单摆复摆的区别
大学物理(9.2.2)--单摆复摆简谐运动的能量

大学物理 第九单元 振动
第二讲 单摆和复摆 简谐运动的能量
动能
Ek
1 2
mv 2
1 2
m
2
A2
sin
2
(t
)
( 2
k m
)
1 2
kA2
sin 2 (t
)
Ek
1 2
kA2
sin
2
(t
)
Ek max
1 kA2 2
,
Ek min 0
Ek
1 T
t T t
Ek dt
0
O
l
*C
P
( C 点为质 心)
东北大学 理学院 物理系
大学物理 第九单元 振动
d 2
dt 2
2
0
第二讲 单摆和复摆 简谐运动的能量
m cos(t )
简谐振动
mgl J
T 2π 2π
J mgl
O
l
*C
P
( C 点为质心)
东北大学 理学院 物理系
解( 3 )Esum E k,max 2.0 103 J
( 4 )Ek Ep 时 Ep 1.0 103 J
由 Ep
1 kx2 2
1 2
m 2 x 2
x2
2Ep
m 2
0.5 104 m 2
x 0.707 cm
东北大学 理学院 物理系
大学物理 第九单元 振动
大学物理 第九单元 振动
第 九 单 元 振 动 第二讲 单摆和复摆 简谐运动的能量
《单摆和复摆》课件

如何设计一个实验来验证单摆 和复摆的周期公式?
THANKS
感谢观看
复摆的回复力由重力和支点的 支持力合成,方向始终指向平 衡位置。
单摆和复摆的能量转换
单摆和复摆在运动过程中,动能 和势能之间相互转换。
当摆角较小时,单摆的运动近似 简谐振动,能量转换呈现周期性
变化。
复摆在运动过程中,由于支点摩 擦和空气阻力等因素,能量会有
所损失,导致运动周期变长。
03
单摆和复摆的应用
02
4. 启动计时器,记录复摆完成一 个周期的时间。
实验结果和实验分析
实验结果
通过实验测量得到单摆和复摆的运动周期,并记录在表格中。
实验分析
根据测量结果,分析单摆和复摆的运动特性,比较两者之间的差异。通过计算单摆的振动周期公式 T=2π√(L/g) ,其中L为单摆的长度,g为重力加速度,验证理论公式是否与实验结果相符。对于复摆,分析其转动惯量、质量 等因素对周期的影响。
钟表和计时器中的应用
钟表的核心机制
复摆在高级钟表中的应用
单摆被用作钟表的核心计时机制。其 规律的周期性运动被转换成时间单位 ,如秒、分、小时。
在高级机械钟表中,复摆常用于更精 确地调节和平衡钟表的运行。
精确度与稳定性
由于单摆的简单运动模式和自然频率 的稳定性,它为钟表提供了高精度的 时间基准。
振动隔离和减震中的应用
实验步骤和实验操作
3. 开始计时,记录单摆和复摆的运动周期。 4. 重复实验多次,求平均值。
5. 分析实验数据,得出结论。
实验步骤和实验操作
实验操作 1. 调整单摆的长度,使小球能够自由摆动。
2. 启动计时器,记录单摆完成一个周期的时间。
八年级上册物理摆的知识点

八年级上册物理摆的知识点物理学中的摆,是指一个可旋转的物体由于其重心高于支点而能够转动。
它是一个非常简单且常见的物理现象,广泛应用于科学研究、日常生活和工业制造等领域。
本文将介绍八年级上册物理摆的知识点,包括摆的类型、运动规律、影响因素等方面。
希望本文能够帮助读者更好地理解物理学中的摆。
一、摆的类型摆可以分为单摆和复摆两种类型。
单摆,也称简谐摆,是一种由一根不可伸缩且质量趋近于0的细线挂着的质点,并在重力作用下做周期性运动的摆。
单摆的周期与摆长有关,与质点的质量、摆动幅度无关。
单摆常用于实验室中,可以用来测定重力加速度、验证万有引力定律等。
复摆,也称双摆或阿达木斯双摆,是由两个相互连接的单摆组成的系统。
复摆的周期与摆长、角度、质量等因素有关。
复摆的运动规律比单摆更加复杂,但它也可以用来研究能量转化、双星系统等领域的问题。
二、运动规律摆的运动规律可以用一个简洁的数学公式来描述。
对于单摆,其周期T与摆长L有关,可以用以下公式计算:T=2π√(L/g)其中,g为重力加速度,约为9.8m/s²。
这个公式说明,单摆的周期与摆长的平方根成正比,与重力加速度的平方根成反比。
对于复摆,其周期T既与摆长L有关,也与两个单摆的振动频率ω有关,可以用以下公式计算:T=2π√(L/g)/(2sin(θ/2))*π)其中,θ为两个单摆的夹角。
这个公式说明,复摆的周期与摆长成正比,与两个单摆的振动频率有关,与夹角的正弦函数成反比。
三、影响因素除了摆的类型和运动规律,还有一些因素会影响摆的运动。
首先是摆长,它是摆周期的关键因素。
摆长越长,周期越长;摆长越短,周期越短。
其次是重力加速度,它是摆周期的影响因素之一。
重力加速度越大,周期越短;重力加速度越小,周期越长。
还有一些影响因素体现在复摆的运动中。
复摆的两个单摆之间的距离和夹角不同,会导致复摆的周期变化。
如果夹角大于某个阈值,双摆运动将不再稳定。
四、应用领域摆在科学研究、日常生活和工业制造等领域有着广泛的应用。
单摆与复摆的区别

