立体几何中的向量法 课件
合集下载
立体几何中的向量方法-距离的向量计算方法

向量的叉乘
总结词
叉乘是向量的另一种重要运算,表示垂直于原向量的新向量。
详细描述
叉乘是将两个向量a和b相乘,得到一个新的向量c。叉乘的定义为c=a×b,其 中c的大小为|a||b|sinθ,方向垂直于原平面,右手定则确定其方向。叉乘的结果 是一个向量,满足反交换律,即a×b=-b×a。
03
距离的向量计算方法
详细描述
数乘是将一个数k与一个向量a相乘,得到一个新的向量ka。数乘满足结合律和分配律,即k(a+b)=ka+kb, (k+l)a=ka+la。
向量的点乘
总结词
点乘是向量的另一种重要运算,表示两个向量的夹角和大小 关系。
详细描述
点乘是将两个向量a和b相乘,得到一个标量。点乘的定义为 a·b=|a||b|cosθ,其中|a|和|b|分别表示向量a和b的大小,θ表示 向量a和b的夹角。点乘的结果是一个标量,满足交换律和分配 律。
路径。
空间定位问题
要点一
总结词
利用向量的线性组合和向量模长的性质,确定空间中点的 位置。
要点二
详细描述
空间定位问题需要确定空间中某点的位置。通过向量的线 性组合和向量模长的性质,可以构建方程组,求解出点的 坐标。这种方法在解决空间几何问题时非常有效。
空间关系判断问题
总结词
利用向量的数量积、向量积和混合积等性质,判断点、 线、面之间的位置关系。
利用向量计算点到直线的最短距离
• 点到直线的最短距离可以通过向量投影的方法计算,将点投影到直线上,然后求投影点到直线上任一点的距离。
利用向Байду номын сангаас计算点到平面的最短距离
• 点到平面的最短距离可以通过向量投影的方法计算,将点 投影到平面上,然后求投影点到平面上任一点的距离。
人教版高中数学选修(2-1)-3.2《立体几何中的向量方法(第4课时)》教学课件

解 如图,分别以AB、AD、AP所在直线 为x、y、z轴建系,则P(0,0,1),B(3, 0,0),D(0,4,0),
∴P→B=(3,0,-1),B→D=(-3,4,0), ∴P→B|B· →DB→| D=-59,
P 到 BD 的距离 d=
|P→B|2-|PB―→·→BD―→|2
|BD| = 10-(-59)2=153. ∵P 到 BD 的距离为153.
(0, 3, 3),
由nn⊥ ⊥BB→→MC,,得nn··BB→→MC==00,,即x+3y+3y=3z0=,0,
令 x= 3,则平面 BMC 的一个法向量为 n=( 3,-1,1) 10 分
又B→A=(0,0,2 3),则所求距离 d=|B→A|n·| n|=2 515.
d=
|C→C1|2-|C→C1·A1C→―→|2=
1-13=
6 3.
|A1C|
规律方法 利用向量求点线距时,不用找到点在直线上的 垂足,直接按向量法的求解步骤来求就行,同时线上的点 可以任意取,但一般选择特殊点,同时直线的方向向量也 可以任意取.
【变式2】 如图,P为矩形ABCD所在平面外 一点,PA⊥平面ABCD,若已知AB=3, AD=4,PA=1,求点P到BD的距离.
名师点睛
点到平面距离的求法 如图,BO⊥平面 α,垂足为 O,则点 B 到平面 α 的距离就是线段 BO 的长度. 若 AB 是平面 α 的任一条斜线段,则在 Rt△BOA
中,|B→O|=|B→A|·cos∠ABO= |B→A|·|B→O|B|→·Oc| os∠ABO.如果令平面 α 的法向量为 n,考虑到法 向量的方向,可以得到 B 点到平面 α 的距离为|B→O|=|A→B|n·| n|.
3.2立体几何中的向量方法(四)
∴P→B=(3,0,-1),B→D=(-3,4,0), ∴P→B|B· →DB→| D=-59,
P 到 BD 的距离 d=
|P→B|2-|PB―→·→BD―→|2
|BD| = 10-(-59)2=153. ∵P 到 BD 的距离为153.
