数值分析上机题目详解

合集下载

数值分析报告上机报告材料

数值分析报告上机报告材料

第一题:1、已知A 与b12.38412 2.115237 -1.061074 1.112336 -0.1135840.718719 1.742382 3.067813 -2.031743 2.11523719.141823 -3.125432 -1.012345 2.189736 1.563849-0.784165 1.112348 3.123124 -1.061074 -3.125A =43215.567914 3.123848 2.031454 1.836742-1.056781 0.336993 -1.010103 1.112336 -1.012345 3.12384827.108437 4.101011-3.741856 2.101023 -0.71828 -0.037585 -0.1135842.189736 2.031454 4.10101119.8979180.431637-3.111223 2.121314 1.784317 0.718719 1.563849 1.836742 -3.741856 0.4316379.789365-0.103458 -1.103456 0.238417 1.742382 -0.784165 -1.056781 2.101023-3.111223-0.10345814.7138465 3.123789 -2.213474 3.067813 1.112348 0.336993-0.71828 2.121314-1.103456 3.12378930.719334 4.446782 -2.031743 3.123124 -1.010103-0.037585 1.7843170.238417-2.213474 4.44678240.00001[ 2.1874369 33.992318 -25.173417 0.84671695 1.784317 -86.612343 1.1101230 4.719345 -5.6784392]TB ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦=(1)用Househloser 变换,把A 化为三对角阵(并打印B )。

数值分析上机题目4

数值分析上机题目4

实验一实验项目:共轭梯度法求解对称正定的线性方程组实验内容:用共轭梯度法求解下面方程组(1) 123421003131020141100155x x x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪= ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ 迭代20次或满足()(1)1110k k x x --∞-<时停止计算。

编制程序:储存m 文件function [x,k]=CGmethod(A,b)n=length(A);x=2*ones(n,1);r=b-A*x;rho=r'*r;k=0;while rho>10^(-11) & k<1000k=k+1;if k==1p=r;elsebeta=rho/rho1;p=r+beta*p;endw=A*p;alpha=rho/(p'*w);x=x+alpha*p;r=r-alpha*w;rho1=rho;rho=r'*r;end运行程序:clear,clcA=[2 -1 0 0;-1 3 -1 0;0 -1 4 -1;0 0 -1 5];b=[3 -2 1 5]';[x,k]=CGmethod(A,b)运行结果:x =1.5058823529411760.0117647058823530.5294117647058821.105882352941177(2) Ax b =,A 是1000阶的Hilbert 矩阵或如下的三对角矩阵,A[i,i]=4,A[i,i-1]=A[i-1,i]=-1,i=2,3,..,nb[1]=3, b[n]=3, b[i]=2,i=2,3,…,n-1迭代10000次或满足()()710k k r b Ax -=-≤时停止计算。

编制程序:储存m 文件function [x,k]=CGmethod_1(A,b)n=length(A);x(1:n,1)=0;r=b-A*x;r1=r;k=0;while norm(r1,1)>10^(-7)&k<10^4k=k+1;if k==1p=r;elsebeta=(r1'*r1)/(r'*r);p=r1+beta*p;endr=r1;w=A*p;alpha=(r'*r)/(p'*w);x=x+alpha*p;r1=r-alpha*w;end运行程序:clear,clcn=1000;A=hilb(n);b=sum(A')';[x,k]=CGmethod(A,b)实验二1、 实验目的:用复化Simpson 方法、自适应复化梯形方法和Romberg 方法求数值积分。

数值分析习题与解析

数值分析习题与解析

习 题 一 解 答1.取3.14,3.15,227,355113作为π的近似值,求各自的绝对误差,相对误差和有效数字的位数。

分析:求绝对误差的方法是按定义直接计算。

求相对误差的一般方法是先求出绝对误差再按定义式计算。

注意,不应先求相对误差再求绝对误差。

有效数字位数可以根据定义来求,即先由绝对误差确定近似数的绝对误差不超过那一位的半个单位,再确定有效数的末位是哪一位,进一步确定有效数字和有效数位。

有了定理2后,可以根据定理2更规范地解答。

根据定理2,首先要将数值转化为科学记数形式,然后解答。

解:(1)绝对误差:e(x)=π-3.14=3.14159265…-3.14=0.00159…≈0.0016。

相对误差:3()0.0016()0.51103.14r e x e x x -==≈⨯ 有效数字:因为π=3.14159265…=0.314159265…×10,3.14=0.314×10,m=1。

