物理单摆问题一例
单摆原理在生活中的应用

单摆原理在生活中的应用1. 什么是单摆原理单摆原理是指一个质点通过一个不可伸长的轻细线与固定点相连接,并且可以在该杆线的垂直平面内来回摆动的物理现象。
在单摆运动中,质点的运动规律受到重力的影响,可以应用较为简单的数学公式来描述。
2. 单摆原理在物理实验中的应用单摆原理在物理实验中有广泛的应用。
例如,在测量重力加速度的实验中,可以利用单摆原理来测量,利用单摆的周期与摆长之间的关系来计算重力加速度的大小。
3. 单摆原理在钟表中的应用钟表中的摆轮机构就是应用了单摆原理。
摆轮是一个由质量较重的物体构成的杆,通过一个可以转动的轴连接到钟表的机械装置上。
当摆轮被摆动后,可以产生一定的摆动周期,从而实现时间的测量。
4. 单摆原理在桥梁工程中的应用在桥梁工程中,单摆原理可以用于桥梁的设计及监测。
例如,在设计悬索桥时,可以利用单摆原理来计算悬索的长度和桥梁的高度,以保证桥梁的稳定性和安全性。
同时,在桥梁的监测过程中,也可以利用单摆原理来检测桥梁是否受到外力的影响,从而及时采取相应的维修或加固措施。
5. 单摆原理在艺术作品中的应用在艺术作品中,单摆原理也可以被运用到。
例如,一些艺术家可以利用单摆原理设计出具有动感和美感的雕塑作品。
通过精确计算和安排单摆的摆动轨迹和周期,可以制作出形态各异、动态展现的艺术品,给人们带来视觉和心灵上的享受。
6. 单摆原理在娱乐活动中的应用单摆原理也可以应用于娱乐活动中,例如游乐园中的摩天轮。
摩天轮的座舱通过一根竖立的杆连接到中央的轴,座舱在摩天轮的转动下以单摆的方式摆动,使乘客可以感受到摆动带来的刺激和乐趣。
7. 单摆原理在运动训练中的应用单摆原理也被应用于运动训练中,例如武术中的挂拳训练。
挂拳训练的原理是通过一根绳子或链条将拳击手套悬挂起来,运动员用不同的招式进行击打,练习自身的力量、速度和协调性。
这种训练方式可以提高运动员的拳击技巧和身体素质。
8. 单摆原理在摄影中的应用在摄影中,单摆原理可以被用来创造动态的效果。
高一物理用单摆测定重力加速度通用版

高一物理用单摆测定重力加速度通用版【本讲主要内容】用单摆测定重力加速度什么是单摆,单摆做简谐振动的条件,用单摆测定重力加速度的方法,怎样使单摆作简谐运动,测量相关数据和处理数据的方法。
【知识掌握】【知识点精析】1. 实验目的:用单摆测定重力加速度2. 实验原理:(1)单摆振动时,摆球重力mg沿圆弧切线方向的分力mgsinα就是它摆动的回复力。
只有当偏角α≤5°时,摆球沿圆弧的运动才可以近似地看成为直线运动,而回复力就可以写成为F=-kx.式中k=mg/L。
可见在摆角很小的情况下,单摆的振动是简谐运动。
(2)单摆做简谐运动时,振动周期跟偏角的大小(或振幅)和摆球的质量无关。
期公式T=2πg/L,由此得重力加速度g=4π2L/T2。
因此,测出单摆的摆长L和振动周期T,就可以求出当地的重力加速度g的值。
3. 实验仪器:长约lm的细丝线一条,通过球心开有小孔的金属小球一个,带有铁夹的铁架台一个,毫米刻度尺一把,秒表一块,游标卡尺一个。
4. 秒表使用简介:(1)认识秒表:秒表有各种规格,它们的构造和使用方法略有不同。
一般的秒表(如图所示)有两根针,长针是秒针,每转一圈是30s,短针是分针. 图示的秒表的最小分度是0.1s。
