具有禁止子图的有向图是超欧拉有向图的条件

合集下载

第15章 欧拉图与哈密顿图

第15章 欧拉图与哈密顿图

e5
v3
v2 e1 v1
e2
e3
e4
v4
e5
v3 e3 e4 v4
v2 v1 v5
e2 e3
e1 e5
v3 e4 v4 v6
v1
e6 v5 e7 e8 v6 e2 e3
e8 v5
e8 v6 v5 e2 v6
e7
G
v2 e1 v1 v5 v6 v3 e4 v4 v5 v2
G1
e2 v3 e4 v2 e1 v1 v5 e1
定理15.7
定理15.7 设G是n阶无向简单图,若对于G中任意不相邻的顶 点vi,vj,均有 d(vi)+d(vj)≥n-1 (15.1) 则G中存在哈密顿通路。 证明 首先证明G是连通图。 否则G至少有两个连通分支, 设G1,G2是阶数为n1,n2的两个连通分支, 设v1∈V(G1),v2∈V(G2),因为G是简单图,所以 dG(v1)+dG(v2)=dG1(v1)+dG2(v2)≤n1-1+n2-1≤n-2 这与(15.1)矛盾,所以G必为连通图。
例15.3的说明
哈密顿通路是经过图中所有顶点的一条初级通路。 哈密顿回路是经过图中所有顶点的初级回路。 对于二部图还能得出下面结论: 一般情况下,设二部图G=<V1,V2,E>,|V1|≤|V2|,且 |V1|≥2,|V2|≥2,由定理15.6及其推论可以得出下面结 论: (1) 若G是哈密顿图,则|V1|=|V2|。 (2) 若G是半哈密顿图,则|V2|=|V1|+1。 (3) 若|V2|≥|V1|+2,则G不是哈密顿图,也不是半哈密 顿图。
§15.2 哈密顿图
设图为G2,则G2=<V1,V2,E>,其中 V1={a,g,h,i,c},V2={b,e,f,j,k,d}, 易知,p(G2-V1)=|V2|=6>|V1|=5, 由定理15.6可知,G2不是哈密顿图, 但G2是半哈密顿图。 baegjckhfid为G2中一条哈密顿通路。 设图为G3。G3=<V1,V2,E>,其中 V1={a,c,g,h,e},V2={b,d,i,j,f}, G3中存在哈密顿回路。 如 abcdgihjefa, 所以G3是哈密顿图。

7-4欧拉图与汉密尔顿图

7-4欧拉图与汉密尔顿图

证明(略)。
定理4. 5 设G是具有n个结点的简单图,如果G中每一对结点度数之和大 于等于n,则在G中存在一条汉密尔顿回路。 证明(略)。
(3)充要条件
定义4. 4 设给定图G=<V,E>有n个结点,若将图G中度数之和至少是n的 非邻接结点连接起来得图G’,对图G’重复上述步骤,直到不再有这样的结 点对存在为止,所得到的图,称为原图G的闭包,记作C(G)。 定理4. 6 当且仅当一个简单图的闭包是汉密尔顿图时,这个简单图是汉密尔顿图。 证明:略。
证明: 设C是G的一条汉密尔顿回路,则对于V的任何一个非空子集S在C中 删去S中任一结点a1,则C-a1是连通的非回路,若再删去S中另一结点a2, 则W(C- a1- a2)≤ 2,由归纳法可得: W(C-S)≤ |S| 同时C-S是G-S的一个生成子图(包含G的每个结点的子图),因而 W(G-S)≤ W(C-S) 所以 W(G-S)≤ |S|。 证毕。
证明:
推论 无向图G具有一条欧拉回路,当且仅当G是连通的,并 且所有结点度数全为偶数。
定理4. 1 证明
必要性 设G具有欧拉路,即有点边序列v0e1v1e2…eiviei+1…ekvk,其中
结点可能重复出现,但边不重复,因为欧拉路经过图G的所有结点, 故图G必是连通的。 对任意一个不是端点的结点vi,在欧拉路中每当vi出现一次,必 关联两边,故vi虽可重复出现,但deg(vi)必是偶数。对于端点,若 v0=vk,则d(v0)为偶数,即G中无奇数度结点;若端点v0与vk不同, 则d(v0)为奇数,d(vk)为奇数,G中就有两个奇数结点。 充分性 若图G连通,有零个或两个奇数结点,我们构造一条欧拉路如下:
二、汉密尔顿图
1、正十二面体问题 2、汉密尔顿图的定义 3、汉密尔顿图的判别条件