(0, 3, 3),
由nn⊥ ⊥BB→→MC,,得nn··BB→→MC==00,,即x+3y+3y=3z0=,0,
令 x= 3,则平面 BMC 的一个法向量为 n=( 3,-1,1) 10 分
又B→A=(0,0,2 3),则所求距离 d=|B→A|n·| n|=2 515.
d=
|C→C1|2-|C→C1·A1C→―→|2=
1-13=
6 3.
|A1C|
规律方法 利用向量求点线距时,不用找到点在直线上的 垂足,直接按向量法的求解步骤来求就行,同时线上的点 可以任意取,但一般选择特殊点,同时直线的方向向量也 可以任意取.
【变式2】 如图,P为矩形ABCD所在平面外 一点,PA⊥平面ABCD,若已知AB=3, AD=4,PA=1,求点P到BD的距离.
名师点睛
点到平面距离的求法 如图,BO⊥平面 α,垂足为 O,则点 B 到平面 α 的距离就是线段 BO 的长度. 若 AB 是平面 α 的任一条斜线段,则在 Rt△BOA
中,|B→O|=|B→A|·cos∠ABO= |B→A|·|B→O|B|→·Oc| os∠ABO.如果令平面 α 的法向量为 n,考虑到法 向量的方向,可以得到 B 点到平面 α 的距离为|B→O|=|A→B|n·| n|.
3.2立体几何中的向量方法(四)
立体几何中的向量方法求空间角 ppt课件

a, b
rr
结论:cos |cosa,b|
•
(2011·陕西卷)如图,在△ABC中,∠ABC
=60°,∠BAC=90°,AD是BC上的高,沿AD 把△ABD折起,使∠BDC=90°.
• 设E为BC的中点,求AE与DB夹角的余弦值.
z
y
x
易得D(0,0,0),B(1,0,0),C(0,3,0),
r uuur n, BA
2
r uuur n, BA
B
2
B
r
ruuu r n
结论:sin |cosn,AB|
• 1.若直线l的方向向量与平面α的法向量的夹 角等于120°,则直线l与平面α所成的角等于(
)
•
A.120°
B.60°
•
C.30°
D.60°或30°
• 解析: 由题意得直线l与平面α的法向量所在 直线的夹角为60°,∴直线l与平面α所成的角
b Br
An
sin | cosn,AB|
3.二面角:
B
O
①方向向量法:
r n
B
A
C
l
D
②法向量法:
【注意】法向量的方向:一
coscosu A uB ur,C uuD ur uu A uuu B rurC uuuu D uu rr
进一出,二面角等于法向量 夹角;同进同出,二面角等
ABCD 于法向量夹角的补角。
• (2)分别在二面角的两个平面内找到与棱垂直 且以垂足出发的两个向量,则这两个向量的夹 角的大小就是二面角的大小.
• 以上两种方法各有利弊,要善于结合题目的特 点选择适当的方法解题.
rC
rD
1.异面直线所成r r角: a
高中数学3.2立体几何中的向量方法课件-(共43张PPT)

,即14x+ 43y+12z=0
,
令 y=2,则 z=- 3,∴n=(0,2,- 3).
∵ PD =0,23 3,-1,显然 PD =
3 3 n.
26
∵ PD ∥n,∴ PD ⊥平面 ABE,即 PD⊥平面 ABE.
探究提高 证明线面平行和垂直问题,可以用 几何法,也可以用向量法,用向量法的关键在 于构造向量,再用共线向量定理或共面向量定 理及两向量垂直的判定定理。若能建立空间直 角坐标系,其证法较为灵活方便.
7
r 平面的法向量:如果表示向量 n的有向线段所在
直线垂直于r平面 ,则称r这个向量垂直于平r
面 ,记作 n⊥ ,如果 n⊥ ,那 么 向 量n
叫做平面 的法向量.
r
l
给定一点Ar 和一个向量 n,那么 过点A,以向量 n 为法向量的平面是
r 完全确定的.
n
几点注意:
1.法向量一定是非零向量;
17
题型分类 深度剖析
题型一 利用空间向量证明平行问题 例 1 如图所示,在正方体 ABCD—A1B1C1D1
中,M、N 分别是 C1C、B1C1 的中点.求证: MN∥平面 A1BD.