(2)使用方法:首先要上好发条,它上端的按钮用来开启和止动秒表,第一次按压,秒表开始记时,第二次按压,指针停止走动,指示出两次按压之间的时间;第三次按压,两指针均返回零刻度处。
(3)读数:所测时间超过半分钟时,分钟的整数倍部分由分针读出,不足半分钟的部分由秒针读出,总时间为两针示数之和。
5. 验步骤:(1)让线的一端穿过小球的小孔,然后打一个比小孔大一些的线结,做成单摆;(2)把线的上端用铁夹固定在铁架上,把铁架台放在实验桌边,使铁夹伸到桌面以外,让摆球自由下垂,在单摆平衡位置处做上标记,如图所示;(3)用毫米刻度尺量出悬线长L'(准确到mm),用游标卡尺测出摆球的直径d,然后计算出悬点到球心的距离L,L=L'+d/2即为摆长;(4)把单摆从平衡位置拉开一个很小的角度(小于5°),然后放开小球让它摆动,用秒表测出单摆完成30~50次全振动的时间,计算出平均完成一次全振动的时间,这个时间就是单摆的振动周期T;(5)改变摆长,重做几次实验;(6)根据单摆的周期公式,计算出每次实验的重力加速度,求出几次实验得到的重力加速度的平均值,即是本地区的重力加速度的值;(7)将测得的重力加速度数值与当地重力加速度数值加以比较,分析产生误差的可能原因。
类单摆问题(解析版)-高考物理热点模型

类单摆问题学校:_________班级:___________姓名:_____________模型概述1.对l 、g 的理解1)公式中l 是摆长,即悬点到摆球球心的距离。
①普通单摆,摆长l =l +D2,l ′为摆线长,D 为摆球直径。
②等效摆长:(a )图中,甲、乙在垂直纸面方向上摆动起来效果是相同的,甲摆的等效摆长为l sin α,其周期T =2πl sin αg。
(b )图中,乙在垂直纸面方向摆动时,其等效摆长等于甲摆的摆长;乙在纸面内小角度摆动时,等效摆长等于丙摆的摆长。
2)等效重力加速度①公式中g 是单摆所在地的重力加速度,由单摆所在的空间位置决定。
②等效重力加速度:一般情况下,公式中g 的值等于摆球静止在平衡位置时,摆线的拉力与摆球质量的比值。
如图中等效重力为g =g sin α,其周期T =2πlg sin α2.几种类单摆模型1)一切在竖直放置的光滑圆弧形内轨道上的小幅度振动(运动范围远小于圆弧半径)都可以等效成单摆模型,其等效摆长l 即为圆弧半径R ,质点的振动周期为T =2πRg2)非惯性参考系中的单摆周期公式T=2πLg适合于惯性系中单摆在竖直平面内做小幅振动的情况,如果单摆处于做匀变速运动的非惯性参考系中,仍可类比竖直平面内的单摆,通过求解平衡位置(相对参考系静止的位置)时细线拉力的平衡力而得到等效重力加速度。
①参考系具有竖直方向的加速度时如:在一升降机中有一摆长为L的单摆,当升降机以加速度a竖直向上匀加速运动时,如图所示,平衡位置仍在悬点正下方,根据牛顿第二定律易知摆球静止在平衡位置时,摆线拉力F T的平衡力F=mg+ma,等效重力加速度g =Fm=g+a,故其振动周期T=2πLg+a同理知,当升降机以加速度a减速上升时单摆振动周期T=2πLg-a。
②参考系具有水平方向加速度时如:在沿水平路面向左匀加速行驶的车厢内有一单摆,当它做小幅振动时,平衡位置(相对车厢静止的位置)不在悬点正下方,根据受力分析知摆球静止在平衡位置时,摆线拉力的平衡力F=(mg)2+(ma)2,F产生的等效重力加速度g =Fm=g2+a2,故此单摆的振动周期T=2πLg2+a2。