2014-11-11
单摆测G和复摆测G哪个更精确
2014-10-07
单摆复摆问题
2014-12-03
复摆跟单摆有什么区别
2014-09-24
蛇蝎美人°RB1
2014-12-11
为您推荐:
其他类似问题
单摆的周期很短,怎样操作才能比较准确的测出这个单摆的周期
2014-11-08
凸轮式颚式破碎机与复摆式颚式破碎机的区别
优质解答
单摆是质点振动系统的一种,是最简单的摆.绕一个悬点来回摆动的物体,都称为摆,但其周期一般和物体的形状、大小及密度的分布有关.但若把尺寸很小的质块悬于一端固定的长度为l且不能伸长的细绳上,把质块拉离平衡位置,使细绳和过悬点铅垂线所成角度小于5°,放手后质块往复振动,可视为质点的振动,其周期T只和l和当地的重力加速度g有关,即T=2π√(L/g),而和质块的质量、形状和振幅的大小都无关系,其运动状态可用简谐振动公式表示,称为单摆或数学摆.如果振动的角度大于5°,则振动的周期将随振幅的增加而变大,就不成为单摆了.如摆球的尺寸相当大,绳的质量不能忽略,就成为复摆(物理摆),周期就和摆球的尺寸有关了.复摆是在重力作用下,能绕通过自身某固定水平轴摆动的刚体.又称物理摆.复摆的转轴与过刚体质心C并垂直于转轴的平面的交点O称为支点或悬挂点.摆动过程中,复摆只受重力和转轴的反作用力,而重力矩起着回复力矩的作用.
《单摆和复摆》课件

定义:复摆是一类特殊的摆动装置,由刚体绕一固定点在平面内或空间内作周期性摆动形成
原理:复摆的摆动可看作是两个或多个单摆的组合运动,通过调整各单摆的参数和相对位置,实现特定的运动规律和特性
复摆的周期公式
公式推导:根据单摆周期公式推导复摆周期公式
解决方法:减小空气阻力和机械摩擦,采用高精度材料制作摆轴等。
单摆和复摆的实验研究
单摆实验的设计和操作
实验目的:研究单摆的周期与摆长、摆角的关系
实验器材:支架、细线和重物
实验步骤:将细线悬挂在支架上,固定好重物并使其自然下垂;释放重物,使其开始摆动;使用秒表记录摆动的周期
实验数据记录:记录不同摆长和摆角下单摆的周期,分析数据并得出结论
环保领域:用于测量风速、风向等。
总结与展望
单摆和复摆的重要性和应用前景
重要性和应用前景:单摆和复摆在物理学和工程学中具有重要地位,其应用前景广泛,包括测量、控制、仿真等领域。
未来研究方向:随着科技的发展,单摆和复摆的研究方向将更加深入,未来将会有更多的应用场景和新的研究领域。
挑战与机遇:虽然单摆和复摆的研究面临一些挑战,但也存在许多机遇,需要更多的研究和探索。
单击此处输入你的项正文,请尽量言简意阐述观点。
单摆的分类
单击此处输入你的项正文,请尽量言简意阐述观点。
单击此处输入你的项正文,请尽量言简意阐述观点。
复摆的定义和分类
单摆和复摆的应用场景
物理实验:单摆和复摆是物理学中重要的实验装置,用于研究力学、振动和波动等现象。
精密测量:单摆和复摆可以用于测量重力加速度、时间等精密参数,具有高精度和高稳定性。
影响因素:摆长、质量、重力加速度等对复摆周期的影响
简谐振动的能量、单摆和复摆

