(整理)SAE1939Appendix
SAE J1939-31 2010 Network Layer

__________________________________________________________________________________________________________________________________________ SAE Technical Standards Board Rules provide that: “This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user.”SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions. Copyright © 2010 SAE InternationalAll rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE.TO PLACE A DOCUMENT ORDER: Tel: 877-606-7323 (inside USA and Canada)Tel: 724-776-4970 (outside USA) SAE values your input. To provide feedbackSURFACEVEHICLERECOMMENDEDPRACTICEJ1939-31 MAY2010Issued1994-12Revised 2010-05Superseding J1939-31APR2004(R) Network LayerRATIONALEThis SAE Recommended Practice was reviewed as part of the 5-year review cycle, resulting in several updates to this document. The most significant change in this update involves reorganizing the contents to minimize duplication of technical data and localize related technical data. Other notable changes include clarification of the definitions for NIECU parametric data parameters, clarification of definition details for each Network Message function, definitions for each of the Network Message parameters, and expanded discussion of Foreign Message Transport.FOREWORDThis series of SAE Recommended Practices have been developed by the SAE Truck and Bus Control and Communications Network Committee. The objectives of the committee are to develop information reports, recommended practices, and standards concerned with the requirements design and usage of devices which transmit electronic signals and control information among vehicle components. The usage of these recommended practices is not limited to truck and bus applications, but also includes applications for construction/agricultural equipment and stationary power systems. These SAE Recommended Practices are intended as a guide toward standard practice and are subject to change to keep pace with experience and technical advances.TABLE OF CONTENTS1.SCOPE (4)2.REFERENCES (4)2.1Applicable Publications (4)2.1.1SAE Publications (4)2.1.2ISO Publications (4)2.2Related Publications (5)2.2.1SAE Publications (5)2.2.2IEEE Publication (5)3.DEFINITIONS AND ABBREVIATIONS (5)3.1Definitions (5)3.1.1Address Space (5)3.1.2Database (5)3.1.3Foreign Message Transport (5)3.1.4Network (6)3.1.5Network Interconnection ECU (NIECU) (6)3.1.6Port (6)3.1.7Port Pair (6)3.1.8Segment (6)Licensed to IHSLicensed from the SAE Digital Library Copyright 2010 SAE InternationalE-mailing, copying and internet posting are prohibitedDownloaded Sunday, November 21, 2010 5:22:02 AMSAE J1939-31 Revised MAY2010 Page 2 of 38 3.1.9Subnetwork (Subnet) (6)3.1.10Transparent (6)3.1.11Tunneling (6)3.2Abbreviations (6)WORK LAYER DESCRIPTION (7)4.1General (7)4.2Reasons for Multiple Networks (7)4.3Network Topology (8)4.3.1Network Addressing (8)4.3.2Off-Tractor Segment (Trailer or Implements) (8)4.3.3Proprietary Messages and Networks (8)4.3.4CAN 11-bit Identifier Interfacing (8)4.3.5SAE J1587 Interface (8)4.3.6SAE J1922 Interface (8)WORK INTERCONNECTION ECUS (11)5.1Types of Network Interconnection ECUs (11)5.1.1Repeater (11)5.1.2Bridge (12)5.1.3Router (12)5.1.4Gateway (13)5.2Message Forwarding Transit Delay Requirements (13)5.2.1Repeater (Bitwise Forwarding) (14)5.2.2Bridge (Store and Forward Forwarding) (14)5.3NIECU Conformance (Minimum Requirements) (14)5.3.1Forwarding Requirements (14)5.3.2Other Requirements (14)5.4NIECU Suitability Criteria (15)WORK INTERCONNECTION FUNCTIONS (15)6.1Forwarding (15)6.2Filtering (15)6.2.1Block List Filter Mode (15)6.2.2Pass List Filter Mode (16)6.3Address Translation (16)6.4Protocol Translation (16)6.5Database Management (16)6.5.1Database Configuration Options (16)6.5.2Database Management Design Recommendations (17)6.6Tunneling (Foreign Message Transport) (17)6.6.1Foreign Message Transport Examples (18)WORK INTERCONNECTION ECU DATABASE MANAGEMENT MESSAGE (19)7.1General Network Message Requirements (19)7.2Network Message Definition (20)7.3Message Filter Database Services (N.MFDB) (20)7.3.1Request the Filter Database (N.MFDB_Request) (21)7.3.2Filter Database Response (N.MFDB_Response) (21)7.3.3Add PGNs to Filter Database (N.MFDB_Add) (22)7.3.4Delete PGNs from Filter Database (N.MFDB_Delete) (23)7.3.5Clear the Filter Database for a Port Pair (N.MFDB_Clear) (23)7.3.6Create the Filter Database for a Port Pair (N.MFDB_Create_Entry) (24)7.4Network Topology Information Services (N.NT) (24)7.4.1Request the Source Addresses on a Port (N.NT_Request) (25)7.4.2Response with Source Addresses on a Port (N.NT_Response) (25)7.4.3Request the Source Address and NAMEs on a Port (N.NTX_Request) (25)7.4.4Response with Source Addresses and NAMES on a Port (N.NTX_Response) (26)Licensed to IHSLicensed from the SAE Digital Library Copyright 2010 SAE InternationalE-mailing, copying and internet posting are prohibitedDownloaded Sunday, November 21, 2010 5:22:02 AMSAE J1939-31 Revised MAY2010 Page 3 of 38 7.5NIECU General Parametric Data Services (N.GP) (26)7.5.1Request the NIECU General Parametric Data (N.GP_Request) (26)7.5.2NIECU General Parametric Data Response (N.GP_Response) (27)7.5.3Reset the NIECU General Parametric Data (N.GP_Reset) (27)7.6NIECU Specific Port Pair Parametric Data Services (N.SP) (28)7.6.1Request the NIECU Specific Port Pair Parametric Data (N.SP_Request) (28)7.6.2NIECU Specific Port Pair Parametric Data Response (N.SP_Response) (28)7.6.3Reset the NIECU Specific Port Pair Parametric Data (N.SP_Reset) (29)7.7Network Message Data Definitions (29)7.7.1Network Message Control Byte (SPN 5592) (29)7.7.2Port Numbers and Port Pair (30)7.7.3Port (SPN 5593) (31)7.7.4To Port (SPN 5594) (31)7.7.5From Port (SPN 5595) (31)7.7.6Filter Mode (SPN 5596) (32)7.7.7NIECU Parameter Number (SPN 5597) (32)7.7.8NIECU Parameter Data (SPN 5598) (33)7.7.9PGN (SPN 5599) (33)7.7.10Source Address (SA) (SPN 5600) (33)7.7.11NAME (SPN 5601) (33)7.7.12Number of SA/NAME Pairs (SPN 5602) (34)8.NOTES (34)8.1Marginal Indicia (34)APPENDIX A STATUS AND STATISTICS PARAMETER DEFINITIONS (35)FIGURE 1 TYPICAL SAE J1939 VEHICLE NETWORK FOR TRUCK AND BUS (9)FIGURE 2 TYPICAL SAE J1939 VEHICLE NETWORK FOR AGRICULTURAL APPLICATIONS (10)FIGURE 3 FOREIGN MESSAGE TRANSPORT EXAMPLE 1 (18)FIGURE 4 FOREIGN MESSAGE TRANSPORT EXAMPLE 2 (18)FIGURE 5 FOREIGN MESSAGE TRANSPORT EXAMPLE 3 (19)FIGURE 6 NETWORK MESSAGE (PGN 60672) DEFINITION (20)FIGURE 7 EXAMPLE OF MESSAGE FILTER DATABASE ACCESS (22)TABLE 1 NETWORK MESSAGE CONTROL BYTE VALUES (30)TABLE 2 PORT NUMBER ASSIGNMENTS (30)TABLE 3 FILTER MODE VALUES (32)TABLE 4 NIECU STATUS AND STATISTICS PARAMETER NUMBERS (33)SAE J1939-31 Revised MAY2010 Page 4 of 38 1. SCOPEThe Network Layer document describes the requirements and services for Network Interconnection ECUs (NIECU) that enable electronic control units (ECUs) on a network segment to intercommunicate with other ECUs on different network segments of the vehicle network. This document defines various types of NIECUs. The information in this document applies only to ECUs that are intended to provide networking services. It is not necessary for an ECU to provide any of these services in order to be compliant with the SAE J1939 protocol.2. REFERENCES2.1 Applicable PublicationsGeneral information regarding this series of documents is found in SAE J1939.The latest issue of SAE publications shall apply.Publications2.1.1 SAEAvailable from SAE International, 400 Commonwealth Drive, Warrendale, PA 15096-0001, Tel: 877-606-7323 (inside USA and Canada) or 724-776-4970 (outside USA), .SAE J1587 Electronic Data Interchange Between Microcomputer Systems in Heavy-Duty Vehicle ApplicationsSAE J1922 Powertrain Control Interface for Electronic Controls Used in Medium- and Heavy-Duty Diesel On-Highway Vehicle ApplicationsSAE J1939 Recommended Practice for a Serial Control and Communications Vehicle NetworkSAE J1939-21 Data Link LayerSAE J1939-71 Vehicle Application LayerSAE J1939-81 Network ManagementPublications2.1.2 ISOAvailable from American National Standards Institute, 25 West 43rd Street, New York, NY 10036-8002, Tel: 212-642-4900, .ISO 11783 Tractors and Machinery for Agriculture and Forestry – Serial Control and Communications Data NetworkISO 11898-1 Road vehicles - Controller area network (CAN) – Part 1: Data link layer and physical signallingISO 11992 