高二物理单摆及其周期试题答案及解析

高二物理单摆及其周期试题答案及解析1.有一摆长为L的单摆,悬点正下方某处有一小钉,当摆球经过平衡位置向左摆动时,摆线的上部将被小钉挡住,使摆长发生变化,现使摆球做小幅度摆动,摆球从右边最高点M至左边最高点N运动过程的闪光照片,如右图所示,(悬点和小钉未被摄入),P为摆动中的最低点。
已知每相邻两次闪光的时间间隔相等,由此可知,小钉与悬点的距离为()A.L/4B.L/2C.3L/4D.无法确定【答案】C【解析】设相邻两次闪光的时间间隔为t,由图可知,摆球在右侧时摆动的周期为,而在左侧时摆动的周期为,设左侧摆长为l,根据单摆的周期公式可知:,解得,故可知小钉与悬点的距离为,所以只有选项C正确;【考点】单摆、周期公式2.一位同学用单摆做测定重力加速度的实验,他将摆挂起后,进行了如下步骤:A.测摆长l:用米尺量出摆线的长度;B.测周期T:将摆球拉起,然后放开,在摆球某次通过最低点时,按下秒表开始计时,同时将此次通过最低点作为第1次,接着一直数到摆球第60次通过最低点时,按下秒表停止计时,读出这段时间t,算出单摆的周期T=;C.将所测得的l和T代入单摆的周期公式T=2π,算出g,将它作为实验的最后结果写入报告中去.指出上面步骤中遗漏或错误的地方,写出该步骤的字母,并加以改正.(不要求进行误差计算)【答案】见解析【解析】A.要用卡尺测摆球直径d,摆长l等于摆线长加上.B.周期T=.C.g应多测量几次,然后取g的平均值作为实验的最后结果.本题偏重实验操作中的注意事项,测摆长应测出摆球重心到悬点的距离.要用游标卡尺测摆球直径d,摆长l等于悬线长加.测周期是关键,也是本题难点、易错点.题中所述从第1次到第60次通过最低点,经历的时间是=29.5个周期,所以T=.只测一次重力加速度就作为最终结果是不妥当的,应改变摆长,重做几次实验,取多次测定重力加速度的平均值作为最终结果.3.针对用单摆测重力加速度的实验,下面各种对实验误差的影响的说法中正确的是 ().A.在摆长和时间的测量中,时间的测量对实验误差影响较大B.在摆长和时间的测量中,长度的测量对实验误差影响较大C.将振动次数n记为(n+1),测算出的g值比当地的公认值偏大D.将摆线长当作摆长,未加摆球的半径测算出的g值比当地的公认值偏大【解析】对于单摆测重力加速度的实验,重力加速度的表达式g=,由于与周期是平方关系,它若有误差,在平方后会大,所以时间的测量影响更大些,选 A.另外,如果振动次数多数了一次,会造成周期的测量值变小,重力加速度测量值变大,C也对;若当摆长未加小球的半径,将使摆长的测量值变小,g值变小,D项错.4.某同学在做“用单摆测重力加速度”实验中,先测得摆线长为101.00cm,摆球直径为2.00cm,然后用秒表记录了单摆振动50次所用的时间为101.5 s.则(1)他测得的重力加速度g=________ m/s2.(2)他测得的g值偏小,可能的原因是________.(填选项前面的字母)A.测摆线长时摆线拉得过紧B.摆线上端未牢固地系于悬点,振动中出现松动,使摆线长度增加了C.开始计时,秒表过迟按下D.实验中误将49.5次全振动数为50次【答案】(1)9.76(2)B【解析】(1)单摆的摆长为:L=l+=1.02 m,单摆运动的周期为:T==s=2.03 s,线根据单摆的周期公式T=2π,代入数据解得重力加速度为:g=9.76 m/s2.