简谐运动能量图
o
能量
x−t
T
ϕ =0 t x = A cosωt v − t v = − Aω sin ω t
1 E = kA 2 2 1 2 2 E p = kA cos ω t 2
o
T 4
T 2
3T 4
T
t
1 2 2 2 Ek = mω A sin ωt 2
(33)简谐振动的能量、单摆和复摆 33)简谐振动的能量、
− 2A/ 2
2 x1 = ± A 2
O
2A/ 2
x
x1 = ±7.07×10 m
−3
(33)简谐振动的能量、单摆和复摆 33)简谐振动的能量、
机械振动
(5)当物体的位移为振幅的一半时动能、势能 )当物体的位移为振幅的一半时动能、 各占总能量的多少? 各占总能量的多少
1 2 1 A E Ep = kx = k = 2 2 2 4
ω = k /m
1 2 2 (振幅的动力学意义) E = Ek + Ep = kA ∝ A 振幅的动力学意义) 2
线性回复力是保守力, 简谐运动的系统机械能守恒 线性回复力是保守力,作简谐运动的系统机械能守恒 保守力 运动的系统
(33)简谐振动的能量、单摆和复摆 33)简谐振动的能量、
机械振动
x, v
(33)简谐振动的能量、单摆和复摆 33)简谐振动的能量、
(3)总能量; )总能量;
机械振动
E = Ek ,max= 2.0 × 10 J
(4)物体在何处其动能和势能相等? )物体在何处其动能和势能相等?
−3
Ep1 = Ek1 = =
E 2
kA2 4
Ep1 = kx
9-3单摆和复摆

物理学 第六版
本章目录
选择进入下一节:
9-6* 阻尼振动 受迫振动 共振 9-7 电磁振荡
第九章 振动
11
转动正向 O
l
J T 2π mgl
2π
*C
J T 2π (C点为质心) mgl m cos( t ) 角谐振动
第九章 振动 4
P
物理学 第六版
9-3
单摆和复摆
例 一半径为 r 的均 质球,可沿半径为 R 的固 定大球壳的内表面作纯 滚动 ( 如图示 ). 试求圆球 绕平衡位置作微小运动 的动力学方程及其周期 .
o R
FN
c
r
F
mg
第九章 振动
5
物理学 第六版
9-3
单摆和复摆
解:
(mg sin F ) ma( t 1)
R
o
2 2 ( 2) Fr mr FN r 5 c d 2 at ( R r ) 2 ( 3) dt F mg at r ( 4) 联立(1)、(2)、(3)、(4) 式,得运动方程 7 2 d R r 2 g sin 5 dt
物理学 第六版
9-3
单摆和复摆
一 单摆
动力学分析: 5 时, sin
M mgl sin mgl 2 d mgl J 2 dt d 2 g 2 dt l
第九章 振动
A
FT
O
l
转 动 正 向 m
J ml P
2
1
物理学 第六版
9-3
2
复摆 ( 5 )
转动正向 O
单摆复摆——精选推荐