18
证明 方法一 如图所示,以 D 为原点,DA、DC、DD1 所在
直线分别为 x 轴、y 轴、z 轴建立空间直角坐标系,设正方体的
1,得
x
1 2
y 1
r n
(
1
,
1,1),
2
10
思考2:
因为方向向量与法向量可以确定直线和平面的 位置,所以我们应该可以利用直线的方向向量与平 面的法向量表示空间直线、平面间的平行、垂直、 夹角等位置关系.你能用直线的方向向量表示空间两 直线平行、垂直的位置关系以及它们之间的夹角吗? 你能用平面的法向量表示空间两平面平行、垂直的 位置关系以及它们二面角的大小吗?
立体几何中的向量方法——线面所成角PPT课件

L
rr
uv
若二面角 l 的大小为 (0 ,) 则 cos r r .
u v4
3. 线面角
设n为平面 的法向量,直线AB与平面所成的角为1,向量AB与n所成的角为
,
2
则
1
2
2
1
2
2
(0
1
2
,0
2
)
而利用 cos2 AB n
AB n
可求 2 ,
n
B
2 1
从而再求出 1
A
n
5
3. 线面角
x
B
| sin
|
C
| ADn | | AD | | n
|
8
例1: 在长方体 ABCD A1B1C1D1中, AB 6, AD 8,
AA1 6, M为B1C1上的一点,且B1M 2, 点N在线段A1D上,
A1N 5, 求AD与平面ANM 所成的角的正弦值.
z
得n (1,1, 4) 又 AD (0,8, 0),
A1N 5, 求AD与平面ANM 所成的角的正弦值.
解:如图建立坐标系A-xyz,则
A(0, 0, 0), M (6,2,6)
z
AA11
BB11 M
DD11
N C11
由A1N 5,可得 N (0,4,3)
A
Dy
AM (6,2,6), AN (0,4,3).
设AA平NM面••nn的0法0 向即量n64xy(x2,3zyy,z60),z由 0
|
sin
|
| |
3
AD AD
• ||
n| n|
AA11 BB11 M
A
| 0 1• 8 0 | 3 34 , 8 • 12 12 ( 4)2 34
空间向量与立体几何复习课ppt课件

一、空间向量及其运算
(一)基本概念 1. 空间向量:空间中具有大小和方向的量 叫做向量. 2. 空间向量也用有向线段表示,并且同向且 等长的有向线段表示同一向量或相等的向量.
3. 向量的模:向量的大小叫向量的长度或 模。即表示向量的有向线段的长度。 4. 单位向量:模是 1 的向量。
5. 零向量:模是 0 的向量。零向量的方向 是任意的。有向线段的起点与终点重合。
a b
2.共面向量定理:如果两个向量 a 、b 不共线,则向 量 p 与向量 a 、b 共面的充要条件是存在唯一的有 序实数对 ( x, y) 使 p xa yb .
3.空间向量基本定理:如果两个向量 a 、b、c 不共面, 则对空间中的任意向量 p ,存在唯一的有序实数对 (x, y , z) 使 p xa yb zc .
(二)、空间角的向量方法:
设直线 l, m 的方向向量分别为 a, b ,平面 ,
的法பைடு நூலகம்量分别为 u, v ,则
两直线 l , m 所成的角为 ( 0 ≤ ≤ ), cos cosa b ;
2
直线 l 与平面 所成角 ( 0 ≤ ≤ ), sin cosa u ;
2
二面角 ─l ─ 的为 ( 0≤ ≤ ), cos cosu v.
中国历史上吸烟的历史和现状、所采 取的措 施以及 由此带 来的痛 苦和灾 难,可 以进一 步了解 吸烟对 人民健 康的危 害,提 高师生 的控烟 意识
理论知识点
一、空间向量及其运算
1、基本概念;
2、空间向量的运算;
3、三个定理;
4、坐标表示。
二、立体几何中的向量方法
1、判断直线、平面间的位置关系; 2、求解空间中的角度; 3、求解空间中的距离。
( 人教A版)2-1:3.2立体几何中的向量方法第1课时空间向量与平行关系课件 (共31张PPT)

解析:(1)∵a=(1,-3,-1),b=(8,2,2) ∴a·b=8-6-2=0,∴a⊥b,∴l1⊥l2. (2)∵u=(1,3,0),v=(-3,-9,0), ∴v=-3u,∴u∥v,∴α∥β. (3)∵a=(1,-4,-3),u=(2,0,3), ∴a与u既不共线,也不垂直, ∴l与平面α斜交.