(2)由单摆的周期公式T=2π,解得重力加速度为:g==,测得的g值偏小,可能是n、L测量偏小,也可能是t测量偏大造成的,可能的原因是B.5.关于单摆,下列说法中正确的是().A.摆球受到的回复力方向总是指向平衡位置B.摆球受到的回复力是它的合力C.摆球经过平衡位置时,所受的合力为零D.摆角很小时,摆球受的合力的大小跟摆球对平衡位置的位移大小成正比【答案】A【解析】单摆的回复力不是它的合力,而是重力沿圆弧切线方向的分力;当摆球运动到平衡位置时,回复力为零,但合力不为零,因为小球还有向心力,方向指向悬点(即指向圆心);另外摆球所受的合力与位移大小不成正比,故A正确.6.细长轻绳下端拴一小球构成单摆,在悬挂点正下方摆长处有一个能挡住摆线的钉子A,如图所示.现将单摆向左方拉开一个小角度然后无初速度释放.对于单摆的运动,下列说法中正确的是().A.摆球往返运动一次的周期比无钉子时的单摆周期小B.摆球在左、右两侧上升的最大高度一样C.摆球在平衡位置左右两侧走过的最大弧长相等D.摆球在平衡位置右侧的最大摆角是左侧的2倍【解析】向左方拉开一小角度可以认为单摆做简谐运动,无钉子的周期T1=2π;有钉子的周期T2=+=×2π+×2π=π+π <T1,A正确.根据机械能守恒可知摆球左右两侧上升的高度相同,B正确.如图所示,B、C为单摆左右两侧的最高位置,令∠BOA=α,∠CAD=β,B、C两点等高,由几何关系:l(1-cos α)= (1-cos β),所以cos β+1=2cos α.令β=2α,则cos α=1或0°即α=0°或90°.这不符合题意,即β≠2α,D错误.又=l·α,=·β,由于β≠2α,所以≠,所以C也错误.7.在城镇管网建设中,我们常能看到如图所示粗大的内壁比较光滑的水泥圆管,某同学想要测量圆管的内半径,但身上只有几颗玻璃弹珠和一块手表,于是他设计一个实验来进行测量,主要步骤及需要测出的量如下:(1)把一个弹珠从一个较低的位置由静止释放.(2)当它第一次经过最低点时开始计时并计作第1次,然后每次经过最低点计一次数,共计下N次时用时为t.由以上数据可求得圆管内半径为________.【答案】【解析】由单摆周期公式T=2π,=得R=.8.关于单摆的摆球运动时所受的力和能量转化,下列说法中正确的是()A.摆球从A运动到B的过程中,重力做的功等于动能的增量B.摆球在运动过程中受到三个力的作用:重力、摆线的拉力和回复力C.摆球在运动过程中,重力和摆线拉力的合力等于回复力D.摆球在运动过程中,重力沿圆弧切线方向的分力充当回复力【答案】AD【解析】分析小球受力知,小球受重力和摆线的拉力,两个力的合力提供回复力,在小球运动过程中,摆线的拉力始终与小球运动方向垂直,拉力不做功,由动能定理可知,从A到B运动过程中,重力做的功等于动能增量,故A正确;回复力是效果力,摆球在运动过程中并不受此力,故B错误;摆球在运动过程中,重力沿绳方向的分力与拉力的合力提供向心如速度,沿切线方向的分力是使小球回到平衡位置的回复力,故C错误,D正确。
高中物理单摆典型题解析

高中物理单摆典型题解析单摆是物理学中的一个经典问题,它是由一个质点悬挂在一根轻细绳或杆上而形成的。
单摆的运动可以用简谐运动来描述,具有一定的物理规律。
下面将对高中物理中的单摆典型题进行解析。