Road Vehicles – Interchange of digital information on electrical connections between towing and towed vehiclesISO 15765 Road Vehicles – Diagnostics on Controller Area Network (CAN)SAE J1939-31 Revised MAY2010 Page 5 of 38 2.2 Related PublicationsThe following publications are provided for information purposes only and are not a required part of this document.Publications2.2.1 SAEAvailable from SAE International, 400 Commonwealth Drive, Warrendale, PA 15096-0001, Tel: 877-606-7323 (inside USA and Canada) or 724-776-4970 (outside USA), .SAE J1939-01 Recommended Practice for Control and Communications Network for On-Highway EquipmentSAE J1939-02 Agricultural and Forestry Off-Road Machinery Control and Communication NetworkPublication2.2.2 IEEEAvailable from Institute of Electrical and Electronics Engineers, 445 Hoes Lane, Piscataway, NJ 08854-4141, Tel: 732-981-0060, .ANSI/IEEE STD.802-1D Local Area Networks: Media Access Control (MAC) Bridges3. DEFINITIONS AND ABBREVIATIONSSee SAE J1939 for definitions that are not defined in this document.3.1 DefinitionsSpace3.1.1 AddressThe allowable range of Addresses on a particular subnetwork. The address space is continuous for the set of network segments when connected by a repeater or bridge. The address space is separate for each network segment when connected by a router, which means the same address can be used by a different CA on each side of the router. When segments have separate address space, CAs on one segment cannot directly address individual CAs on the other segment.3.1.2 DatabaseA general reference to the collection of data in some NIECUs that defines the operation of the internetworking functions and contains status and statistical data about the NIECU internetworking activity. Examples of operation data might be a list of PGNs for filtering messages forwarded between network segments or the filtering mode to apply. Examples of status and statistical data might be the maximum size for the filter database or the average number of messages forwarded per second. The term can be used in reference to the data collection as a whole or in reference to a specific subset of the data collection, such as the data governing the transfer of messages between a pair of ports on the NIECU.3.1.3 Foreign Message TransportThe SAE J1939 terminology for the network interconnection function of tunneling over SAE J1939, because it allows foreign protocol messages to be transferred over an SAE J1939 network in a non-interfering manner. It also is a general reference to the set of SAE J1939 PGNs defined for tunneling non-SAE J1939 messages (i.e., Foreign Messages) across the SAE J1939 medium. The definition for how a Foreign Message is encapsulated into the data field of the SAE J1939 PGN is defined elsewhere, such as within ISO 11992, ISO 11783, or ISO 15765. Foreign Message Transport messages can allow more efficient use of the network wiring on a vehicle by allowing the use of separate, non-interfering message sets.SAE J1939-31 Revised MAY2010 Page 6 of 38 3.1.4 NetworkThe complete collection of one or more physical communication links, or network segments, on a vehicle that may be connected together physically and/or virtually through network interconnection devices.3.1.5 Network Interconnection ECU (NIECU)An ECU that provides interconnection of messages between one or more network segments. The standard types of NIECUs are repeater, bridge, router, and gateway.3.1.6 PortThe connection point on a controller to the network. A NIECU has two or more ports connected to different network segments.3.1.7 PortPairA title that describes the two ports being discussed and the direction of data flow (from-to)3.1.8 SegmentA physical section of a vehicle communications network. The physical section is bounded by the ECUs connected to it and any NIECUs. All of the ECUs on a segment "see" the signal at the same time (i.e., there is no intermediate device between different sections of the network). Multiple segments can be connected together by NIECUs.(Subnet)3.1.9 SubnetworkA subset of the vehicle network consisting of one or more network segments connected together. Subnetworks may include: Tractor, Trailer, Implement, and Braking System. Subnetworks are typically separated by a bridge, router, or gateway to help minimize bus traffic on each segment. Collectively the subnetworks are the Vehicle Network.3.1.10 TransparentThe characteristic of an NIECU and its internetworking functions that are performed in such a way that the actions and operations are not perceived by other ECUs on the vehicle network. If the NIECU is transparent, then the other devices on the network do not need to know of the presence of the NIECU, and the NIECU network functions and services take place without any visible effects (i.e., invisible). A bridge NIECU between a tractor subnet and trailer subnet is characterized as transparent if ECUs on the tractor subnet and ECUs on the trailer subnet can communicate with one another without knowledge of the bridge involvement in forwarding some messages between the network segments, filtering other messages, and possibly changing the data rate between the networks.3.1.11 TunnelingThe networking function of encapsulating one network protocol's message within messages of a second network protocol and carried over the second network. The network message that is tunneled is all or part of the payload of the messages carried on the other network.3.2 AbbreviationsApplicationCA ControllerECU Electronic Control UnitNIECU Network Interconnection ECUOEM Original Equipment ManufacturerPGN Parameter Group NumberSPN Suspect Parameter NumberSAE J1939-31 Revised MAY2010 Page 7 of 384. NETWORK LAYER DESCRIPTION4.1 GeneralThe Network Layer defines the requirements and services for NIECUs, which are the electronic devices that provide intercommunications between different segments of a vehicle wide SAE J1939 network. An NIECU is an ECU with more than one port, or network connection, with a Controller Application that functions to transfer information from a port connected to one network segment to a port connected to another network segment. When the vehicle network has multiple segments and it is necessary to transfer information between devices on separate network segments, then an NIECU is needed to provide for the transfer of messages from one segment to another. The type of NIECU required between two segments of the network depends upon the needs of the system and the protocol of each network segment. For example, a bridge may isolate two segments of media and the bus traffic on each, but the network is still considered "one" network in terms of address space and identifiers. There are several different types of NIECUs, each providing different internetworking functions. The principle internetworking functions include:• message forwarding• message filtering•address translation of messages•message repackaging (as part of protocol translation)An NIECU may also support database management to permit access and configuration of the internal databases for some of these internetworking functions.All Network Layer services are optional for any given NIECU, and the ability to supply any of these services is not a condition of compliance to the SAE J1939 Recommended Practice. If an NIECU is intended to supply any of the Network Layer services, this document shall be the guide for proper implementation. Section 5.3 of this document outlines the minimum requirements for ECUs providing Network Layer services other than Foreign Message Transport.4.2 Reasons for Multiple NetworksThere are many different reasons for having a vehicle network with multiple segments. Some common reasons include:1. Physical extension or separation of the network, such as a tractor-trailer configuration where the two networks aren'talways physically connected2. Electrical extension of the network, such as too many node drops for a single network or backbone length of segmentexceeds allowed lengths3. Electrical Interface Conversion, allowing such things as impedance differences between the segments. Note that theElectrical Interface Conversion is, in general, built into the physical layer of each network segment – the design of the ECU that has nodes for each of the network segments will already have compensated in any way necessary for the