单摆复摆第四节单摆和复摆⼀、单摆1. 单摆、摆锤和摆线单摆⾓谐振动: 005<θ2. 动⼒学⽅程质量为m 的⼩球⽤细线悬挂,当球在⼩⾓度摆动时,则有:系统所受⼒矩:θmgl M sin -=由转动定律:βJ M =可得⾓加速度:θθβθsin sin 222lgml mgl J M dt d -=-===定义⾓频率:l g =ω,并注意到:θθ≈sin ,可得:0222=+θωθdt d (1)这就是单摆⾓谐振动所满⾜的动⼒学⽅程。
3. 运动学⽅程、周期⽅程(1)的解为:()?ωθθ+=t m cos ,最⼤摆⾓m θ和初相?由初始条件决定。
⽽且有:2020+=ωθθl v m ,=00θω?l v arctg 振动周期:g lT πωπ22==4. 应⽤:测量重⼒加速度,探矿等。
⼆、复摆任意形状的刚体悬挂后绕⼀固定轴O 作⼩⾓度摆动,质⼼到转轴距离为l ,则有:θθβθJmglJ mgl J M dt d -=-===sin 22为谐振动⽅程,相应的⾓频率:J mgl =ω,周期:mgl JT πωπ22==应⽤:测量转动惯量。
第五节简谐运动的能量⼀、能量表达式以在⽔平⾯上作简谐振动的弹簧振⼦为例,分析其能量变化,显然振⼦只受弹性⼒这⼀保守⼒作⽤,符合能量守恒。
设在任⼀时刻t ,振⼦位移为x ,速度为v ,注意到:x =A c o s (ωt +φ),v =-ωA s i n (ωt +φ),则其弹性势能E p 动能E K 分别为:动能: E k =m v 2/2=m ω2A 2s i n 2(ωt +φ)/2弹性势能: E p =k x 2/2=k A 2c o s 2(ωt +φ)/2= m ω2 A 2c o s 2(ωt +φ)/2 因此系统总机械能为:E =E k +E p = m ω2 A 2/2= k A 2/2 可见系统机械能守恒。
⼆、能量曲线注意理解能量守恒和动能、势能相互转化过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单摆和复摆最本质的区别应该是摆动所绕的轴不一样(单摆是绕点),从而导致了一系列的差异,详述如下:
单摆
simplependulum
质点振动系统的一种,是最简单的摆。
绕一个悬点来回摆动的物体,都称为摆,但其周期一般和物体的形状、大小及密度的分布有关。
但若把尺寸很小的质块悬于一端固定的长度为l 且不能伸长的细绳上,把质块拉离平衡位置,使细绳和过悬点铅垂线所成角度小于5°,放手后质块往复振动,可视为质点的振动,其周期T只和l和当地的重力加速度g有关,即T=2π√(L/g),而和质块的质量、形状和振幅的大小都无关系,其运动状态可用简谐振动公式表示,称为单摆或数学摆。
如果振动的角度大于5°,则振动的周期将随振幅的增加而变大,就不成为单摆了。
如摆球的尺寸相当大,绳的质量不能忽略,就成为复摆(物理摆),周期就和摆球的尺寸有关了。
伽利略第一个发现摆的振动的等时性,并用实验求得单摆的周期随长度的二次方根而变动。
惠更斯制成了第一个摆钟。
单摆不仅是准确测定时间的仪器也可用来测量重力加速度的变化。
惠更斯的同时代人天文学家J.里希尔曾将摆钟从巴黎带到南美洲法属圭亚那,发现每天慢2.5分钟,经过校准,回巴黎时又快2.5分钟。
惠更斯就断定这是由于地球自转引起的重力减弱。
I.牛顿则用单摆证明物体的重量总是和质量成正比的。
直到20世纪中叶,摆依然是重力测量的主要仪器。
复摆
compoundpendulum
在重力作用下,能绕通过自身某固定水平轴摆动的刚体。
又称物理摆。
复摆的转轴与过刚体质心C并垂直于转轴的平面的交点O称为支点或悬挂点。
摆动过程中,复摆只受重力和转轴的反作用力,而重力矩起着回复力矩的作用。
设质量为m的刚体绕转轴的转动惯量为I,支点至质心的距离为s,则复摆微幅振动的周期T=2π√(I/mgs),式中g为重力加速度。
它相当于摆长l=I/ms的单摆作微幅振动的周期。
在OC的延长线上取O′点使OO′=l(l称等价摆长)则此点称为复摆的摆动中心。
支点和摆动中心可互换位置而不改变复摆的周期。
知道T和l,就可由周期公式求出重力加速度g。
当复摆受到一个冲量作用时,会在支点上引起碰撞反力。
若转轴是刚体对支点的惯量主轴,外冲量垂直于支点和质心的连线OC且作用于摆动中心O′上,则支点上的碰撞反力为零。
因此,复摆的摆动中心又称撞击中心。
机器中有些必须经受碰撞的转动件,如离合器、冲击摆锤等,为防止巨大瞬时力对轴承的危害,应使碰撞冲击力通过撞击中心。
转动惯量
momentofinertia
刚体绕轴转动惯性的度量。
其数值为I=(求和符号)Δmiri^2或I=(积分符号)ri^2dm,式中ri为组成刚体的质量微元Δmi(或dm)到转轴的垂直距离;求和号(或积分号)遍及整个刚体。
转动惯量只决定于刚体的形状、质量分布和转轴的位置,而同刚体绕轴的转动状态(如角速度的大小)无关。
规则形状的均质刚体,其转动惯量可直接计得。
不规则刚体或非均质刚体的转动惯量,一般用实验法测定。
转动惯量应用于刚体各种运动的动力学计算中。
描述刚体绕互相平行诸转轴的转动惯量之间的关系,有如下的平行轴定理:刚体对一轴的转动惯量,等于该刚体对同此轴平行并通过质心之轴的转动惯量加上该刚体的质量同两轴间距离平方的乘积。
由于和式的第二项恒大于零,因此刚体绕过质量中心之轴的转动惯量是绕该束平行轴诸转动惯量中的最小者。
刚体对一轴的转动惯量,可折算成质量等于刚体质量的单个质点对该轴所形成的转动惯量。
由此折算所得的质点到转轴的距离,称为刚体绕该轴的回转半径κ,其公式为κ=√I/M,式中M为刚体质量;I为转动惯量。
转动惯量的量纲为L2M,在SI单位制中,它的单位是kg·m2。
刚体绕某一点转动的惯性由更普遍的惯量张量描述。
惯量张量是二阶对称张量,它完整地刻画出刚体绕通过该点任一轴的转动惯量的大小。