1. 单摆的周期问题单摆的周期是指摆动一次所需的时间,可以通过以下公式计算:T = 2π√(L/g)其中,T为周期,L为摆线的长度,g为重力加速度。
解题思路:根据给定的摆线长度和重力加速度,代入公式即可得到周期。
2. 单摆的频率问题单摆的频率是指单位时间内摆动的次数,可以通过以下公式计算:f = 1/T其中,f为频率,T为周期。
解题思路:根据给定的周期,代入公式即可得到频率。
3. 单摆的最大速度问题单摆的最大速度是指摆动过程中质点的最大速度,可以通过以下公式计算:vmax = √(2gL(1-cosθ))其中,vmax为最大速度,g为重力加速度,L为摆线的长度,θ为摆角。
解题思路:根据给定的重力加速度、摆线长度和摆角,代入公式即可得到最大速度。
4. 单摆的最大加速度问题单摆的最大加速度是指摆动过程中质点的最大加速度,可以通过以下公式计算:amax = g(1+sinθ)其中,amax为最大加速度,g为重力加速度,θ为摆角。
解题思路:根据给定的重力加速度和摆角,代入公式即可得到最大加速度。
5. 单摆的位移问题单摆的位移是指质点距离平衡位置的偏移量,可以通过以下公式计算:x = Lsinθ其中,x为位移,L为摆线的长度,θ为摆角。
解题思路:根据给定的摆线长度和摆角,代入公式即可得到位移。
以上就是高中物理中单摆的典型题解析。
在解题过程中,需要熟练运用公式和物理规律,理解各个物理量之间的关系。
此外,还需要注意单位的转换和计算的精度,确保结果的准确性。
通过多做题目和练习,可以提高对单摆问题的理解和解题能力。
高二物理【实验:用单摆测量重力加速度】

37
3.某同学利用单摆测量重力加速度. (1)(多选)为了使测量误差尽量小,下列说法正确的是( ) A.组装单摆须选用密度和直径都较小的摆球 B.组装单摆须选用轻且不易伸长的细线 C.实验时须使摆球在同一竖直面内摆动 D.摆长一定的情况下,摆的振幅尽量大
6
(4)把此单摆从平衡位置拉开一个角度,并使这个角小于 5°,再 释放小球.当摆球摆动稳定以后,在最低点位置时,用秒表开始计 时,测量单摆全振动 30 次(或 50 次)的时间,然后求出一次全振动的 时间,即单摆的振动周期.
(5)改变摆长,重做几次.
7
(6)根据单摆的周期公式,计算出每次实验的重力加速度;求出 几次实验得到的重力加速度的平均值,即本地区的重力加速度的值.
19
(2)①根据单摆振动的 v-t 图像知,单摆的周期 T=2.0 s. ②根据 T=2π gl 得 T2=4πg2l. 图线的斜率:k=4gπ2=4.04 s2/m, 解得:g≈9.76 m/s2. [答案] (1)①adf ②4πt22n2l (2)①2.0 ②9.76
20
【例 2】 用单摆测定重力加速度的实验装置如图所示.
41
[答案]
(1)BC
4π2ΔL (2)T21-T22
42
4.某同学在一次用单摆测重力加速度的实验中,测量 5 种不同 摆长与单摆的振动周期的对应情况,并将记录的结果描绘在如图所 示的坐标系中.图中各坐标点的标号分别对应实验中 5 种不同摆长 的情况.在处理数据时,该同学实验中的第________数据点应当舍 弃.画出该同学记录的 T2-l 图线.求重力加速度时,他首先求出图 线的斜率 k,则用斜率 k 求重力加速度的表达式为 g=________.