electrical needs (such as signal rise time) of the networks.4. Data Rate Compensation for cases where the segments run at different rates. This may require the use of a Filteringsystem, as the lower-rate segment may not be able to handle the traffic of the higher rate segment.5. Address Extension of the network when the combined number of network addresses that are required exceeds thenumber allowed by the protocol. Separating it into multiple networks allows each to have an Address Space as large as the largest single network given the Protocol.6. Network traffic management, such as isolating high speed or time critical network segments from other networksegments to reduce the message loading on the individual segments.7. Protocol interface, to allow data to be shared between segments using different protocolsSAE J1939-31 Revised MAY2010 Page 8 of 384.3 Network TopologyThe topology of the vehicle network must be constructed so there is at most one communication path between any two ECUs for a given network. The OEM should therefore assure that no network loops exist on the vehicle. No special provisions are made for NIECUs to detect network loops or to prevent duplicate messages from being generated or replicated indefinitely. Redundant bus segments can be provided for fault tolerance, but the mechanism to detect, select, and auto reconfigure the message routing path is the responsibility of the NIECU supplier and is not defined within this document. Some examples of typical network topologies are shown in Figure 1 and Figure 2.Addressing4.3.1 NetworkThe SAE J1939 Data Link Layer provides for the potential of up to 254 unique Source Addresses on the network. If this Address Space is insufficient for a particular application, then a router may be used to provide one or more separate subnetworks, each with its own Address Space. Each subnetwork could be arranged with ECUs and messages related to a specific function (Braking, Suspension, Trailer, Implement, etc.) with a controller also serving as the router to move selected messages to and from the main SAE J1939 network.4.3.2 Off-Tractor Segment (Trailer or Implements)In order to isolate and protect the tractor segment, an NIECU must exist between the tractor segment and any off-tractor segment. The type of NIECU will depend upon the design requirements. For example, a bridge permits the off-tractor segment to run at a different data rate and with reduced traffic by performing message filtering, while a Router permits the off-tractor segment to be developed independently, and optimized for specific functions. For those Agricultural systems following the ISO 11783 standard, a Tractor ECU (TECU) is used to separate the Tractor from the Implement Bus. See ISO 11783 Part 4 and ISO 11783 Part 9 for details. See ISO 11992 for details of a possible trailer subnetwork for highway vehicles.4.3.3 Proprietary Messages and NetworksSAE J1939 data link has provisions for communications with proprietary messages. If bus traffic and latency become an issue, a separate segment can be used to handle the proprietary messages. The supplier of this separate segment and its related devices must also provide any router/gateway function needed to share data with the main network.4.3.4 CAN 11-bit Identifier InterfacingAll SAE J1939 compliant ECUs must support the ISO 11898 29-bit identifier (CAN Extended Format). Separate subnetworks that use ISO 11898 11-bit identifier (CAN Base Format) will require a gateway to permit the transfer of data between the two segments. This device must also be responsible for any diagnostics of the subnetwork that need to be transmitted via SAE J1939. Component suppliers and OEMs must assume responsibility for assigning unique network IDs when using 11-bit identifiers since there is no means in this document to manage addresses or Identifiers for those devices. Note that a CAN 11-bit subnetwork could actually reside on the same two-wire segment as the SAE J1939 main tractor network, but bus loading and reliability issues must be considered.4.3.5 SAE J1587 InterfaceDevices requiring SAE J1587 for information or diagnostics must have a separate port to access that link. No provisions for defining a gateway to SAE J1587 are planned for this document.4.3.6 SAE J1922 InterfaceSince SAE J1922 was intended to be an interim standard for drivetrain control, no specific support or gateway definition will be included in this document.SAE J1939-31 Revised MAY2010 Page 9 of 38FIGURE 1 - TYPICAL SAE J1939 VEHICLE NETWORK FOR TRUCK AND BUSSAE J1939-31 Revised MAY2010 Page 10 of 38FIGURE 2 - TYPICAL SAE J1939 VEHICLE NETWORK FOR AGRICULTURAL APPLICATIONSSAE J1939-31 Revised MAY2010 Page 11 of 38 5. NETWORK INTERCONNECTION ECUS5.1 Types of Network Interconnection ECUsThere are four standard types of Network Interconnection ECUs for internetworking communications. The different types are based upon the highest OSI layer where the NIECU performs its internetworking functions.1. Repeater: a device used to extend the length or number of nodes that can exist on a single network by allowing it tobe segmented physically. Repeaters are considered physical layer NIECU devices because they work at the physical layer of the OSI model, simply copying or forwarding bits from one network segment to another physical network segment, with no processing of the data in any way. No changes in data rate, address space, or protocol are permitted for segments that are joined by a repeater. In general, these devices are specialized hardware that transfer the data with sub-bit time delays, while the more complex devices use software for their forwarding functions.2. Bridge: a device used to transfer messages between two or more network segments that have the same address anddata link protocol. The transfer of messages between the network segments is typically performed by storing and forwarding entire data link messages. A bridge permits changes in the media and data rate between segments (i.e., physical layer), but the network segments must have the same address and data link protocol. A bridge can provide filtering to limit which messages are transferred from one network segment to another. A bridge is frequently used where Data Rate changes are needed, but does no Address or Protocol Translation.3. Router: a device for transferring messages between two or more network segments where the protocol is the sameon the network segments but each network may have separate address spaces, so address translation must be performed as the message is transferred between network segments. A router also determines how to move the data from the source to the destination, i.e., how to route the message through the network. The networks must have the same transport layer, but may have different network layers. A router can expand the address space of the network by connecting network segments and allowing communication between separate address spaces. Protocol is the same on all segments.4. Gateway: the highest complexity NIECU, the Gateway can exchange data across differing Protocols in addition tohandling the other functions as needed. A gateway NIECU may make changes to the packaging and presentation of the data, including combining data from multiple messages into one.If viewed as an ordered list, an NIECU toward the bottom of the list can have any of the internetworking functions of the NIECUs toward the top of the list. Thus a Router, although capable of doing address translation, can perform message forwarding if it has a Port Pair that use the same address space on both segments. In software terms, the NIECU Type is simply taken as that corresponding to the most complex Function that the ECU is programmed to perform. In this sense, a Router does not forward messages; the ECU that contains the “Router” function of Address Translation also contains an instance of the “Bridge” function of Message Forwarding. It may use those two software functions on separate Port Pairs, or (if there is an overlap in the address spaces) on the same Port Pair.5.1.1 RepeaterA device which regenerates the data signal to and from another segment of media. This permits the network to cover a greater distance (area), to connect more electrical loads (devices) onto the bus, or to connect to another type of media (physical layer expansion). The data