而π-3.14=3.14159265…-3.14=0.00159…所以│π-3.14│=0.00159…≤0.005=0.5×10-2=21311101022--⨯=⨯ 所以,3.14作为π的近似值有3个有效数字。

(2)绝对误差:e(x)=π-3.15=3.14159265…-3.14=-0.008407…≈-0.0085。

相对误差:2()0.0085()0.27103.15r e x e x x --==≈-⨯ 有效数字:因为π=3.14159265…=0.314159265…×10,3.15=0.315×10,m=1。

而π-3.15=3.14159265…-3.14=-0.008407…所以│π-3.15│=0.008407……≤0.05=0.5×10-1=11211101022--⨯=⨯ 所以,3.15作为π的近似值有2个有效数字。

(3)绝对误差:22() 3.14159265 3.1428571430.0012644930.00137e x π=-=-=-≈- 相对误差:3()0.0013()0.4110227r e x e x x--==≈-⨯ 有效数字: 因为π=3.14159265...=0.314159265 (10)22 3.1428571430.3142857143107==⨯,m=1。

东南大学数值分析上机题答案

东南大学数值分析上机题答案

东南⼤学数值分析上机题答案数值分析上机题第⼀章17.(上机题)舍⼊误差与有效数设∑=-=Nj N j S 2211,其精确值为)111-23(21+-N N 。

(1)编制按从⼤到⼩的顺序1-1···1-311-21222N S N +++=,计算N S 的通⽤程序;(2)编制按从⼩到⼤的顺序121···1)1(111222-++--+-=N N S N ,计算NS 的通⽤程序;(3)按两种顺序分别计算210S ,410S ,610S ,并指出有效位数(编制程序时⽤单精度);(4)通过本上机题,你明⽩了什么?解:程序:(1)从⼤到⼩的顺序计算1-1···1-311-21222N S N +++=:function sn1=fromlarge(n) %从⼤到⼩计算sn1format long ; sn1=single(0); for m=2:1:nsn1=sn1+1/(m^2-1); end end(2)从⼩到⼤计算121···1)1(111222-++--+-=N N S N function sn2=fromsmall(n) %从⼩到⼤计算sn2format long ; sn2=single(0); for m=n:-1:2sn2=sn2+1/(m^2-1); end end(3)总的编程程序为: function p203()clear allformat long;n=input('please enter a number as the n:') sn=1/2*(3/2-1/n-1/(n+1));%精确值为sn fprintf('精确值为%f\n',sn);sn1=fromlarge(n);fprintf('从⼤到⼩计算的值为%f\n',sn1);sn2=fromsmall(n);fprintf('从⼩到⼤计算的值为%f\n',sn2);function sn1=fromlarge(n) %从⼤到⼩计算sn1 format long;sn1=single(0);for m=2:1:nsn1=sn1+1/(m^2-1);endendfunction sn2=fromsmall(n) %从⼩到⼤计算sn2 format long;sn2=single(0);for m=n:-1:2sn2=sn2+1/(m^2-1);endendend运⾏结果:从⽽可以得到N值真值顺序值有效位数2 100.740050 从⼤到⼩0.740049 5从⼩到⼤0.740050 64 100.749900 从⼤到⼩0.749852 3从⼩到⼤0.749900 66 100.749999 从⼤到⼩0.749852 3从⼩到⼤0.749999 6(4)感想:通过本上机题,我明⽩了,从⼩到⼤计算数值的精确位数⽐较⾼⽽且与真值较为接近,⽽从⼤到⼩计算数值的精确位数⽐较低。

数值分析上机实习题及答案.docx

数值分析上机实习题及答案.docx

方詡文金兴:爭[数值分析]2017-2018第二学期上机实习题1:编程计算亍丄,其中C= 4. 4942x10307,给出并观察计算结心C"果,若有问题,分析之。