[证明] 如图所示建立空间直角坐标系D-xyz,则有D(0,0,0), A(2,0,0),C(0,2,0),C1(0,2,2),E(2,2,1),F(0,0,1), B1(2,2,2), 所以F→C1=(0,2,1),D→A=(2,0,0),A→E=(0,2,1).
(1)设n1=(x1,y1,z1)是平面ADE的法向量, 则n1⊥D→A,n1⊥A→E, 即nn11··DA→→EA==22yx11+=z01,=0,
设平面SCD的法向量为n=(1,y,z), 则n·D→C=(1,y,z)·(1,2,0)=1+2y=0, ∴y=-12. 又n·D→S=(1,y,z)·(-1,0,2)=-1+2z=0, ∴z=12. ∴n=1,-12,12即为平面SCD的一个法向量.
探究三 利用空间向量证明平行关系 [典例3] 已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是BB1,DD1的中 点,求证: (1)FC1∥平面ADE; (2)平面ADE∥平面B1C1F.
G→En=(x,y,z)是平面EFG的法向量,
n·G→E=0, 则n·G→F=0.
∴--2xx-+y+y+2zz==00,.
∴xy==zz., ∴n=(z,z,z),令z=1,此时n=(1,1,1), 所以平面EFG的一个法向量为(1,1,1).
播下一个行动,收获一种习惯;播下一种习惯,收获一种性格;播下一种性格,收获一种命运。思想会变成语言,语言会变成行动,行动会变成习惯,习惯会变成性格。性格会影响人生!习惯不加以抑 制,会变成生活的必需品,不良的习惯随时改变人生走向。人往往难以改变习惯,因为造习惯的就是自己,结果人又成为习惯的奴隶!人生重要的不是你从哪里来,而是你到哪里去。当你在埋头工作的 时侯,一定要抬头看看你去的方向。方向不对,努力白费!你来自何处并不重要,重要的是你要去往何方,人生最重要的不是所站的位置,而是所去的方向。人只要不失去方向,就永远不会失去自己! 这个世界唯一不变的真理就是变化,任何优势都是暂时的。当你在占有这个优势时,必须争取主动,再占据下一个优势,这需要前瞻的决断力,需要的是智慧!世上本无移山之术,惟一能移山的方法就 是:山不过来,我就过去。人生最聪明的态度就是:改变可以改变的一切,适应不能改变的一切!亿万财富不是存在银行里,而是产生在人的思想里。你没找到路,不等于没有路,你想知道将来要得到 什么,你必须知道现在应该先放弃什么!命运把人抛入最低谷时,往往是人生转折的最佳期。谁能积累能量,谁就能获得回报;谁若自怨自艾,必会坐失良机人人都有两个门:一个是家门,成长的地方; 一个是心门,成功的地方。能赶走门中的小人,就会唤醒心中的巨人!要想事情改变,首先自己改变,只有自己改变,才可改变世界。人最大的敌人不是别人,而是自己,只有战胜自己,才能战胜困难! 1、烦恼的时候,想一想到底为什么烦恼,你会发现其实都不是很大的事,计较了,就烦恼。我们要知道,所有发生的一切都是该发生的,都是因缘。顺利的就感恩,不顺利的就忏悔,然后放下。“雁 渡寒潭,雁过而潭不留影;风吹疏竹,风过而竹不留声。”修行者的心境,就是“过而不留”。忍得住孤独;耐得住寂寞;挺得住痛苦;顶得住压力;挡得住诱惑;经得起折腾;受得起打击;丢得起面 子;担得起责任;1提得起精神。闲时多读书,博览凝才气;众前慎言行,低调养清气;交友重情义,慷慨有人气;困中善负重,忍辱蓄志气;处事宜平易,不争添和气;对已讲原则,坚持守底气;淡 泊且致远,修身立正气;居低少卑怯,坦然见骨气;卓而能合群,品高养浩气淡然于心,自在于世间。