直至饱和。所以Q i >K sp 是沉淀生成的条件。 四、影响溶解度的因素 * 1.本性 2.温度 3.同离子效应和盐效应 例 计算BaSO 4在0.1mol·L -1Na 2SO 4溶液中的溶解度。

沉淀滴定原分析

沉淀滴定原理分析 【原理】某溶液中含Cl–和CrO42–,它们的浓度分别是0.10 mol/L 和0.0010 mol/L通过计算说明,逐滴加入AgNO3试剂,哪一种沉淀先析出。当第二种沉淀析出时,第一种离子是否被沉淀完全(忽略由于加入AgNO3所引起的体积变化)。 解:分别计算析出AgCl(s)和Ag2CrO4(s)所需的最低Ag+浓度 C(Ag+)Cl->=Ksp(AgCl)÷C(Cl-)=1.8×10-10÷0.10=1.8×10-9mol/L C(Ag+)CrO42->= {Ksp(Ag2CrO4) ÷C(CrO42-)}0.5=4.47×10-5 mol/L 所以,AgCl先沉淀 当Ag2CrO4开始沉淀时: C(Cl-)= Ksp(AgCl) ÷C(Ag+)CrO42-=1.8×10-9÷4.47×10-5=4.03×10-6 mol/L<10-5mol/L 说明沉淀完全, 由于Ag2CrO4是砖红色的,所以当出现砖红色时,可以认为溶液中已经不存在Cl-。 显然,通过以上分析,我们可以用已知浓度的AgNO3溶液,来测定某溶液中Cl-的浓度。 【操作方法】 1、莫尔(Mohr)法—铬酸钾作指示剂 以K2CrO4为指示剂,在中性和弱碱性溶液中,用AgNO3标准溶液测定氯化物。 滴定反应:Ag++Cl- =AgCl↓(白色) 指示剂反应:CrO42-+2Ag+ = Ag2CrO4↓(砖红色) 终点时的颜色变化:由白色变为砖红色 2、佛尔哈德(Volhard)法—铁铵矾作指示剂 在酸性介质中,铁铵矾作指示剂,用NH4SCN标准溶液滴定Ag+,当AgSCN沉淀完全后,过量的SCN-与Fe3+反应: 滴定反应:Ag++SCN- = AgSCN↓(白色) 指示剂反应: Fe3++SCN-= [Fe(SCN)]2+(红色络合物)

沉淀池的设计说明

沉淀池设计说明 1.1概述 本项目区水资源来源主要为地表水(库水、河水)和地下水。目前项目滴灌节水工程水源以渠水为主, 渠道来水流量可满足灌溉要求。本系统利用原地面灌溉渠道供水,水质符合农田灌溉水标准,可用于滴灌,但是渠水中泥沙和有机杂质含量大,需设置沉淀池进行初级处理去除大量泥沙后水泵方可从沉淀池中吸水进行灌溉。 1.2沉淀池的设计原理 沉淀池尺寸的确定原理是沉淀池的长、宽、深要使得水流从进入沉淀池后,水流所挟带的大于设计标准粒径以上的砂砾石以沉速v 0下沉,当水流到沉淀池下游进水水 泵口时,砂粒刚好沉到池底。 1.3设计参数选用 1.3.1表面负荷率(Q/A ) 根据渠水泥沙中极细沙比例大的特点,沉淀池的表面负荷率宜选择较小值,以利提高沉淀效率。表面负荷率应根据渠水水质情况和不同的微灌系统对沉淀水的要求采用,建议采用s mm A Q /22.0/-=。 1.3.2水平流速(V ) 在沉淀池中,增大水平流速,一方向提高了雷诺数e R 而不利于泥砂颗粒的下沉, 但另一方面却提高了弗劳德数r F 而增加了水流的稳定性,利于提高沉淀效果,沉淀池 的水平流速宜取 s mm v /2510-= 。 1.2.3 停留时间(T ) 沉淀池的停留时间应考虑水源水质和沉淀水质要求,并根据沉淀池运行经验,采用h v 31-=。 1.4沉淀池的设计计算 1.4.1设计流量 1.4.2设计参数选用 表面负荷率s m s mm A Q /0003.0/3.0== 沉淀池停留的时间:h T 5.1= 沉淀池水平流速:s mm v /10= 1.4.3沉淀池计算: 沉淀池表面积为:201870003.0/056.0/m v Q A === 沉淀池长度:m vt L 545.1106.36.3=??== 沉淀池宽度:m L A B 5.354/187/=== 沉淀池有效深度:m BL QT H 48.1)545.3/(5.1187/1=??== 沉淀池深度:m H H H 78.230.0148.1213=++=?++= 式中:2H 为存泥区的深度,取1米 ? 为沉淀池安全超高,一般取0.3米 沉淀池沉淀区进口设置穿孔配水墙,穿孔配水墙上的洞口流速采用s m /15.0,则洞口总面积为233.015.0/05.0m =,每个洞口尺寸定为cm cm 1020?,这样洞口数为个孔。17)10.020.0/(33.0=? 1.4.4沉淀池水力条件复核: 水流截面:2135.71.25.3m BH =?==ω 水流湿周:m H B X 46.648.125.321=?+=+=