离散数学结构第十五章欧拉图与哈密顿图

离散数学结构第十五章欧拉图与哈密顿图

第十五章欧拉图与哈密顿图15」欧拉图—、欧拉通路、欧拉回路、欧拉图、半欧拉图的定义務定义15・1通过图(无向图或有向图)中所有边一次jl仅一次行遍图中所有顶点的通路称为欧拉通路,通过图中所有边一次并且仅一次行遍所有顶点的回路称为欧拉回路。

具有欧拉回路的图称为欧拉图,具有欧拉通路而无欧拉回路的图称为半欧拉图。

从定义不难看出,欧拉通路是图中经过所有边的简单的生成通路(经过所有顶点的通路称为生成通路),类似地,欧拉回路是经过所有边的简单的生成回路。

在这里做个规定,即平凡图是欧拉图。

(1) ⑵图15.1在图15」所示各图中QiSSgs为(1冲的欧拉回路所以(1禺为欧拉图oCiGSGb 为(2)中的一条欧拉通路,但图中不存在欧拉回路(为什么?),所以(2 )为半欧拉图。

(3 )中既没有欧拉回路,也没有欧拉通路(为什么?),所以(3 )不是欧拉图,也不是半欧拉图。

CI6C3C4为(4)图中的欧拉回路,所以(4)图为欧拉图。

(5 ) , ( 6 )图中都既没有欧拉回路,也没有欧拉通路(为什么?)二、判别定理拓定理15・1无向图G是欧拉图当11仅当G是连通图,11 G中没有奇度顶点。

证若G是平凡图,结论显然成立,下面设G为非平凡图,设G是m条边的n阶无向图。

并设G的顶点集V ={v h v2,...,v n}.必要性。

因为G为欧拉图,所以G中存在欧拉回路,设C为G中任意一条欧拉回路,VVi,VjeV , v 都在C上,因而Vi,Vj连通,所以G为连通图。

又V Vi eV,"在C 上每出现一次获得2度,若岀现k次就获得2k度,即d(Vi)二2k ,所以G中无奇度顶点。

充分性,由于G为非平凡的连通图可知,G中边数m21.对m作归纳法。

(1) m=l时,由G的连通性及无奇度顶点可知,G只能是一个环,因而G为欧拉图。

(2) 设mwk(k21)时结论成立,要证明m二K+1时,结论也成立。

由G的连通性及无奇度顶点可知,&(G)、2•类似于例14.8 ,用扩大路径法可以证明G中存在长度大于或等于3的置,设C为G中一个圏,删除C上的全部边,得G的生成子图G,设G有s个连通分支G I,G‘2,...,G;,每个连通分支至多有k条边,且无奇度顶点,并且设G i与C*的公共顶点为, i=l,2,…,S ,由归纳假设可知,G I,G‘2,…,G;都是欧拉图,因而都存在欧拉回路Cl , i=l,2,…,s.最后将C还原(即将删除的边重新加上),并从C上的某顶*点*开始行遍,每遇到% ,就行遍G'i中的欧拉回路Cl , i二1,2,…,s ,最后回到v r,得回路V「... ... ... "... "... b ... b ...Vr,此回路经过G中每条边一次且仅一次并行遍G中所有顶点,因而它是G中的欧拉回路(演示这条欧拉回路),故G为欧拉图。