云淡得悠闲,水淡育万物。世间之事,纷纷扰扰,对错得失,难求完美。若一心想要事事求顺意, 反而深陷于计较的泥潭,不能自拔。若凡事但求无愧于心,得失荣辱不介怀,自然落得清闲自在。人活一世,心态比什么都重要。财富名利毕竟如云烟,心情快乐才是人生的至宝。我们的梦想在哪里? 在路上,在脚踏实地的道路上;我们的期待在哪里?在路上,在勤劳勇敢的心路上;我们的快乐在哪里?在路上,在健康阳光的大道上;我们的朋友在哪里?在心里,在真诚友谊的宽道上!珍惜每一分 钟,对自己负责;善于发现看问题的角度;不满足于现状,别自我设限;勇于承认错误;不断反省自己,向周围的成功者学习;不轻言放弃。做事要有恒心;珍惜你所拥有的,不要感叹你失去或未得到; 学会赞美;不找任何借口。与贤人相近,则可重用;与小人为伍,则要当心;只满足私欲,贪图享乐者,则不可用;处显赫之位,任人唯贤,秉公办事者,是有为之人;身处困境之人,不做苟且之事, 则可重任;贫困潦倒时,不取不义之财者,品行高洁;见钱眼开者,则不可用。人最大的魅力,是有一颗阳光的心态。韶华易逝,容颜易老,浮华终是云烟。拥抱一颗阳光的心态,得失了无忧,来去都 随缘。心无所求,便不受万象牵绊;心无牵绊,坐也从容,行也从容,故生优雅。一个优雅的人,养眼又养心,才是魅力十足的人。容貌乃天成,浮华在身外,心里满是阳光,才是永恒的美。意逐白云 飞,心随流水宁。心无牵挂起,开阔空净明。幸福并不复杂,饿时,饭是幸福,够饱即可;渴时,水是幸福,够饮即可;裸时,衣是幸福,够穿即可;穷时,钱是幸福,够用即可;累时,闲是幸福,够 畅即可;困时,眠是幸福,够时即可。爱时,牵挂是幸福,离时,回忆是幸福。人生,由我不由天,幸福,由心不由境。心是一个人的翅膀,心有多大,世界就有多大。很多时候限制我们的,不是周遭 的环境,也不是他人的言行,而是我们自己。人心如江河,窄处水花四溅,宽时水波不兴。世间太大,一颗心承载不起。生活的最高境界,一是痛而不言,二是笑而不语。无论有多少委屈,一笑而泯之。 人生的幸福在于祥和,生命的祥和在于宁静,宁静的心境在于少欲。无意于得,就无所谓失去,无所谓失去,得失皆安谧。闹市间虽见繁华,却有名利争抢;田园间无争,却有柴米之忧烦;世外桃源祥 和升平,最终不过梦一场。心静,则万象皆静。知足者常在静中邂逅幸福。顺利人生,善于处理关系;普通人生,只会使用关系;不顺人生,只会弄僵关系。为人要心底坦荡,不为虚名所累;做事要头 脑清醒,不为假象所惑。智者,以别人惨痛的教训警示自己;愚者,用自己沉重的代价唤醒别人。对人多一份宽容,多一份爱心;对事多一份认真,多一份责任;对己多一点要求,多一点警醒。傲不可 长,志不可满,乐不可极,警醒自己。静能生慧。让心静下来,你才能看淡一切。静中,你才会反观自己,知道哪些行为还需要修正,哪些地方还需要精进,在静中让生命得到升华洗礼,在自观中走向 觉悟。让心静下来,你才能学会放下。你放下了,你的心也就静了。心不静,是你没有放下。静,通一切境界。人与人的差距,表面上看是财富的差距,实际上是福报的差距;表面上看是人脉的差距, 实际上是人品的差距;表面上看是气质的差距,实际上是涵养的差距;表面上看是容貌的差距,实际上是心地的差距;表面上看是人与人都差不多,内心境界却大不相同,心态决定命运。知恩感恩,是 很重要的一件事。因为当一个人具有感恩的心,心会常常欢喜,总是觉得很满足,一个不感恩不满足的人,总是会觉得欠缺、饥渴。一个常感恩的人,会觉得自己很幸运,有时候其实没什么道理,但他 这样一想、一感恩,就变得很快乐。这种感恩的心,对自己其实是有很大利益。