rate, protocol (data link layer), and address space are the same on both sides of the repeater. A repeater usually implements message forwarding at the bit level, without storing and forwarding, and therefore does no re-ordering of messages by priority.The principle function provided by a repeater is message forwarding between bus segments which are all running at the same data rate. This is achieved by regenerating the signal from one segment onto another at the physical layer of the network, not by storing and forwarding complete CAN data frames. Repeaters should incorporate an anti-loopback/lockout function. Bitwise arbitration is also achieved across the repeater. The repeater is essentially transparent to any ECU on the vehicle network. All messages are forwarded as there is no message filtering capability. If fault isolation is provided, the repeater has the ability to disable one or more of its transmitters if a bus fault is detected on one of the segments. No management function is defined for a repeater, so an address is not required.SAE J1939-31 Revised MAY2010 Page 12 of 38 5.1.1.1 Repeater Networking Functions5.1.1.1.1 ForwardingA repeater performs message forwarding by copying each bit from one network segment to another network segment. Each bit is copied between network segments with sub-bit-time delay. When a Repeater forwards a message onto another segment, it uses the identical source address of the originator. Forwarding is discussed in more detail in 6.1.5.1.2 BridgeA device which stores and forwards messages between two or more network segments. This permits changes in the media and data rate between segments. The Protocol and Address Space remain the same on both sides of the bridge. Note that a bridge may selectively filter messages going across it so that the bus load is minimized on both segments.The principle function provided by a bridge is message forwarding and filtering between bus segments. This is achieved by storing, filtering, and forwarding messages at the data link layer of the network. By filtering messages, the bridge can effectively reduce the amount of bus traffic present on each segment of the network. The bridge is essentially transparent to any ECU on the vehicle network. Note that there is some transit delay through the bridge. If no database management function, address management, or diagnostic capability is provided, an address is not required for the bridge.5.1.2.1 Bridge Networking Functions5.1.2.1.1 ForwardingA bridge performs message forwarding by storing the complete message from one segment before transmitting that message on another network. When a Bridge forwards a message onto another segment, it uses the identical source address of the originator. Forwarding is discussed in more detail in 6.1.5.1.2.1.2 FilteringA bridge may filter any, all, or none of the messages it receives. This will be dependent on the application. Filtering is discussed in more detail in 6.2.5.1.2.1.3 Bridge Database ManagementAlthough not required, it is recommended that the Database Management function be supported to provide a standard access to configure the forward and filter databases. Database Management is discussed in more detail in 6.5.5.1.3 RouterA device which allows segments with independent Address Spaces, data rates, and media to exchange messages. This permits each segment to operate with minimum bus loading yet still obtain critical messages from remote segments. The protocol remains the same across all segments. Note that the router must have look up tables to permit the translation and routing of a message with address X on segment 1 to address Y on segment 2. This also permits a vehicle system like a tractor, trailer, or implement to appear as a single device to another portion of the vehicle.The principle operation provided by a router, in addition to those provided by a bridge, is address remapping (message routing). This permits a given vehicle subsystem to appear as a single address to another portion of the vehicle, thus extending the address space of the Data Link. This can potentially simplify the development of ECUs because they do not require specific knowledge of other individual ECUs (addresses) on the vehicle subsystem. Note that Address Claim messages do not cross through a router.Once operational, the router should be essentially transparent to any ECUs on the vehicle network. Note that there is some translation and forwarding delay through the router.。
SAE 1939_附录A附录B

附录A 参数群分配表A1J1939参数群摸板图例:DP = 数据页(1位)GE = 群扩展(8位)PF = 协议数据单元格式(8位)DA = 目标地址(8位)PS = 特定协议数据单元(8位)NA = 不允许的(为目标地址或群扩展)un = 未定义的PGN = 参数群编码(3字节)(详细描述见J1939-21中4.1.7节)DP PF PS 参数群定义多重分组PGN0 0 DA 1型协议数据单元NA0 1 DA∣∣(小于等于100毫秒)↓↓边界X(大于等于100毫秒)↑↑∣∣0 238 DA 1型协议数据单元允许的0 239 DA 1型协议数据单元-专有0 240 0 2型协议数据单元NA0 240 1∣∣(小于等于100毫秒)↓↓边界X(大于等于100毫秒)↑↑∣∣0 254 2540 254 255 2型协议数据单元允许的0 255 0-255* 2型协议数据单元-专有1 0 DA 1型协议数据单元NA1 1 DA∣∣(小于等于100毫秒)↓↓边界X(大于等于100毫秒)↑↑∣∣1 238 DA1 239 DA 1型协议数据单元允许的1 240 0 2型协议数据单元NA1 240 1∣∣(小于等于100毫秒)↓↓边界X(大于等于100毫秒)↑↑∣∣1 255 2541 255 255 2型协议数据单元允许的表A2J1939参数群图例:DP = 数据页(1位)GE = 群扩展(8位)PF = 协议数据单元格式(8位)DA = 目标地址(8位)PS = 特定协议数据单元(8位)X = 允许的(为目标地址或群扩展)un = 未定义的PGN = 参数群编码(3字节)(详细描述见J1939-21中4.1.7节)注意:修订日期(不是所有表格在以下日期都做过修订)(1)1996年7月(7)1998年2月(13)1999年7月(2)1996年10月(8)1998年3月(3)1997年1月(9)1998年7月(4)1997年4月(10)1998年10月(5)1997年8月(11)1999年2月(6)1997年11月(12)1999年5月附录B地址和标识分配表B1表B2J1939首选地址行业组#0 -- 全局注意:修订日期(不是所有表格在以下日期都做过修订)(7)1996年7月(7)1998年2月(13)1999年7月(8)1996年10月(8)1998年3月(9)1997年1月(9)1998年7月(10)1997年4月(10)1998年10月(11)1997年8月(11)1999年2月(12)1997年11月(12)1999年5月表B3 J1939首选地址注意:修订日期(不是所有表格在以下日期都做过修订)(13)1996年7月(7)1998年2月(13)1999年7月(14)1996年10月(8)1998年3月(15)1997年1月(9)1998年7月(16)1997年4月(10)1998年10月(17)1997年8月(11)1999年2月(18)1997年11月(12)1999年5月表B4J1939首选地址注意:修订日期(不是所有表格在以下日期都做过修订)(19)1996年7月(7)1998年2月(13)1999年7月(20)1996年10月(8)1998年3月(21)1997年1月(9)1998年7月(22)1997年4月(10)1998年10月(23)1997年8月(11)1999年2月(24)1997年11月(12)1999年5月表B5J1939首选地址行业组#3-建筑设备注意:修订日期(不是所有表格在以下日期都做过修订)(25)1996年7月(7)1998年2月(13)1999年7月(26)1996年10月(8)1998年3月(27)1997年1月(9)1998年7月(28)1997年4月(10)1998年10月(29)1997年8月(11)1999年2月(30)1997年11月(12)1999年5月表B6J1939首选地址行业组#4-船舶设备注意:修订日期(不是所有表格在以下日期都做过修订)(31)1996年7月(7)1998年2月(13)1999年7月(32)1996年10月(8)1998年3月(33)1997年1月(9)1998年7月(34)1997年4月(10)1998年10月(35)1997年8月(11)1999年2月(36)1997年11月(12)1999年5月表B7J1939首选地址行业组#5-工业-过程控制-固定设备注意:修订日期(不是所有表格在以下日期都做过修订)(37)1996年7月(7)1998年2月(13)1999年7月(38)1996年10月(8)1998年3月(39)1997年1月(9)1998年7月(40)1997年4月(10)1998年10月(41)1997年8月(11)1999年2月(42)1997年11月(12)1999年5月表B8至表B9J1939首选地址(行业组6至7)为以后分配保留表B10注意:修订日期(不是所有表格在以下日期都做过修订)(43)1996年7月(7)1998年2月(13)1999年7月(44)1996年10月(8)1998年3月(45)1997年1月(9)1998年7月(46)1997年4月(10)1998年10月(47)1997年8月(11)1999年2月(48)1997年11月(12)1999年5月表B11J1939 所有行业都使用的名称在3.1.3节和J1939-81的4.1节中有对名称域的定义。
SAE J1939-11

路面车辆推荐操作规程(被采纳为美国国家标准) SAEJ1939-11:
物理层,250K 比特/秒,屏蔽双绞线
前言
本系列 SAE 推荐操作规程是由卡车及客车电子电气委员会所属的卡车及客车控制及通信小 组委员会制定的。该小组委员会的目标是针对电控单元的需求、设计和使用,提交信息报告、 制定推荐操作规程。这些电控单元在汽车部件之间传递着电子信号和控制信息。本规程的使用 不限于卡车和客车应用,其对于其他的应用也可以提供直接的支持,正如已在建筑及农业设备 和固定式的动力系统。
2.1 应用出版物............................................................................................................................. 4 2.1.1 SAE 出版物 .................................................................................................................... 4 2.1.2 ISO 出版物 ..................................................................................................................... 4 2.1.3 军用出版物..................................................................................................................... 4
sae1939协议的架构

sae1939协议的架构SAE1939协议的架构SAE1939协议是一种用于车辆通信的协议,它定义了数据通信的标准,使得各个车辆子系统能够相互交流并实现数据共享。
该协议的架构包含多个重要组件,这些组件协同工作,确保车辆系统的正常运行。
1. J1939物理层J1939物理层是SAE1939协议的基础,它定义了车辆通信所使用的物理介质和电气特性。
这包括了传输介质(如CAN总线)、连接器类型、电压等级等。
J1939物理层的设计能够提供可靠的数据传输,确保车辆系统在复杂环境下的稳定运行。
2. J1939数据链路层J1939数据链路层负责在物理层上建立可靠的数据传输通道。
它使用帧的形式将数据进行分组,并添加CRC校验码以确保数据的完整性。
数据链路层还负责错误检测和纠正,以确保数据的准确传递。
同时,它还定义了数据的优先级和广播的机制,确保各个子系统之间的通信顺畅。
3. J1939网络管理J1939网络管理是协议的核心组件,它负责管理整个车辆网络的拓扑结构和节点之间的通信。
网络管理通过节点地址分配、节点状态管理和错误诊断等功能,确保车辆系统的稳定和可靠运行。
它还支持动态添加和移除节点,以适应车辆系统的扩展和变化。
4. J1939应用层J1939应用层定义了车辆系统中各个子系统之间的数据交换方式和数据格式。
它使用标准的参数组(PGN)和参数(SPN)来描述车辆信息,如发动机转速、车速等。
应用层还提供了一些标准的消息和指令,用于实现车辆系统的功能和控制。
SAE1939协议的架构通过以上组件的协同工作,实现了车辆系统之间的高效通信和数据共享。
这使得不同子系统能够相互协作,实现车辆性能的优化和功能的增强。
同时,该架构还具备可扩展性和灵活性,能够适应不同车辆类型和应用场景的需求。
SAE1939协议的架构为车辆通信提供了一个稳定、可靠的基础。