解:mat lab 编程如下:E) funct ion diy i ti formatlong g;n 二input C 输入ii 值= c= 4.4942E307; sum 二0; s 二 0;E3 for i = l:n s = l/ (c*i);>> diyiti 输入n 值:10 104.6356e-308 >> diyiti输入ri 值:1001004.6356e-308 >> diyiti 输入n 值:1000 10004.6356e-308 >> diyiti揄入n 值* 1000001000004・ 6356e-308 >> diyiti输入n 值;1000000001000000004.6356e-308图二:运行结果Mat lab 中,forma t long g 对双精度,显示15位定点或浮点格式,由上图 可知,当输入较小的n 值5分别取10, 100, 1000, 100000, 100000000)的时候, 结果后面的指数中总是含有e-308,这和题目中的C 值很相似,我认为是由于分 母中的C 值相对于n 值过大,出现了 “大数吃小数”的现彖,这是不符合算法原 则的。

2:利用牛顿法求方程-1^ = 2于区间241的根,考虑不同初值下牛顿法的收敛情况。

解:牛顿法公式为:利用mat lab 编程function di2ti21 3i=l ;2 2.85208156699784 xO 二input ('输入初值x0:‘ );A 二[i x0];3 2.55030468822809 t=x0+ (x0-log (xO) -2) /(1-1/xO) ; %迭代函数4 1.91547247100476 三 while (abs (t _x0)>0.01)i=i+l; 5 0.37867158538991 xO 二 t; 6 0.774964959780275 A = [A;i xO];t =x0+(x0-log(xO)-2)/(1-1/xO): 7 4.11574081641933 cnd| 8 5.04162436446126 disp (A);96.81782826645596当输入初值二3的时候并不能收敛。

数值分析(课后习题答案详解).ppt

数值分析(课后习题答案详解).ppt

x x 41 2 0 . 25 0 . 5451 1 1 再解 3 x 0 . 875 ,得 x 1 . 2916 2 2 2 0 3 1 . 7083 . 5694 x x 3 3
4 41 2 T 故得 GG 分解: A 1 2 3 2 2 3 3 3 1 1 16 11 4 2 T 3 1 LDL 分解为: A 1 4 4 1 2 3 1 1 9 1 2 2
一.习题1(第10页)
1-1.下列各数都是经过四舍五入得到的近似值 ,试分 别指出它们的绝对误差限,相对误差限和有效数字的位数.
x1=5.420,x2=0.5420,x3=0.00542,x4=6000,x5=0.6105.
解 绝对误差限分别为: 1=0.510-3,2=0.510-4, 3=0.510-5,4=0.5,5=0.5104 . 相对误差限分别为: r1=0.510-3/5.420=0.00923%, r2=0.00923%,r3=0.0923%,4=0.0083%,5=8.3%. 有效数位分别为: 4位,4位,3位,4位,1位. 1-2.下列近似值的绝对误差限都是0.005,试问它们有
2 11 2 1 2 故得 Crout 分解: A 4 3 13 6 12 1 1
1 2 11 2 1 2 LDM 分解为: A 21 13 3 3 4 1 1 1
几位有效数字. a=-1.00031,b=0.042,c=-0.00032

数值分析上机题目详解

数值分析上机题目详解

第一章一、题目 设∑=-=N N j S 2j 211,其精确值为)11123(21+--N N 。

1) 编制按从大到小的顺序11131121222-+⋯⋯+-+-=N S N ,计算S N 的通用程序。

2) 编制按从小到大的顺序1211)1(111222-+⋯⋯+--+-=N N S N ,计算S N 的通用程序。

3) 按两种顺序分别计算64210,10,10S S S ,并指出有效位数。

(编制程序时用单精度)4) 通过本次上机题,你明白了什么?二、通用程序N=input('Please Input an N (N>1):');AccurateValue=single((0-1/(N+1)-1/N+3/2)/2);Sn1=single(0);for a=2:N;Sn1=Sn1+1/(a^2-1);endSn2=single(0);for a=2:N;Sn2=Sn2+1/((N-a+2)^2-1);endfprintf('The value of Sn (N=%d)\n',N);fprintf('Accurate Calculation %f\n',AccurateValue); fprintf('Caculate from large to small %f\n',Sn1);fprintf('Caculate from small to large %f\n',Sn2);disp('____________________________________________________')三、结果从结果可以看出有效位数是6位。