压力最大的时候,效率可能最高;最忙碌的时候,学的东西可能最多;最惬意的时候,往往是失败的开始;寒冷到了极致, 太阳就要光临。成长不是靠时间,而是靠勤奋;时间不是靠虚度,而是靠利用;感情不是靠缘分,而是靠珍惜;金钱不是靠积攒,而是靠投资;事业不是靠满足,而是靠踏实。知恩感恩,是很重要的一 件事。因为当一个人具有感恩的心,心会常常欢喜,总是觉得很满足,一个不感恩不满足的人,总是会觉得欠缺、饥渴。一个常感恩的人,会觉得自己很幸运,有时候其实没什么道理,但他这样一想、 一感恩,就变得很快乐。这种感恩的心,对自己其实是有很大利益。压力最大的时候,效率可能最高;最忙碌的时候,学的东西可能最多;最惬意的时候,往往是失败的开始;寒冷到了极致,太阳就要 光临。成长不是靠时间,而是靠勤奋;时间不是靠虚度,而是靠利用;感情不是靠缘分,而是靠珍惜;金钱不是靠积攒,而是靠投资;事业不是靠满足,而是靠踏实。以平常心观不平常事,则事事平常。 在危险面前,平常心就是勇敢;在利诱面前,平常心就是纯洁;在复杂的环境面前,平常心就是保持清醒智慧。平常心不是消极遁世,而是一种境界,一种积极的人生。不仅要为成功而努力,更要为做 一个有价值的人而努力。命运不是机遇,而是选择;命运不靠等待,全靠争取。成熟就是学会在逆境中保持坚强,在顺境时保持清醒。时间告诉你什么叫衰老,回忆告诉你什么叫幼稚。只有在我们不需 要外来的赞许时,心灵才会真的自由。你没那么多观众,别那么累。温和对人对事。不要随意发脾气,谁都不欠你的。现在很痛苦,等过阵子回头看看,会发现其实那都不算事。和对自己有恶意的人绝 交。人有绝交,才有至交学会宽容伤害自己的人,因为他们很可怜,各人都有自己的难处,大家都不容易。学会放弃,拽的越紧,痛苦的是自己。低调,取舍间,必有得失。不要试图给自己找任何借口, 错误面前没人爱听那些借口。慎言,独立,学会妥协的同时,也要坚持自己最基本的原则。付出并不一定有结果。坚持可能会导致失去更多过去的事情可以不忘记,但一定要放下。活得轻松,任何事都 作一个最好的打算和最坏的打算。做一个简单的人,踏实而务实。不沉溺幻想。不庸人自扰。不说谎话,因为总有被拆穿的一天。别人光鲜的背后或者有�
高中数学《立体几何中的向量方法(一)》课件

抓住3个考点
突破3个考向
⇔_v_∥__u_.
③设平面 α 和 β 的法向量分别为 u1 和 u2,则 α⊥β⇔_u_1⊥__u__2
⇔u__1·_u_2=__0__=0.
抓住3个考点
突破3个考向
揭秘3年高考
3.点面距的求法
如图,设 AB 为平面 α 的一条斜线段,
n
为平面
α
的法向量,则 →
B
到平面
α
|AB·n|
的距离 d=___|n_|___.
→→ 故 cos〈B→E,C→D〉=|BB→EE|·|CC→DD|=
3 2 12+h2× 5
= 10+3 20h2,
所以
10+3 20h2=cos
30°=
3, 2
解得
h=
1100,即
AE=
10 10 .
抓住3个考点
突破3个考向
揭秘3年高考
用向量法解答这类题要做到以下几点: ①建系要恰当,建系前必须证明图形中有从同一点出发 的三条两两垂直的直线,如果图中没有现成的,就需进 行垂直转化;②求点的坐标及有关计算要准确无误,这 就需要在平时加强训练;③步骤书写要规范有序.
抓住3个考点
突破3个考向
揭秘3年高考
解 取 AC 的中点 O,连接 OS、OB. ∵SA=SC,AB=BC, ∴AC⊥SO,AC⊥BO. ∵平面 SAC⊥平面 ABC,平面 SAC∩平面 ABC=AC, ∴SO⊥平面 ABC, 又∵BO⊂平面 ABC,∴SO⊥BO.