图论常考知识点总结

图论常考知识点总结

图论常考知识点总结1. 图的基本概念图是由顶点集合和边集合构成的。

顶点之间的连接称为边,边可以有方向也可以没有方向。

若图的边没有方向,则称图为无向图;若图的边有方向,则称图为有向图。

图的表示方式:邻接矩阵和邻接表。

邻接矩阵适合存储稠密图,邻接表适合存储稀疏图。

2. 图的连通性连通图:如果图中任意两点之间都存在路径,则称该图是连通图。

强连通图:有向图中,任意两个顶点之间都存在方向相同的路径,称为强连通图。

弱连通图:有向图中,去掉每条边的方向之后,所得到的无向图是连通图,称为弱连通图。

3. 图的遍历深度优先搜索(DFS):从起始顶点出发,沿着一条路往前走,走到不能走为止,然后退回到上一个分支点,再走下一条路,直到走遍图中所有的顶点。

广度优先搜索(BFS):从起始顶点出发,先访问它的所有邻居顶点,再按这些邻居顶点的顺序依次访问它们的邻居顶点,依次类推。

4. 最短路径狄克斯特拉算法:用于计算图中一个顶点到其他所有顶点的最短路径。

弗洛伊德算法:用于计算图中所有顶点之间的最短路径。

5. 最小生成树普里姆算法:用于计算无向图的最小生成树。

克鲁斯卡尔算法:用于计算无向图的最小生成树。

6. 拓扑排序拓扑排序用于有向无环图中对顶点进行排序,使得对每一条有向边(u,v),满足排序后的顶点u在顶点v之前。

以上就是图论中一些常考的知识点,希望对大家的学习有所帮助。

当然,图论还有很多其他的知识点,比如欧拉图、哈密顿图、网络流等,这些内容都值得我们深入学习和探讨。

图论在实际应用中有着广泛的应用,掌握好图论知识对于提升计算机科学和工程学的技能水平有着重要的意义。

有向图与无向图的性质与算法

有向图与无向图的性质与算法

有向图与无向图的性质与算法1. 引言在图论中,有向图和无向图是两种最基本的图模型。

它们在表达和解决各类实际问题时具有重要的应用价值。

本文将介绍有向图和无向图的性质以及相关算法,以便读者对其有更深入的理解。

2. 有向图的性质有向图是由一系列顶点和有方向的边组成的图模型。

以下是有向图的几个重要性质:2.1 有向边的方向性与无向图不同,有向图中的边是有方向的,它们从一个顶点指向另一个顶点。

这种方向性在描述一些实际问题时非常有用,比如描述物流运输的路径。

2.2 顶点的入度和出度有向图中的每个顶点都有一个入度和一个出度。

顶点的入度是指指向该顶点的边的数量,而出度是指从该顶点出发的边的数量。

通过计算入度和出度,我们可以了解顶点在图中的连接情况。

2.3 有向环和拓扑排序有向图中存在一个重要的概念,即有向环。

有向环是指从一个顶点出发,经过若干个有向边后又回到该顶点的路径。

有向环在一些问题的分析和解决中具有特殊意义。

而拓扑排序是一种常用的对有向无环图进行排序的方法,它可以按照顶点之间的依赖关系进行排序。

3. 无向图的性质无向图是由一系列顶点和无方向的边组成的图模型。

以下是无向图的几个重要性质:3.1 无向边的无方向性与有向图不同,无向图中的边是无方向的,它们连接着两个顶点,代表了两个顶点之间的关系。

无向图可以用来表示一些没有方向性的问题,比如社交网络中的好友关系。

3.2 顶点的度数无向图中的顶点的度数是指与该顶点相连的边的数量。

顶点的度数越高,说明该顶点在图中的重要性越高,具有更多的连接关系。

3.3 联通性和连通分量无向图中有一个关键性质,即联通性。

若两个顶点之间存在一条连接它们的路径,则称这两个顶点是连通的。

连通分量则是将图中所有连通的顶点分为若干个集合,每个集合内的顶点都是连通的。

4. 算法与应用4.1 有向图的最短路径算法有向图中的最短路径算法是指寻找从一个顶点到另一个顶点的最短路径的方法。

其中,Dijkstra算法和Bellman-Ford算法是常用的有向图最短路径算法。

图论课件第三章图的连通性

图论课件第三章图的连通性

Bellman-Ford算法
总结词
Bellman-Ford算法是一种用于查找带权图中单源最短路径的算法。
详细描述
Bellman-Ford算法的基本思想是从源节点开始,通过不断更新节点之间的距离,逐步找到从源节点到 其他节点的最短路径。该算法可以处理带有负权重的边,并且在图中存在负权重环的情况下也能正确 处理。
THANKS
感谢观看
Floyd-Warshall算法
总结词
Floyd-Warshall算法是一种用于查找所有节点对之间最短路 径的动态规划算法。
详细描述
Floyd-Warshall算法的基本思想是通过动态规划的方式,逐 步构建最短路径矩阵。该算法首先初始化一个距离矩阵,然 后通过一系列的转移操作,逐步更新距离矩阵,直到找到所 有节点对之间的最短路径。
欧拉回路
总结词
欧拉回路是指一个路径的起点和终点是同一点,且经过图中的每条边且仅经过 一次的路径,并且该路径闭合。
详细描述
欧拉回路是欧拉路径的一种特殊情况,它不仅满足欧拉路径的所有条件,而且 起点和终点是同一点,形成一个闭合的路径。在图论中,欧拉回路具有重要的 应用价值。
欧拉回路的判定
总结词
判断一个图是否存在欧拉回路是一个NP 难问题,目前没有已知的多项式时间复 杂度的算法。
连通度
总结词
连通度是描述图中任意两点之间可达性的度量,表示图中节点之间的连接紧密程度。
详细描述
在图论中,连通度是衡量图连通性的一个重要参数。对于一个无向图,连通度通常用K表示,表 示图中任意两点之间是否存在路径。对于有向图,连通度分为入度和出度,分别表示从一个节 点到另一个节点是否存在路径和从另一个节点到这个节点是否存在路径。