感想:可以得出,算法对误差的传播有一定的影响,在计算时选一种好的算法可以使结果更为精确。

从以上的结果可以看到从大到小的顺序导致大数吃小数的现象,容易产生较大的误差,求和运算从小数到大数所得到的结果才比较准确。

《数值分析》练习题及答案解析

《数值分析》练习题及答案解析

《数值分析》练习题及答案解析第一章 绪论主要考查点:有效数字,相对误差、绝对误差定义及关系;误差分类;误差控制的基本原则;。

1. 3.142和3.141分别作为π的近似数具有( )和( )位有效数字.A .4和3B .3和2C .3和4D .4和4 答案:A2. 设 2.3149541...x *=,取5位有效数字,则所得的近似值x=___________ .答案:2.31503.若近似数2*103400.0-⨯=x 的绝对误差限为5105.0-⨯,那么近似数有几位有效数字 解:2*103400.0-⨯=x ,325*10211021---⨯=⨯≤-x x 故具有3位有效数字。

4 . 14159.3=π具有4位有效数字的近似值是多少?解:10314159.0⨯= π,欲使其近似值*π具有4位有效数字,必需!41*1021-⨯≤-ππ,3*310211021--⨯+≤≤⨯-πππ,即14209.314109.3*≤≤π即取( , )之间的任意数,都具有4位有效数字。

第二章 非线性方程求根 主要考查点:二分法N 步后根所在的区间,及给定精度下二分的次数计算;非线性方程一般迭代格式的构造,(局部)收敛性的判断,迭代次数计算; 牛顿迭代格式构造;求收敛阶;1.用二分法求方程012=--x x 的正根,要求误差小于0.05。

(二分法)解:1)(2--=x x x f ,01)0(<-=f ,01)2(>=f ,)(x f 在[0,2]连续,故[0,2]为函数的有根区间。

"(1)计算01)1(<-=f ,故有根区间为[1,2]。

(2)计算041123)23()23(2<-=--=f ,故有根区间为]2,23[。

(3)计算0165147)47()47(2>=--=f ,故有根区间为]47,23[。

(4)计算06411813)813()813(2>=--=f ,故有根区间为]813,23[。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章
一、题目
设∑
=-=
N
N j S 2
j 2
1
1,其精确值为)11
123(21+--N N 。

1) 编制按从大到小的顺序1
1
13112122
2-+⋯⋯+-+-=N S N ,计算S N 的通用程序。

2) 编制按从小到大的顺序1
21
1)1(111222-+
⋯⋯+--+-=
N N S N ,计算S N 的通用程序。

3) 按两种顺序分别计算64210,10,10S S S ,并指出有效位数。

(编制程序时用单精度) 4) 通过本次上机题,你明白了什么?
二、通用程序
N=input('Please Input an N (N>1):'); AccurateValue=single((0-1/(N+1)-1/N+3/2)/2); Sn1=single(0);
for a=2:N; Sn1=Sn1+1/(a^2-1); end
Sn2=single(0);
for a=2:N; Sn2=Sn2+1/((N-a+2)^2-1); end
fprintf('The value of Sn (N=%d)\n',N);
fprintf('Accurate Calculation %f\n',AccurateValue); fprintf('Caculate from large to small %f\n',Sn1); fprintf('Caculate from small to large %f\n',Sn2); disp('____________________________________________________')
三、结果
从结果可以看出有效位数是6位。

感想:可以得出,算法对误差的传播有一定的影响,在计算时选一种好的算法可以使结果更为精确。

从以上的结果可以看到从大到小的顺序导致大数吃小数的现象,容易产生较大的误差,求和运算从小数到大数所得到的结果才比较准确。

第二章
一、题目
(1)给定初值0x 及容许误差ε,编制Newton 法解方程f(x)=0的通用程序。

(2)给定方程03
)(3
=-=x x x f ,易知其有三个根3,0,3321=
*=*-=*
x x x
a) 由Newton 方法的局部收敛性可知存在,0>δ当),(0δδ+-∈x 时,Newton 迭代序列收敛于根x 2*。