它通过定义各个组件的功能和交互方式,实现了车辆系统的高效运行和数据交换。
这为车辆制造商和车辆用户提供了更多的选择和灵活性,同时也提升了车辆的安全性和可靠性。
Appendix

附录A.1 存储器构造 (1)A.2 特殊继电器 (3)A.3 指令清单 (12)附录A.1.1 位存储器设备位存储器设备是提供位读写的存储设备。
P , M, L, K, F 区域都是位存储器设备。
然而,位存储器设备也可以被用做字设备区域。
< 位存储器设备的符号 >< 位存储器设备的内存结构 >位地址赋值( 0 ~ F : 十六进制 ) 字地址赋值(十进制 ) 设备赋值( P, M, L, K, F )FEDCBA987654321000 001 002 003nnn = P002BA.1.2 位 / 字存储器设备( 定时器& 计数器)定时器和计数器存储区域包括三部分-输出位 、当前值字和设定值字。
当T 或 C 区域被当成位指令的运算对象时,指令对定时器和计数器的输出位有影响。
如果T 或C 区域被使用做字指令的运算对象,指令影响当前值。
用户不能改变设定值。
A.1.3 字存储器设备D 区域由字来使用。
因此,D 区域不能被用做位指令例如:LOAD, OUT 等的运算对象。
如要通过位来控制D 区域,请使用特殊指令如:BLD 、BAND 、BOR 等。
FEDCBA987654321D0000 D0001D0002 D0003Dnnnn = D0002A.2.1 K10S1 / K10S / K30S / K60S1) F 设备2) 其它特殊继电器A.2.2 K80S / K200S / K300S / K1000S1) F 继电器高速连接标志清单x : K1000S = 9, K300S / K200S = 4, n = 0 ~ 7 (槽号码)槽号& 标志清单高速连接信息标志清单的详细信息(m=0时)高速连接信息标志清单的详细信息(m= 1 到3)从属系统标志清单⏹●: 仅适用于K1000S, K300S, K200S 系列 : 仅适用于K10S,K10S1, K30S, K60S 系列 : 在K80S 不能使用。
按比例核算

79 85 82 74 82 81 89 81 89 80 74 87 81 86 87 95 90 85 85 72 73 86 76 82 88 86 76 73 82 88 86 84 85 71 79 85 76 89 82 81 80 79 85 80 81 89 83 81 85 84 66 85 70 90
62 41 58 49 56 55 53 64 46 54 46 60 46 55 53 36 55 41 49 57 45 42 50 60 43 49 55 46 50 48 47 43 43 44 48 45 55 33 43 39 43 32 34 46 50 39 49 43 38 32 67 35 44 42
000930614 义和中学 000930518 义和中学 000930511 义和中学 000930322 义和中学 000930429 义和中学 000930221 义和中学 000930122 义和中学 000930521 义和中学 000930321 义和中学 000930217 义和中学 000930218 义和中学 000930611 义和中学 000930320 义和中学 000930617 义和中学 000930319 义和中学 000930628 义和中学 000930220 义和中学 000930629 义和中学 000930127 义和中学 000930426 义和中学 000930222 义和中学 000930323 义和中学 000930328 义和中学 000930324 义和中学 000930229 义和中学 000930118 义和中学 000930121 义和中学 000930522 义和中学 000930519 义和中学 000930318 义和中学 000930224 义和中学 000930619 义和中学 000930621 义和中学 000930625 义和中学 000930422 义和中学 000930128 义和中学 000930227 义和中学 000930327 义和中学 000930516 义和中学 000930223 义和中学 000930620 义和中学 000930226 义和中学 000930523 义和中学 000930630 义和中学 000930527 义和中学 000930330 义和中学 000930325 义和中学 000930425 义和中学 000930434 义和中学 000930626 义和中学 000930524 义和中学 000930520 义和中学 000930528 义和中学 000930125 义和中学
SAE J2044-2009-标准 油管、油泵、燃油滤清器、油轨等管接头的执行标准

__________________________________________________________________________________________________________________________________________ SAE Technical Standards Board Rules provide that: “This report is published by SAE to advance the state of technical and engineering sciences. The use of this report isentirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user.” SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions. Copyright © 2009 SAE InternationalAll rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE.TO PLACE A DOCUMENT ORDER: Tel: 877-606-7323 (inside USA and Canada)Tel: 724-776-4970 (outside USA)SURFACE VEHICLERECOMMENDED PRACTICEJ2044 AUG2009Issued 1992-06 Revised 2009-08Superseding J2044 SEP2002(R) Quick Connect Coupling Specification for Liquid Fuel and Vapor/Emissions SystemsRATIONALEThis revision is to encompass changes in fuel and emission technology and clarification of test procedures.TABLE OF CONTENTS1. SC OPE .......................................................................................................................................................... 22. REFERENCES .............................................................................................................................................. 3 2.1 Applicable Publications ................................................................................................................................. 3 2.1.1 SAE Publications ........................................................................................................................................... 3 2.1.2 ASTM Publication .......................................................................................................................................... 3 2.2 Related Publication ....................................................................................................................................... 3 2.2.1 SAE Publication ............................................................................................................................................ 33. DEFINITIONS ............................................................................................................................................... 4 3.1 Unexposed Coupling ..................................................................................................................................... 4 3.2 Lot ................................................................................................................................................................. 4 3.3 Dimensions ................................................................................................................................................... 44. SIZE DESIGNATION .................................................................................................................................... 45. TEST TEMPERATURES .............................................................................................................................. 46. FUNCTIONAL REQUIREMENTS ................................................................................................................. 4 6.1 Leak Test (In-Process) .................................................................................................................................. 5 6.1.1 Low Pressure Leak Test Procedure ............................................................................................................. 5 6.1.2 Low Pressure Leak Acceptance Criteria ....................................................................................................... 5 6.1.3 High Pressure Leak Test Procedure (Liquid Fuel Only) ............................................................................... 5 6.1.4 High Pressure Test Acceptance Criteria ....................................................................................................... 5 6.1.5 Vacuum Leak Test Procedure (Vapor Systems only at Customer’s Request) ............................................. 5 6.1.6 Vacuum Test Acceptance Criteria ................................................................................................................ 5 6.2 Assembly Effort ............................................................................................................................................. 8 6.2.1 Test Procedure (New Parts) ......................................................................................................................... 8 6.2.2 Test Procedure (Connectors after Section 7 Exposure) ............................................................................... 8 6.2.3 Acceptance C riteria ....................................................................................................................................... 8 6.3 Pull-Apart Effort ........................................................................................................................................... 10 6.3.1 Test Procedure ............................................................................................................................................ 