如图所示,建立空间直角坐标系 O-xyz,则 B(0,2 3,0),C(- 2,0,0),S(0,0,2 2),M(1, 3,0),N(0, 3, 2). ∴C→M=(3, 3,0),M→N=(-1,0, 2),M→B=(-1, 3,0).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
探究点3 点到平面的距离
设E为平面α外一点,F为α内任意一
点,n为平面α的法向量,则点E到平面的
距离为:
d | n EF | |n|
探究点4 异面直线间的距离 a,b是异面直线,E,F分别是直线a,b
上的点, n 是a,b公垂线的方向向量,
则a,b间距离为 d | n EF | |n|
探究点5 平面与平面的距离问题:
d=
A1B1 u
u
=
2 3.
2.已知直三棱柱ABC - A1B1C1的侧棱AA1 = 4, 底面ΔABC中,AC = BC = 2,∠BCA = 900,
E为AB的中点,求CE与AB1的距离.
解:如图建立坐标系Cxyz,则C(0,0,0), z C1
E(1,1,0),A(2,0,0),B1(0,2,4),
FD ( 1 , 1 , 2), 333
因为cos EFD FE FD FE FD
(
1,1, 36
1) ( 1 , 1 , 6 33
66
2) 3
1
6 1
1, 2
63
3
所以EFD 60 ,即二面角 C PB D的大小为 60 .
例3 如图,一块均匀的正三角形面的钢板所受重
力为500N,在它的顶点处分别受力 F1, F2, F3 ,每 个力与同它相邻的三角形的两边之间的夹角都是
平行平面 , b 的法向量为 u ,则
A,P分别是平面与b上任意一点,
平面与b的距离为d , 则
m D
P
bu
b
l C A
a
d=| AP | |cos AP, u |= | AP u | .
|u|
例1:如图1:一个结晶体的形状为四棱柱,其中,
以顶点A为端点的三条棱长都相等,且它们彼此的
夹角都是60°,那么以这个顶点为端点的晶体的
由于 F1 与 AB , AC 的夹角均为 60 ,
z F1
A x
F3
F2 C
OBBiblioteka y500N所以
cos
60
1 (x, y , z)( 2
3 , 1 , 0)① 22
cos 60
1 ( x , y , z) (0,1 , 0) 2
②
又∵ x2 y2 z2 1 ③
所以由①②③可解得 x 1 , y 1 , z 2 .
这说明,作用在钢板上的合力方向向上, 大小为 200 6N ,作用点为 O . 由于 200 6 500 ,所以钢板仍静止不动.
要提起这块钢板,设 F1 F2 F3 = x ,
则需 6x 500 ,解得 x 500 ,
6
因此,要提起这块钢板,
F1
,
F2
,
F3
均要大于
500 6
N
.
1.如图,在正方体ABCD-A1B1C1D1中,棱长为1,E为D1C1
A1
B1
所以CE =(1,1,0),AB1 =(-2,2,4),
设CE,AB1的公垂线的方向向量 为n =(x,y,z).则
C
A
B
xE
y
n • CE 0, n • AB1 0,
即x2xy20y, 4z 0,
取x=1,则y=-1,z=1,所以 n (1, 1,1).
z
C1
因为CA =(2,0,0).
空间向量与空间距离
复习回顾
如果表示向量 a 的有向线段所在直
线垂直于平面,则称这个向量垂直于平 面,记作a⊥.
如果a ⊥,那么向量a 叫做平面的
法向量.
l
a
已知向量 AB a和轴 l,e 是 l 上与 l 同
方向的单位向量. 作点 A 在 l 上的射影 A1,
作点 B 在 l 上的射影 B1,则 A1B1 叫做向量 AB
P
22
因为底面ABCD是正方形,
F
E
所以点G是此正方形的中心,
故点G的坐标为(1 ,1 ,0),
C
22
D
y
A
G
B
x
且PA (1, 0, 1), EG (1 , 0, 1). 22
所以PA 2EG,即PA / /EG.
而EG 平面EDB, 且PA 平面EDB,
所以,PA / /平面EDB.
12
2
3
所以 F1 200(
11 ,,
12 2
2 ).
3
同法可求得 F2 200(
1 ,1 , 12 2
2), 3
1
2
F3 200(
,0 , 3
). 3
合力 F1 F2 F3 200 (
11 ,,
12 2
2 ) (
3
11 , ,
12 2
2 )(
3
1 ,0,
3
2
3
)
200(0 ,0 , 6 ) ,
60o,且 F1 F2 F3 200N .这块钢板在这些力的 作用下将会怎样运动?这三个力最小为多大时,
才能提起这块钢板?