大学物理实验报告范例(单摆法测重力加速度)

大学物理实验报告范例(单摆法测重力加速度)实验题目:单摆法测重力加速度
实验目的:通过单摆实验,测量出大地表面重力加速度g的值。
实验原理:在斯托克斯定律,即由牛顿第二定律得出:重力加速度g等于单摆振子的运动延迟T的平方,除以4π的平方。
实验装置:
铁柱:直径20mm,高度1000mm,用于支撑摆线的支架;
单摆:摆线长度为2m,重量为50g;
游标卡尺:最大刻度为180mm,加入195mm延伸线;
磁开关:可以检测摆线的振动,定位电流信号可以被电子计时器接收并将数据存入计算机;
电子计时器:能够接收磁开关信号,并记录单摆振动前后的时间变化;
实验步骤:
1、使用铁柱支撑单摆,确定单摆横截面中心点的位置。
2、确定单摆的出发点,即T0的位置,并用游标卡尺测量摆线的位移。
3、安装磁开关并设置电子计时器。
4、使用手柄将单摆从临界点(T0处)拉出,以极小的角度出发,使磁开关接收到信号。
5、将单摆振动至最大振动幅度处,磁开关再次发出电流信号,电子计时器记录信号发出前后的时间变化,取得T2。
6、依次测量五组振动,并记录延迟时间T,作图求出算数平均值T2。
7、求出实验所得的大地表面重力加速度g的值,并与理论值进行比较。
实验结论:
使用单摆法测得的大地表面重力加速度g值与理论值相差不大,验证了斯托克斯定律的正确性,表明实验具有较高的精度和准确性。
7.3实验:用单摆测重力加速度(解析版)-2023年高考物理一轮复习提升核心素养

7.3实验:用单摆测重力加速度1.实验原理当摆角较小时,单摆做简谐运动,其运动周期为T =2πl g ,由此得到g =4π2lT 2,因此,只要测出摆长l 和振动周期T ,就可以求出当地的重力加速度g 的值.2.实验器材单摆,游标卡尺,毫米刻度尺,停表.3.实验过程(1)让细线的一端穿过金属小球的小孔,做成单摆.(2)把细线的上端用铁夹固定在铁架台上,把铁架台放在实验桌边,使铁夹伸到桌面以外,让摆球自然下垂,在单摆平衡位置处做上标记,如图所示.(3)用毫米刻度尺量出摆线长度l ′,用游标卡尺测出金属小球的直径,即得出金属小球半径r ,计算出摆长l =l ′+r .(4)把单摆从平衡位置处拉开一个很小的角度(不超过5°),然后放开金属小球,让金属小球摆动,待摆动平稳后测出单摆完成30~50次全振动所用的时间t ,计算出单摆的振动周期T .(5)根据单摆周期公式,计算当地的重力加速度.(6)改变摆长,重做几次实验.4.数据处理(1)公式法:利用T =t N 求出周期,算出三次测得的周期的平均值,然后利用公式g =4π2l T 2求重力加速度.(2)图像法:根据测出的一系列摆长l 对应的周期T ,作l -T 2的图像,由单摆周期公式得l =g 4π2T 2,图像应是一条过原点的直线,如图所示,求出图线的斜率k ,即可利用g =4π2k 求重力加速度.5.注意事项(1)悬线顶端不能晃动,需用夹子夹住,保证悬点固定.(2)单摆必须在同一平面内振动,且摆角小于5°.(3)选择在摆球摆到平衡位置处时开始计时,并数准全振动的次数.(4)应在小球自然下垂时用毫米刻度尺测量悬线长.(5)一般选用一米左右的细线.教材原型实验例题1.某同学用单摆测定重力加速度的实验装置如图所示。
(1)对测量原理的理解正确的是___________。
A .由g=224l T π可知,T 一定时,g 与l 成正比B .由g=224l Tπ可知,l 一定时,g 与T 2成反比 C .单摆的振动周期T 和摆长l 可用实验测定,由g=224l Tπ可算出当地的重力加速度(2)为了利用单摆较准确地测出重力加速度,应当选用的器材有___________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单摆问题一例
如图所示,摆球原来处于它的平衡位置O点,后来摆球在水平恒力F的作用下,沿着圆弧运动.摆球经过P点时,它所受的切向合外力恰好为零,这时撤去拉力F,则 ( )
A.撤除F后,摆球的最大偏角大于图示的θ
B.摆线的拉力对摆球不做功
C.摆球从O到P的重力势能增量小于F对摆球做的功
D.从O到P摆球重力势能的增量等于F对摆球做的功
A,“摆球经过P点时,它所受的切向合外力恰好为零,”但此前,由于F与重力的切向合力的作用,使它向左加速,到P点仍有速度,故“撤除F后,摆球的最大偏角大于图示的θ”[摆球从O到P的过程,F的切向分量变小;重力的切向分量变大;绳没有切向分量。
故合力的切向分量是逐渐减小的,加速度也逐渐减小,速度一直增加到P。
所以到P点,摆球有速度不为0]
B,摆线拉力垂直速度方向,故不做功。
C,由A项分析知,摆球偏角大于θ。
说明F做的功大于在P位置时的重力势能。
D,与C不相容。
选A,B,C。
正确。