10 6.3.2Acceptance C riteria (10)--`,,```,,,,````-`-`,,`,,`,`,,`---6.4Side Load Capability (12)6.4.1Test Procedure (12)6.4.2Acceptance Criteria (Side Load Leak Test) (12)6.4.3Acceptance Criteria (Side Load Fracture Test) (12)6.5Electrical Resistance (13)6.5.1Test Procedure (13)6.5.2Acceptance C riteria (13)6.6Resistance to Evaporative Emissions (13)7.DESIGN VERIFICATION/VALIDATION TESTING (13)7.1Corrosion (13)7.1.1Test Procedure (13)7.1.2Acceptance C riteria (13)7.2Zinc Chloride Resistance (14)7.2.1Test Procedure (14)7.2.2Acceptance C riteria (14)7.3External Chemical and Environmental Resistance (14)7.3.1Test Procedure, Fluid or Medium (14)7.3.2Acceptance C riteria (15)7.4Fuel Compatibility (15)7.4.1Test Procedure (15)7.4.2Test Fuels (15)7.4.3Test Requirement (16)7.4.4Acceptance C riteria (16)7.5Life Cycle (16)7.5.1Test Procedure (16)7.5.2Vibration Frequency (16)7.5.3Acceleration (16)7.5.4Vibration Duration (17)7.5.5Fluid Pressure (17)7.5.6Fluid Flow (Liquid Fuel Quick Connect Couplings Only) (17)7.5.7Test Duration (17)7.5.8Test Cycles (18)7.5.9Acceptance C riteria (19)7.6Elevated Temperature Burst (20)7.6.1Test Procedure (20)7.6.2Acceptance C riteria (21)8.DESIGN VERIFICATION/VALIDATION AND IN-PROCESS TESTING MATRIX (21)9.NOTES (22)--`,,```,,,,````-`-`,,`,,`,`,,`---9.1Marginal Indicia (22)APPENDIX A PROCEDURE FOR MEASURING MATING TUBE ENDFORM BEAD WIDTH (23)1. SC OPEThis SAE Recommended Practice defines the minimum functional requirements for quick connect couplings used for supply, return, and vapor/emission fuel system connections. This document also defines standard male tube end form dimensions, so as to guarantee interchangeability between all connector designs of the same male tube end form size. This document applies to automotive and light truck applications under the following conditions:a. Gasoline and diesel fuel delivery systems or their vapor venting or evaporative emission control systems.b. Operating pressure up to 500 kPa, 5 bar, (72 psig).c. Operating vacuum down to –50 kPa, –0.5 bar (–7.2 psi).d. Operating temperatures from –40 °C (–40 °F) to 115 °C (239 °F).Quick connect couplings function by joining the connector to a mating tube end form, then pulling back to assure a complete connection. The requirements stated in this document apply to new connectors in assembly operations unless otherwise indicated. For service operations, the mating tube should be lubricated with SAE 30-weight oil before re-connecting.Vehicle OEM fuel system specifications may impose additional requirements beyond the scope of this general SAE document. In those cases, the OEM specification takes precedence over this document.2. REFERENC ES2.1 Applicable PublicationsThe following publications form a part of this specification to the extent specified herein. Unless otherwise specified, the latest issue of SAE publications shall apply.Publications2.1.1 SAEAvailable from SAE International, 400 C ommonwealth Drive, Warrendale, PA 15096-0001, Tel: 877-606-7323 (inside USA and Canada) or 724-776-4970 (outside USA), .SAE J526 Welded Low-Carbon Steel TubingSAE J527 Brazed Double Wall Low-Carbon Steel TubingSAE J1645 Fuel Systems and Components—Electrostatic Charge MitigationSAE J1681 Gasoline, Alcohol, and Diesel Fuel Surrogates for Materials TestingSAE J1737 Test Procedure to Determine the Hydrocarbon Losses from Fuel Tubes, Hoses, Fittings, and Fuel Line Assemblies by RecirculationSAE J2045 Performance Requirements for Fuel System Tubing AssembliesSAE J2587 Optimized Fuel Tank Sender ClosurePublication2.1.2 ASTMAvailable from ASTM International, 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 19428-2959, Tel: 610-832-9585, .ASTM B 117 Method of Salt Spray (Fog) Testing2.2 Related PublicationThe following publication is provided for information purposes only and is not a required part of this specification.Publication2.2.1 SAEAvailable from SAE International, 400 C ommonwealth Drive, Warrendale, PA 15096-0001, Tel: 877-606-7323 (inside USA and Canada) or 724-776-4970 (outside USA), .SAE J30 Fuel and Oil Hoses--`,,```,,,,````-`-`,,`,,`,`,,`---3. DEFINITIONS3.1 Unexposed CouplingOne that has not been used or deteriorated since manufacture. 3.2 LotA group of couplings that can be traced to a single assembly set-up or material lot. No more than one week production in a lot.3.3 DimensionsUnless otherwise specified all dimensions are in millimeters (mm). 4. SIZE DESIGNATIONThe size of quick connect couplings in this document are designated by three dimensions, and presented as İ x ȕ x Į, defined in Figure 1 below. Dimension İ designates the nominal male endform diameter. Dimension ȕ designates the tubing or hose size suited for the stem end of the coupling. Dimension Į designates the minimum straight length, of nominal diameter tubing, behind the male endform bead, required for proper installation and removal of the fitting. EXAMPLE: 9.5 mm x 8 mm x 12 mm connector couples with a 9.5 mm male tube end, is inserted into an 8 mm flexibletube or hose and requires 12 mm clearance behind the bead on the tube end.FIGURE 1 - CONNECTOR NOMENCLATUREDetails for standard coupling sizes and dimensions for standard tube end forms are shown in Table 1 and Figure 2. NOTE: On metal or plastic tubing the OD is used to designate size. On flexible hose the ID is used to designate size. 5. TEST TEMPERATURESUnless otherwise specified, all tests will be performed at room temperature 23 °C ± 2 °C (73.4 °F ± 4 °F). 6. FUNC TIONAL REQUIREMENTSThis section defines the minimum functional requirements for quick connector couplings used in flexible tubing fuel systems.NOTE: New connector designs using the same materials as previously tested connectors may use the original results assurrogate data for 7.1 C orrosion, 7.2 Zinc C hloride Resistance, 7.3 External chemical and Environmental Resistance, and 7.4 Fuel Compatibility.--`,,```,,,,````-`-`,,`,,`,`,,`---6.1 Leak Test (In-Process)In accordance with stringent emissions regulations, including C ARB PZEV, and safety regulations, quick connector couplings must be free of leaks and micro-leaks. Production leak testing is performed to assure conformance to the requirement. C ompressed air leak testing is a proven technique which provides required leak sensitivity as well as a proof test for pressure resistance. Depending on the application, test conditions for Low Pressure (vapor), high pressure (liquid) and vacuum systems are described below.NOTE: Leak test acceptance criteria for this document are in customary leak units of flow (cc/min) or mass flow (scc/min). In the fuel system industry, an alternate leak test criteria, based on units of equivalent channel dimension rather than flow rate, have been applied. For example, see SAEJ2587 for leak criteria for fuel pump module tank interface joint. The equivalent channel specification is especially appropriate for parts such as fuel tanks with large internal volume, with high deformation with applied pressure or vacuum and where use pressures are low. Leak tests for such parts include vacuum, pressure, and accumulation methods. It can be difficult to compare the indicated leak rates for various techniques, so an equivalent channel criteria is established. The equivalent channel dimension specification is based on test data indicating that fuel system micro-leaks will plug over time. Effectively, micro-leaks plug to a near zero hydrocarbon emission level. The high pressure leak tests defined in 6.1.3 have been demonstrated, with experiment and analysis, to satisfy an equivalent channel of15 micron diameter and 3 mm length. No further testing is recommended to validate the equivalent channelcriteria. Standard leak rate conditions are defined as 101.325 kPa (14.696 psia) and 293 K (20 C).6.1.1 Low Pressure Leak Test Procedurea. Insert leak test pin, shown in Figure 3, into the connector.b. Pressurize between the seals (for single seal connectors, the stem must be capped or sealed) with suitable air leaktest equipment to 69 kPa ± 7 kPa, 0.69 bar ± 0.07 bar (10 psig ± 1 psig).6.1.2 Low Pressure Leak Acceptance CriteriaMaximum leak rate 2 scc/min (1.19 cc/min) at stabilization.6.1.3 High Pressure Leak Test Procedure (Liquid Fuel Only)a. Insert leak test pin, shown in Figure 3, into the connector.b. Pressurize between the seals with suitable air leak test equipment to 1034 kPa ± 35 kPa, 10.34 bar ± 0.35 bar(150 psig ± 5 psig).6.1.4 High Pressure Test Acceptance CriteriaMaximum leak rate 5 scc/min (0.45 cc/min) at stabilization.NOTE: Appropriate safety precautions should be taken when testing with high-pressure air. Not required for vapor/emission quick connector couplings. Vapor connectors are not generally used for high pressure applications.6.1.5 Vacuum Leak Test Procedure (Vapor Systems only at Customer’s Request)a. Insert leak test pin shown in Figure 3 into connector.b. Apply a vacuum of 7 kPa (–1.02 psig) with suitable vacuum leak test equipment.6.1.6 Vacuum Test Acceptance CriteriaMaximum leak rate 2 scc/min (2.14 cc/min) at stabilization.Stabilization can be determined by viewing a graphic output of actual leak rate. This will vary by connector size and leak test method. Permeation is not the same phenomenon as leaks. Permeation tests measure permeation rate.