试确定尽可能大的δ。

b)试取若干初始值,观察当),1(),1,(),,(),,1(),1,(0+∞+-----∞∈δδδδx 时Newton 序列的收敛性以及收敛于哪一个根。

(3)通过本上机题,你明白了什么?
二、通用程序
1、定义函数和导函数 %% 定义函数f(x) function Fx=fx(x) Fx=x^3/3-x;
---------------------------------- %% 定义导函数df(x) function Fx=dfx(x) Fx=x^2-1; 2、寻找最大的δ clear flag=1; k=1; x0=0; while flag==1 delta=k*10^-6; x0=delta; k=k+1; m=0;
flag1=1;
while flag1==1 && m<=10^3
x1=x0-fx(x0)/dfx(x0);
if abs(x1-x0)<10^-6 flag1=0;
end
m=m+1;
x0=x1;
end
if flag1==1||abs(x0)>=10^-6 flag=0;
end
end
fprintf('The maximun delta is %f\n',delta);
3、Newton法求方程的根
clear
ef=10^-6; %% 给定容许误差10^-6
k=0;
x0=input('Please input initial value Xo:'); disp('k Xk');
fprintf('0 %f\n',x0);
flag=1;
while flag==1 && k<=10^3
x1=x0-fx(x0)/dfx(x0);
if abs(x1-x0)<ef
flag=0;
end
k=k+1;
x0=x1;
fprintf('%d %f\n',k,x0);
end
三、结果
寻找最大的δ值:
在题目给出的不同区间内进行牛顿迭代:
综上所述:首先得到最大的δ值为0.774597。

在各区间任意取初值进行迭代得到(-∞,-1)区间收敛于-1.73205,(-1,-δ)区间局部收敛于0,(-δ,δ)区间收敛于0,(δ,1)区间类似于(-1,δ)区间,收敛于0,(1,∞)收敛于1.73205。

感想:通过本上机题,了解到用Newton法求多根方程的根时,迭代序列收敛于某一个根有一定的区间限制。

如果不清楚这个限制随意取值的话,会出现在一个区间上局部收敛于
不同的根的情况。

如下面的迭代:
第三章
一、题目
列主元Gauss 消去法对于某电路的分析,归结为求解线性方程组RI V =。

其中
3113
000100
00
13359
01100
0009311000000
0107930000900030577
0500
000747300000000304100
000500272
0009000229R --⎛⎫
⎪--- ⎪ ⎪--

--- ⎪ ⎪=---

-- ⎪ ⎪-

-- ⎪ ⎪--⎝

()15,27,23,0,20,12,7,7,10T
T V =----
(1) 编制解n 阶线性方程组Ax b =的列主元高斯消去法的通用程序; (2) 用所编程序线性方程组RI V =,并打印出解向量,保留5位有效数;
二、通用程序
%% 列主元Gauss 消去法求解线性方程组%% %%参数输入
n=input('Please input the order of matrix A: n='); %输入线性方程组阶数n b=zeros(1,n);
A=input('Input matrix A (such as a 2 order matrix:[1 2;3,4]) :'); b(1,:)=input('Input the column vector b:'); %输入行向量b b=b';
C=[A,b]; %得到增广矩阵 %%列主元消去得上三角矩阵
for i=1:n-1 [maximum,index]=max(abs(C(i:n,i))); index=index+i-1; T=C(index,:);
C(index,:)=C(i,:); C(i,:)=T;
for k=i+1:n %%列主元消去 if C(k,i)~=0
C(k,:)=C(k,:)-C(k,i)/C(i,i)*C(i,:); end end
end
%% 回代求解 %%
x=zeros(n,1);
x(n)=C(n,n+1)/C(n,n);
for i=n-1:-1:1
x(i)=(C(i,n+1)-C(i,i+1:n)*x(i+1:n,1))/C(i,i);
end
A=C(1:n,1:n); %消元后得到的上三角矩阵
disp('The upper teianguular matrix is:')
for k=1:n
fprintf('%f ',A(k,:));
fprintf('\n');
end
disp('Solution of the equations:');
fprintf('%.5g\n',x); %以5位有效数字输出结果
三、求解结果
执行程序,输入矩阵A(即题中的矩阵R)和列向量b(即题中的V):
由上述结果得:
感想:本题用Gauss列主元的方法求出了线性方程组的解,并且精确到5位有效数字。

可以看到结果是很精确而且正确的,对于解决立体电路问题的方程求解是一种非常方便快速且精确的方法。

总的来说,Guass列主元消去法是一种大大减少了计算步骤和时间的方法。

相关文档
最新文档