混合絮凝沉淀池工作原理及辅助设备解析

混合絮凝沉淀池工作原理及辅助设备解析 混合絮凝沉淀池根据微水动力学原理、胶体物理化学理论,融合流体边界 层分离、澄清池接触絮凝理论,结合絮凝沉淀机理,形成“接触絮凝沉淀水处 理技术”。该设备用湍流涡旋控制原理和边界层理论,使得混合效率高,药剂 利用充分,絮凝形成的矾花粒度好,尺度合适,密度大,沉淀既利用了浅池沉 淀原理,又增加和强化了接触絮凝及过滤网捕作用,小颗粒泄漏少,沉后水浊 度低,沉后出水浊度≤5NTU。主要配置如下工艺设备:直列式混合器、星形翼 片絮凝设备和V形斜板沉淀设备。 1、直列式混合器:直列式混合器在采用流体微水动力学原理来控制混合微观过程和宏观过程,在相同的水头损失下,提高直列式混合器混合效果。它的主要 原理是使水流通过列管时,在边界层的作用下,产生系列涡旋,并在其后的空 间衰减,产生高频涡流,从而使混凝剂复杂的水解产物与原水中的胶体颗粒得 到充分混合。直列式混合器采用304不锈钢材质。 2、星形翼片絮凝设备:星形翼片絮凝设备主要原理是利用边界层脱离理论和颗粒碰撞的惯性效应,改变隔板的结构形式,同时改变翼片的形式,改变水流流 经翼片附近的流态,增强了翼片控制能力,在不同的水流空间,当水流流经翼 片后,在周围短时间会形成准均匀各向同性紊流,紊流中夹带了大量尺寸、强 度一定的微小涡旋,在不断的流动过程中,导致涡旋离开原位置并进行彼此碰撞,加大了颗粒的有效碰撞次数,有效地提高了絮凝效果。絮体颗粒碰撞、吸附,絮体本身产生强烈变形,使絮体中吸附能级低的部分由于变形揉动作用从 而达到更高的吸附能级,并在通过设备后絮体变得更加密实,提高絮凝效果, 缩短絮凝时间。星形翼片絮凝设备采用304不锈钢材质,导流机构截面为星形,设置1~3片翼片。 3、V形斜板沉淀设备:V形斜板沉淀设备主要原理是综合利用沉淀机理和接触 絮凝机理完成沉淀区中颗粒的分离过程,在利用沉淀机理的基础上,在设备内 设置涡旋强度控制区域,减弱沉淀区中沉淀设备下部一定位置水流中的大涡旋 强度,减少沉淀区水流的脉动。当水流在进入设备后,这种结构的特殊性能进 一步控制接触絮凝的过程,在不断改变流速流态的过程中,提高矾花颗粒在设 备内接触碰撞的几率,彼此吸附连接,只有尺度和密度足以克服水流顶托力等 相关因素的矾花颗粒,才能沉落。在不断下沉的过程中,不断吸附微小粒径的 矾花颗粒,直至脱离沉淀设备。当矾花重力同水流顶托力及相关作用力维持动 态平衡时,增强了接触絮凝沉淀作用,在设备内一定位置形成密实的、抗冲击

相关文档
最新文档