--`,,```,,,,````-`-`,,`,,`,`,,`---TABLE 1 - STANDARD TUBE END-FORM DIMENSIONSdependant on tubing wall thickness. For formed metal tube wall thicknesses other than specified in Table 1; D= 2X wall +0.5/–0.0, bead width recommended. Nominal steel tube dimensions per SAE J526 and SAE J527. For material thicknesses other than specified in Table 1, see your Quick Connect supplier for compatibility. Molded plastic endform suitability with the various fitting types and applications, should be confirmed with the fitting manufacturer. See Appendix A for Bead Width measurement method.--`,,```,,,,````-`-`,,`,,`,`,,`---Tube sizes up to 10 mm (for overlay check)Tube sizes greater than 10 mm (for overlay check)FIGURE 2 - DETAIL A (CONTINUED)NOTE: Nose shape must be smooth and allow insertion without seal damage. Also it must conform to the requiredminimum internal diameter in Table 1.--`,,```,,,,````-`-`,,`,,`,`,,`---FIGURE 3 Basic Size “A” Maximum “A” Minimummm mm 4.78 mm (3/16 in) 4.57 4.55 6.35 mm (1/4 in) 6.24 6.22 7.94 mm (5/16 in) 7.83 7.81 9.53 mm (3/8 in) 9.43 9.41 10 mm 9.83 9.81 11.11 mm (7/16 in) 10.95 10.93 12 mm 11.70 11.68 12.70 mm (1/2 in) 12.51 12.49 15.88 mm (5/8 in) 15.72 15.70 19.05 mm (3/4 in) 18.80 18.78 22.23 mm (7/8 in) 22.55 22.53FIGURE 3 - LEAK TEST PINNOTE: SAE J2044 rev 2002, test pins are acceptable for use. 6.2 Assembly EffortQuick connect coupling assembly effort is the peak force required to fully assemble (latch or retain) the mating tube endinto the connector. Use a suitable tensile/compression tester to verify conformance to this document. 6.2.1Test Procedure (New Parts)a. Test a minimum of 10 couplings.b. Test the quick connect coupling as supplied. Do not add additional lubrication to the quick connect coupling or testpin. c. Attach quick connect coupling to a suitable test fixture.d. Wipe the test pins, before each test, with a clean lint-free cloth to prevent an accumulation of lubrication.e. Insert assembly test pin, shown in Figure 4, into the quick connect coupling at a rate of 51 mm/min ± 5 mm/min(2 in/min ± 0.2 in/min) and measure assembly effort. (Simulated maximum tube end form) 6.2.2Test Procedure (Connectors after Section 7 Exposure)a. Allow samples to dry 48 h before insertion testing.b. Lubricate test pin with SAE 30-weight oil by dipping the end in oil up to the retaining bead.c. Insert assembly test pin, shown in Figure 4, into the quick connector at a rate of 51 mm/min ± 5 mm/min (2 in/min ±0.2 in/min) and measure assembly effort. 6.2.3 Acceptance Criteriaa. Maximum first time assembly effort must not exceed 67 N (15 lb) for sizes <11 mm male tubes, and 111 N (25 lb) forsizes ≥11 mm male tubes. b. Maximum assembly effort after Section 7 exposures must not exceed 111 N (25 lb) for <11 mm male tubes and 156 N(35 lb) for ≥11 mm male tubes.--`,,```,,,,````-`-`,,`,,`,`,,`---A B C D E+0.00 +0.00+0.00+0.00+0.00–0.01 –0.01 –0.05 –0.02 –0.054.78 mm (3/16 in) 4.69 7.25 20.18 1.93 4.766.35 mm (1/4 in) 6.36 8.90 21.16 1.93 6.358 mm (5/16 in) 7.95 11.13 21.37 1.93 7.949.53 mm (3/8 in) 9.55 13.15 21.37 1.93 9.5310 mm 9.95 13.63 24.99 1.93 10.0011.11 mm (7/16 in) 11.15 15.05 27.12 1.93 11.1112 mm 11.90 16.76 27.12 1.93 12.0012.70 mm (1/2 in) 12.71 16.76 27.12 1.93 12.7015.88 mm (5/8 in) 15.92 19.43 27.12 2.74 15.8819.05 mm (3/4 in) 19.00 22.58 27.12 2.74 19.0522.23 mm (7/8 in) 22.85 26.20 30.00 2.74 22.23PA COATED ENDFORMS6.35 mm (1/4 in) PA 6.36 8.90 21.16 2.32 6.358 mm (5/16 in) PA 7.95 11.13 21.37 2.32 7.949.5 mm (3/8 in) PA 9.55 13.15 21.37 2.32 9.53FIGURE 4 - ASSEMBLY TEST PINNOTE: Dimensions represent Test Pin diameters @ Maximum Material C ondition. Surface finish must be 30 RT or better. SAE J2044 rev 2002, test pins are acceptable for use.--`,,```,,,,````-`-`,,`,,`,`,,`---6.3 Pull-Apart EffortQuick connect coupling pull-apart effort is the peak force required to pull the mating tube end out of the quick connect coupling. Use a suitable tensile tester to verify conformance to this document. For hose pull-off, see SAE J2045. 6.3.1 Test Procedurea. Attach the quick connector body stem to a fixture suitable for pulling axially through the centerline of the quickconnector. b. Use the pull-apart test pin shown in Figure 5. (Simulated minimum mating end form)c. Apply a tensile load, at a rate of 51 mm/min ± 5 mm/min (2 in/min ± 0.2 in/min), until complete separation occurs. 6.3.2 Acceptance Criteriaa. The Force required to separate unexposed liquid fuel quick connects from the test pin should be, 450 N minimum.b. The Force required to separate exposed liquid fuel quick connects (after Section 7) from the test pin should be, 297 Nminimum. c. The Force required to separate unexposed vapor/emissions quick connects from the test pin should be, 222 Nminimum.d. The Force required to separate exposed vapor/emissions quick connects (after Section 7) from the test pin should be,75 N minimum.--`,,```,,,,````-`-`,,`,,`,`,,`---+0.01 +0.02 +0.05 +0.05 +0.05 –0.00 –0.00 –0.00 –0.00 –0.004.76 mm (3/16 in) 4.57 6.95 19.68 1.574.76 6.35 mm (1/4 in) 6.24 8.60 20.66 1.57 6.35 8 mm (5/16 in) 7.83 10.83 20.87 1.57 7.94 9.5 mm (3/8 in) 9.43 12.73 20.87 1.57 9.53 10 mm9.83 13.21 24.49 1.57 10.00 11.1 mm (7/16 in) 10.95 14.55 26.12 1.57 11.11 12 mm11.70 16.26 26.12 1.57 12.00 12.7 mm (1/2 in) 12.51 16.26 26.12 1.57 12.70 16 mm (5/8 in) 15.72 18.93 26.12 2.34 15.88 19 mm (3/4 in) 18.80 22.08 26.12 2.34 19.05 23 mm (7/8 in) 22.55 25.20 29.00 2.34 22.23 PA COATED ENDFORMS 6.35 mm (1/4 in) PA 6.24 8.60 20.66 1.98 6.35 8 mm (5/16 in) PA 7.83 10.83 20.87 1.98 7.94 9.5 mm (3/8 in) PA 9.43 12.73 20.87 1.989.53F IGURE 5 - PULL APART PINNOTE: Dimensions represent Test Pin diameters @ Minimum Material Condition. Surface finish must be 30 RT or better.SAE J2044 rev 2002, test pins are acceptable for use.--`,,```,,,,````-`-`,,`,,`,`,,`---6.4Side Load CapabilityQuick connect couplings must be able to withstand side loads typical of what might be imposed by hose routing in a vehicle application as well as from having the hose pushed aside to reach other objects on the vehicle during service procedures. The connector side load capability is measured using a side load leak test and a side load fracture test. 6.4.1 Test Procedurea. Insert quick connector into a length of flexible tubing or hose with the opposite end sealed.b. Mount a sample in the fracture fixture (see Figure 6), side load quick connector at a rate of 12.7 mm/min ± 5 mm/min(0.5 in/min ± 0.2 in/min) until the specified force is applied or fracture of the quick connector occurs. Kinking of flexible tubing or hose is permitted c. For liquid fuel quick connect couplings, pressurize the assembly with 1034 kPa ± 35 kPa, 10.34 bar ± 0.35 bar(150 psig ± 5 psig) air pressure. d. For vapor/emission quick connect couplings, pressurize the assembly with 70 kPa ± 7 kPa, 0.7 bar ± 0.07 bar(10 psig ± 1 psig) air pressure. e. Side load the quick connect to a load of 152 N, then stop the machine and perform the leak test. (For male tubeendform sizes less than 8 mm (5/16”) side load to 44.5 N and perform leak test.) f. Continue side load to fracture (must exceed minimum requirement without damage to test equipment). 6.4.2Acceptance Criteria (Side Load Leak Test)a. M aximum leak rate is 8 scc/min (0.71 cc/min) at stabilization for liquid fuel quick connectors.b. Maximum leak rate is 2 scc/min (1.19 cc/min) at stabilization for vapor/emission quick connects. 6.4.3Acceptance Criteria (Side Load Fracture Test)For stem sizes 5/16” and above, no fracture, rupture, or yield of the quick connector permitted below a minimum of 200N (45 lbf). For stem sizes less than 5/16”, acceptance criteria is per agreement between fitting supplier and OEM.FIGURE 6 - SIDE LOAD TEST FIXTURETensile Test Machine Center of Pull Air pressure Test endforminletperFigure 5 –Pull Apart PinTensile TestMachine Center of PullAlternate Fixture Setup--`,,```,,,,````-`-`,,`,,`,`,,`---6.5 Electrical Resistance If required by the OEM, all connectors used in fuel system applications involving flowing liquid fuel must be sufficiently conductive and capable of creating an electrical connection with the flexible tubing into which they are inserted and with the tube end form that is inserted into them in order to prevent the buildup of harmful electrostatic charges. 