《离散数学》图论 (上)

《离散数学》图论 (上)
12
无向图与有向图
v2
e1
e2
e3
v3
e4
v1
e5 (e1)={( v42, v24 )}
v4
(e2)={( v32, v23 )} (e3)={( v3, v4 )}
(e4)=({ v43, v34 )}
(e5)=({ v4,}v4 )
13
无向图与有向图
A B C
D E F
14
无向图与有向图
第八章 图论
第八章 图论
§8.1 基本概念
§8.1.1 无向图、有向图和握手定理 §8.1.2 图的同构与子图 §8.1.3 道路、回路与连通性 §8.1.4 图的矩阵表示
§8.2 欧拉图 §8.3 哈密尔顿图 §8.4 平面图 §8.5 顶点支配、独立与覆盖
2
无向图与有向图
3
无向图与有向图
一个无向图(undirected graph, 或graph) G 指一个三元组 (V, E, ),其中
vV
vV
24
特殊的图
假设 G=(V, E, ) 为无向图,若 G 中所有 顶点都是孤立顶点,则称 G 为零图(null graph)或离散图(discrete graph);若 |V|=n,|E|=0,则称 G 为 n 阶零图 所有顶点的度数均相等的无向图称为正 则图(regular graph),所有顶点的度数 均为 k 的正则图称为k度正则图,也记作 k-正则图 注:零图是零度正则图
19
握手定理
定理(图论基本定理/握手定理)
假设 G=(V, E, ) 为无向图,则deg(v) 2 E , vV
即所有顶点度数之和等于边数的两倍。
推论
在任何无向图中,奇数度的顶点数必是偶 数。

第七章 第一讲 无向图及有向图

第七章 第一讲 无向图及有向图

完全图举例
K5
3阶有向完全图
4阶竞赛图
子图(subgraph)
定义8 设G=<V,E>,G=<V ,E>为两个图(同为无 向图或同为有向图),若V V且E E,则称G 是G的子图,G为G 的母图,记作G G。 若V V或E E,则称G 为G的真子图。
若et∈E,使得et=<vi,vj>,则称vi为et的始点,vj为 et的终点,并称vi邻接到vj,vj邻接于vi。
若ek的终点为el的始点,则称ek与el相邻(adjacent)。 el ek vi vj
定义3 在无向图中,关联一对顶点的无向边如果多于1条 ,则称这些边为平行边,平行边的条数称为重数。
3
欧拉:传奇的一生
年少时,听从父亲的安排,巴塞尔大学,学习神学和希伯来语 ,结果被约翰· 伯努利欣赏,17岁获得硕士学位之后,才开始 专供数学。
为获得圣彼得堡科学院的医学部的职位空缺,欧拉在巴塞尔便 全力投入生理学的研究,并出席医学报告会。1727年,等他到 达俄罗斯时,叶卡捷琳娜一世女皇去世,他进入数学部。 1733年,欧拉回到瑞士,并结婚,一生共生育13个孩子,5个 存活。 为了赢得巴黎奖金而投身于一个天文学问题,那是几个有影响 的大数学家搞了几个月时间的,欧拉在三天之后把它解决了。 可是过分的劳累使他得了一场病,病中右眼失明了。 欧拉到底出了多少著作,直至1936年人们也没有确切的了解。 但据估计,要出版已经搜集到的欧拉著作,将需用大4开本60 4 至80卷。彼得堡学院为了整理他的著作整整花了 47年。
解: (3,3,2,1),(3,2,2,1,1) 不可以图化
(3,3,2,2)可以图化
(3,2,2,2,1)可以图化
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

子图. 如果 H 是 D 的一个子图且 SA( D) - A( H) ,V( D〈S〉) V( H) ,H + S 是 D 的子图,其弧集为 A( H) +
S,点集为 V( H) . 我们一般用 D - a 代替 D - { a} ,用 D + a 代替 D + { a} . 令 D1 和 D2 是两个不交的有向图,
自然科学基金资助项目( 61363020) 作者简介: 郑焕( 1991—) ,女,河南西华县人,新疆师范大学硕士研究生,主要从事图论及其应用的研究工作.