分析:钢板所受重力的大小为
F1
500N,垂直向下作用在三角形
的中心O,
A
F3
F2 C
O
B
500N
如果能将各顶点处所受的力 F1、F2、用F3向量形式表示,求 出其合力,就能判断钢板的运动状态.
对角线的长与棱长有什么关系?
D1
解:如图1,设
A1
AB AA1 AD 1 ,BAD
D
BAA1 DAA1 60.
化为向量问题
A 图1
C1
B1 C
B
依据向量的加法法则, AC1 AB AD AA1.
进行向量运算
2
AC1
( AB
AD
AA1)2
2
AC1
( AB
AD
AA1)2
2
2
2
AB AD AA1
的中点,求B1到面A1BE的距离.
解:建立坐标系.
A1E
=(-1,1 2
,0),
A1B =(0,1,-1),
z
D1
设u =(1,y,z)为面A1BE的法向量 A1
E
C1
B1
由
u
u
A1E A1B
= =
0, 0,
D
C
y
Ax
B
得 u =(1,2,2),
A1B1 = 0,1,0,
B1到面A1BE的距离为
在轴上或在e 方向上的正射影,简称射影.
l B1
n A1
A
B b
AB n A1B1 n
已知向量 AB a 和
轴 l,e 是 l 上与 l 同方
向的单位向量. 作点 A 在 l 上的射影 A1,作点 B 在 l 上的射影 B1,则
A1B1 叫 做 向 量 AB 在 轴
上或在e 方向上的正射
影,简称射影.
4.平行与平面间的距离:转化为直线到平面的距离、 点到平面的距离.
5.异面直线间的距离:转化为直线到平面的距离、 点到平面的距离.也可运用闭合曲线求公垂线向量 的模或共线向量定理和公垂线段定义求出公垂线 段向量的模.
探究点1 空间两点之间的距离 根据两向量数量积的性质和坐标运算,
利用公式 a a2或 a x2 y2 z2 (其中 a (x, y, z)),可将两点距离问题
转化为求向量模长问题.
探究点2 点到直线的距离
设直线 l 的方向向量为 a ,
点P与直线l的距离为d , 则
a
d = AP sin < AP,a >
解:如图,以点 A 为原点,平面 ABC 为 xAy 坐标平面, AB 方向为 y 轴正方向, AB 为 y 轴的单位长度,建 立空间直角坐标系 Axyz ,则正三角形的顶点坐标分
别为 A(0,0 , 0) , B(0,1 , 0) , C( 3 , 1 , 0)
22
设 F1 方向上的单位向量坐标为 ( x , y , z) ,
A1
B1
所以CE与AB1的距离
d = |n·CA| = 3 . |n| 3
C
A
B
xE
y
利用向量求距离 1.点到平面的距离:连接该点与平面上任意一点的 向量在平面定向法向量上的射影(如果不知道判断 方向,可取其射影的绝对值). 2.点到直线的距离:求出垂线段的向量的模. 3.直线到平面的距离:可以转化为点到平面的距离.
(1)求证:PA//平面EDB.
P
(2)求证:PB⊥平面EFD. (3)求二面角C-PB-D的大小.
E F
D A
C B
解:如图所示建立空间直角坐标系,点D为坐标原点, 设DC=1.
(1)证明:连接AC,AC交BD于点G,连接EG.
z
依题意得A(1, 0, 0), P(0, 0,1),
E(0, 1 , 1 ),
即x k, y k, z 1 k,
因为PB DF 0,
所以(1,1, 1) (k, k,1 k)
k k 1 k 3k 1 0,
所以k 1 , 3
所以点F的坐标为(1,1,2), 333
又点E的坐标为(0, 1 , 1), 22
所以FE ( 1 , 1 , 1), 36 6
(2)证明:依题意得B(1,1, 0), PB (1,1, 1). 又DE (0, 1 , 1), 22 故PB • DE 0 1 1 0. 22
所以PB DE. 由已知EF PB, 且EF DE E,
所以PB 平面EFD.
(3) 已知PB ⊥EF,由(2) 可知PB ⊥DF,故∠EFD是 二面角C - PB - D的平面角. 设点F的坐标为(x, y, z), 则PF (x, y, z 1), 因为PF k PB, 所以( x, y, z 1) k(1,1, 1) (k, k, k),