6.5.1 Test Procedurea. Test specimen is to consist of a coupling representative of the design as it will be installed in a vehicle application.The coupling is to be in the middle of the specimen. The length of both the flexible tubing or hose and rigid tubing must be 250 mm. b. Expose the specimens in accordance with 7.4 Fuel Compatibility of this document, Fuel C only, then dry the exteriorthoroughly (defer on fuel soak samples). c. Test per SAE J1645 between the inner surfaces at each end of the specimen.CAUTION: Measurement device may produce hazardous electrical charge, handle components with insulated means. 6.5.2 Acceptance CriteriaAcceptance criteria are specified in SAE J1645. 6.6Resistance to Evaporative EmissionsFuel line couplings are an integral part of the fuel system barrier to evaporative emissions. They are viewed as potential emissions or leak sites in the system. The evaporative losses from a single coupling are normally too small to measure accurately. While connector emissions have been estimated by testing 10 or more couplings concurrently, it is recommended that couplings be tested as a part of the fuel line assembly, per SAE J2045. 7. DESIGN VERIFICATION/VALIDATION TESTING 7.1 CorrosionThe corrosion test is performed to assure that the quick connector components will meet the functional requirements of the fuel system after exposure to the corrosion test. 7.1.1 Test Procedurea. Insert design intent mating tube ends, shown in Figure 2, into the quick connect couplings.b. Cap the mating tube ends and the stem ends of the quick connect couplings, so internal surfaces remain free of waterand corrosion. c. Perform salt spray test per ASTM B 117 for 500 h. d. Rinse with water before functional tests. 7.1.2 Acceptance CriteriaThe quick connect couplings shall be capable of meeting the functional requirements of 6.1 Leak Test, 6.2 Assembly Effort, and 6.3 Pull Apart Effort, after salt spray exposure. Appearance is not a functional requirement.NOTE: New connector sizes using the same materials and architectural design as previously tested connectors may usethe original results as surrogate data.--`,,```,,,,````-`-`,,`,,`,`,,`---7.2Zinc Chloride ResistanceZinc chloride is an environmental stress-cracking agent to which some hygroscopic polymers are sensitive. This test is performed to assure that the quick connect couplings meet their functional requirements after exposure to zinc chloride. 7.2.1 Test Procedurea. Insert mating tube ends, shown in Figure 2, into the quick connect couplings.b. Cap the mating tube ends and stem ends of the quick connect couplings, so internal surfaces remain free of waterand corrosion. c. Immerse the couplings in a 50% aqueous solution (by weight) of zinc chloride for 200 h at 23 °C (room temperature).C over or cap the container to prevent the solution from changing concentration significantly during the exposure. When in doubt, measure the concentration of ZnCl at the completion of the test. d. When the exposure is complete, remove the quick connect couplings from the zinc chloride solution, do not rinse orclean. e. The quick connect couplings must then be held at room temperature for 24 h.f. Quick connect couplings are to be inspected after each exposure sequence for any evidence of cracking. g. Rinse with water before functional tests. 7.2.2 Acceptance C riteriaa. No cracks or fractures of the quick connector or its components permitted.b. The quick connect couplings shall be capable of meeting the functional requirements of 6.1 Leak Test, 6.2 AssemblyEffort, and 6.3 Pull Apart Effort, after exposure to zinc chloride. NOTE: New connector sizes using the same materials and architectural design as previously tested connectors may usethe original results as surrogate data. 7.3External Chemical and Environmental ResistanceQuick connect couplings may be exposed to a range of chemicals typical of the automotive environment. This chemical resistance test is performed to assure that the quick connect couplings will meet their functional requirements after exposure to typical automotive fluids. 7.3.1Test Procedure, Fluid or MediumSee Table 2.a Insert mating tube ends, shown in Figure 2, into the quick connect couplings. b. Cap mating tube ends and stem ends of the quick connect couplings. c. Submerge the quick connect coupling assemblies completely. d. At the end of 60 days, dry connectors at room temperature for 48 h. e. Rinse before functional tests. (See Table 2)--`,,```,,,,````-`-`,,`,,`,`,,`---。
SAE J2044-2009燃油管路快速接头中文版

2. 引用 ............................................................................................................................................................. 3 2.1 适用的出版物 ............................................................................................................................................. 3 2.1.1 SAE出版物 .............................................................................................................................................. 3 2.1.2 ASTM 出版物 .......................................................................................................................................... 3 2.2 相关的出版物 ............................................................................................................................................. 3 2.2.1 SAE 出版物 ............................................................................................................................................. 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
附录A 参数群分配
表A1
J1939参数群摸板
图例:
DP = 数据页(1位)GE = 群扩展(8位)
PF = 协议数据单元格式(8位)DA = 目标地址(8位)
PS = 特定协议数据单元(8位)NA = 不允许的
(为目标地址或群扩展)un = 未定义的
PGN = 参数群编码(3字节)(详细描述见J1939-21中4.1.7节)
DP PF PS 参数群定义多重分组PGN
0 0 DA 1型协议数据单元NA
0 1 DA
∣∣
(小于等于100毫秒)↓↓
边界X
(大于等于100毫秒)↑↑
∣∣
0 238 DA 1型协议数据单元允许的
0 239 DA 1型协议数据单元-专有
0 240 0 2型协议数据单元NA
0 240 1
∣∣
(小于等于100毫秒)↓↓
边界X
(大于等于100毫秒)↑↑
∣∣
0 254 254
0 254 255 2型协议数据单元允许的
0 255 0-255* 2型协议数据单元-专有
1 0 DA 1型协议数据单元NA
1 1 DA
∣∣
(小于等于100毫秒)↓↓
边界X
(大于等于100毫秒)↑↑
∣∣
1 238 DA
1 239 DA 1型协议数据单元允许的
1 240 0 2型协议数据单元NA
1 240 1
∣∣(小于等于100毫秒)↓↓边界X
(大于等于100毫秒)↑↑
∣∣
1 255 254
1 255 255 2型协议数据单元允许的
表A2
J1939参数群
图例:
DP = 数据页(1位)GE = 群扩展(8位)PF = 协议数据单元格式(8位)DA = 目标地址(8位)PS = 特定协议数据单元(8位)X = 允许的
(为目标地址或群扩展)un = 未定义的
PGN = 参数群编码(3字节)(详细描述见J1939-21中4.1.7节)
注意:修订日期(不是所有表格在以下日期都做过修订)
(1)1996年7月(7)1998年2月(13)1999年7月
(2)1996年10月(8)1998年3月
(3)1997年1月(9)1998年7月
(4)1997年4月(10)1998年10月
(5)1997年8月(11)1999年2月
(6)1997年11月(12)1999年5月
附录B
地址和标识分配
表B1
表B2 J1939首选地址
注意:修订日期(不是所有表格在以下日期都做过修订)
(7)1996年7月(7)1998年2月(13)1999年7月
(8)1996年10月(8)1998年3月
(9)1997年1月(9)1998年7月
(10)1997年4月(10)1998年10月
(11)1997年8月(11)1999年2月
(12)1997年11月(12)1999年5月
表B3
J1939首选地址行业组#1-公路设备
注意:修订日期(不是所有表格在以下日期都做过修订)
(13)1996年7月(7)1998年2月(13)1999年7月
(14)1996年10月(8)1998年3月
(15)1997年1月(9)1998年7月
(16)1997年4月(10)1998年10月
(17)1997年8月(11)1999年2月
(18)1997年11月(12)1999年5月
表B4
J1939首选地址
行业组#2-农业和林业设备
注意:修订日期(不是所有表格在以下日期都做过修订)
(19)1996年7月(7)1998年2月(13)1999年7月
(20)1996年10月(8)1998年3月
(21)1997年1月(9)1998年7月
(22)1997年4月(10)1998年10月
(23)1997年8月(11)1999年2月
(24)1997年11月(12)1999年5月
表B5
J1939首选地址行业组#3-建筑设备
注意:修订日期(不是所有表格在以下日期都做过修订)
(25)1996年7月(7)1998年2月(13)1999年7月
(26)1996年10月(8)1998年3月
(27)1997年1月(9)1998年7月
(28)1997年4月(10)1998年10月
(29)1997年8月(11)1999年2月
(30)1997年11月(12)1999年5月
表B6
J1939首选地址
行业组#4-船舶设备
注意:修订日期(不是所有表格在以下日期都做过修订)
(31)1996年7月(7)1998年2月(13)1999年7月
(32)1996年10月(8)1998年3月
(33)1997年1月(9)1998年7月
(34)1997年4月(10)1998年10月
(35)1997年8月(11)1999年2月
(36)1997年11月(12)1999年5月
表B7
J1939首选地址
注意:修订日期(不是所有表格在以下日期都做过修订)
(37)1996年7月(7)1998年2月(13)1999年7月
(38)1996年10月(8)1998年3月
(39)1997年1月(9)1998年7月
(40)1997年4月(10)1998年10月
(41)1997年8月(11)1999年2月
(42)1997年11月(12)1999年5月
表B8至表B9
J1939首选地址(行业组6至7)
为以后分配保留
表B10
注意:修订日期(不是所有表格在以下日期都做过修订)
(43)1996年7月(7)1998年2月(13)1999年7月
(44)1996年10月(8)1998年3月
(45)1997年1月(9)1998年7月
(46)1997年4月(10)1998年10月
(47)1997年8月(11)1999年2月
(48)1997年11月(12)1999年5月
表B11
J1939 所有行业都使用的名称
在3.1.3节和J1939-81的4.1节中有对名称域的定义。
本表定义了不依赖车辆系统或行业组的前128个功能。
这些功能不象行业组0一样,既是一个行业组同时又适用于所有行业组,而是可以用于所有8个行业组。
注意:修订日期(不是所有表格在以下日期都做过修订)
(49)1996年7月(7)1998年2月(13)1999年7月
(50)1996年10月(8)1998年3月
(51)1997年1月(9)1998年7月
(52)1997年4月(10)1998年10月
(53)1997年8月(11)1999年2月
(54)1997年11月(12)1999年5月
表B12
J1939名称
在3.1.3节和J1939-81的4.1节中有对名称域的定义。
本表定义了依赖车辆系统或行业组的后128个功能。
由于这些功能依赖车辆系统或行业组,因此以下表格既定义了车辆系统
(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)
(7)
注意:修订日期(不是所有表格在以下日期都做过修订)
(55)1996年7月(7)1998年2月(13)1999年7月
(56)1996年10月(8)1998年3月
(57)1997年1月(9)1998年7月
(58)1997年4月(10)1998年10月
(59)1997年8月(11)1999年2月
(60)1997年11月(12)1999年5月
附录C
错误报告参数
表C1
可疑参数编号(SPN)
备注:参考文档的信息可能并不完全。
未定义
444 蓄电池2 -71 5.2.5.254 65165 5.3.110 1,2 16 444
/转矩限制
542 点3,4,5处空转转矩系数
-71 5.2.1.38 65251 5.3.017 12 8 (发动机配置)。