第3 期
郑焕,等: 具有禁止子图的有向图是超欧拉有向图的条件
9
究[4]和他的更新版[5].
因此,在超欧拉无向图的基础上,超欧拉有向图很快便被广泛的研究. 如果一个有向图 D 是弱连通的且
( College of Mathematical Sciences ,Xinjiang Normal University,Urumqi 830017,China )
Abstract: A digraph D is strict if D has no loops and if for any pair of distinct vertices,u,v∈v( D) . A digraph D is supereulerian if D has a spanning eulerian subdigraph ( or D has a spanning closed trial) . In this note we prove that a strong digraph of order at least 3 without containing an induced subdigraph is supereulerian digraph. Key words: strong connected; supereulerian; S - path; forbidden induced subdigraph
第 34 卷第 3 期 2018 年 3 月
商丘师范学院学报 JOURNAL OF SHANGQIU NORMAL UNIVERSITY
Vol. 34 No. 3 March, 2018
具有禁止子图的有向图是超欧拉有向图的条件
郑焕,董畅畅
( 新疆师范大学 数学科学学院,新疆 乌鲁木齐 830017)
有向图 D 是弱连通的. 如果 V( H) V( D) ,A( H) A( D) 并且 A( H) 中的每一条弧的两个端点都在 V( H) 中,
则称 H 是 D 的一个子图. 如果 A( D) 的每个弧都在 A( H) 中,每个弧的两个端点都在 V( H) 中,我们称 H 是由
X = V( H) 诱导的,记作 H = D〈X〉且称 H 是 D 的一个诱导子图. 如果 V( H) = V( D) ,则称 H 是 D 的一个生成
图,同时,他们表示这个问题是非常困难的. Pulleyblank[3]在 1979 年证明了判定一个无向图( 甚至包含平面
无向图) 是否是超欧拉的是 NP - 完全的. 截至今日,已经有大量关于超欧拉无向图的研究,例如 Catlin 的研
收稿日期: 2017 - 04 - 19 基金项目: 新疆师范大学硕士研究生科技创新项目( XSY201602013) ; 国家自然科学基金青年基金资助项目( 11761071) ; 国家

d
+ D

υ)
=
|
N
+ D

υ)
|

d
- D

v)
=
|
N
- D

υ)
| . 如果有向路 P 存在于 x,y 之间,则称有向路 P 是[x - y]- 路. 如
果 S 是 V( D) 的非空真子集,且路 P 至少有 2 条弧,但只有 x,y 两个点在 S 中,其余的点都在 V / S 中,则称有
向路 P 为 S - 路. 如果 x,y 相同,则称有向路 P 为 S - 圈. Boesch,Suffel 和 Tindell[2]在 1977 年提出了超欧拉问题,他们致力于刻画出包含生成欧拉子图的无向
D1 与 D2 的并记作 D1 ∪D2 ,它的点集是 V( D1 ∪D2 ) = V( D1 ) ∪V( D2 ) ,弧集是 A( D1 ∪D2 ) = A( D1 ) ∪A( D2 ) .
对于一个点 v∈V( D) ,v 的出邻点集和入邻点集分别表示为 ND+ ( υ) 和 ND- ( υ) ,D 中 υ 的出度和入度分别表示
0引言
本文只考虑对于有向图 D 中没有自环( 一条弧的两个端点为同一个点) 且 D 中的任意一对不同的点 u,
v,从 u 到 v 方向的弧最多只有一条的严格有向图. 对称有向图或定向图是一个没有 2 - 圈的有向图. 如果一
个有向图 D 包含一个有向生成圈,则称 D 是哈密尔顿的. 其中未被定义的术语和符号可以参考[1]中的定
文献标识码: A
文章编号: 1672 - 3600( 2018) 03 - 0008 - 03
The digraph with forbidden subdigraph is the condition of supereulerian digraph ZHENG Huan,DONG Changchang
义. 令 D = ( V( D) ,A( D) ) 是严格有向图,其中有向图 D 的点集为 V( D) ,有向图的弧集为 A( D) . 在这篇文章
中,我们用符号( u,v) 表示有向图中从点 u 到点 v 的一条弧. 对于一个整数 n,定义[n]= [1,2,…,n]. 对于
有向图 D,将 D 中所有弧的方向删去后所得到的图,称为 D 的基图,记作 UG( D) . 若 UG( D) 是连通的,则称
摘 要: D 是严格有向图( 无环与重弧) ,如果 D 有一个生成欧拉子图,则称 D 是超欧拉有向图,也可以定义 D
为含有一个生成闭迹. 文章主要研究一个至少有 3 个点的强连通有向图成为超欧拉有向图的禁止诱导子图的
条件.
关键词: 强连通; 超欧拉; S - 路; 禁止诱导子图
中图分类号: O157. 6
相关文档
最新文档