04-2.2 拉压杆的应力
杆件的应力

σ
B A
D
C
E
O
ε
1. 弹性阶段 OAB:这一阶段可分为:斜直线 和微弯曲 :这一阶段可分为:斜直线OA和微弯曲
线AB,该段范围内,试件变形是弹性的,卸载后变形可完全恢复。 ,该段范围内,试件变形是弹性的,卸载后变形可完全恢复。 去外力后变形完全消失的性质称为弹性
σ
D
B A
C
E
O
ε
1.OB段:弹性阶段 段
一、薄壁圆筒的扭转 等厚度的薄壁圆筒,平均半径为 壁厚为 等厚度的薄壁圆筒 平均半径为 r,壁厚为 t
壁厚t<<r
m 薄壁圆筒扭转试验
m
预先在圆筒的表面画上等间距 的纵向线和圆周线, 的纵向线和圆周线,从而形成 一系列的正方格子。 一系列的正方格子。 观察到的现象 圆周线保持不变; 圆周线保持不变;纵向线发生倾斜 设想 薄壁圆筒扭转后,横截面保持为大小均无改变的平面, 薄壁圆筒扭转后,横截面保持为大小均无改变的平面,相邻 两横截面绕圆筒轴线发生相对转动。 两横截面绕圆筒轴线发生相对转动。
标准试件 标距 l,通常取 l
= 5d
或l
= 10 d
夹头
夹头
液压式万能试验机 活塞
油管
活动试台
底座
低碳钢——含碳量在0.3%以下的碳素钢。 (I)低碳钢Q235(A3钢)试件的拉伸图:
(P— ∆L) 曲线——拉伸图 P
D B A
C
E
O
∆l
P
σ
P A
∆l
ε ∆l
l
(Ⅱ)低碳钢 Q 235 的应力—应变图( σ−ε )曲线
二、剪应力互等定理
纯剪切:单元体上只有 剪应力而无正应力。
拉压杆斜截面上的应力

应力计算公式
σ=F/A,其中σ为横截面 上的应力,F为轴向拉伸 力,A为横截面面积。
压杆
定义
压杆是受到压缩作用的杆 件,其轴向压力垂直于杆 轴线。
受力特点
压杆在轴向压力作用下, 其横截面上的应力分布呈 现均匀性,且方向与压缩 力方向相反。
应力计算公式
σ=F/A,其中σ为横截面上 的应力,F为轴向压缩力, A为横截面面积。
常用的计算方法包括:截面法、能量法等,具体计算方法的选择取决于问题的具 体条件和要求。
04 斜截面上的应力对拉压杆 的影响
斜截面上的应力对拉杆的影响
拉杆在受到拉伸时,斜截面上的应力分布不均匀,表现为拉应力。拉应力的大小与拉杆的长度、截面 尺寸和材料有关。斜截面上的拉应力会导致拉杆发生伸长变形,影响其承载能力和稳定性。
拉压杆的设计原则与注意事项
设计原则
拉压杆的设计应遵循力学原理和相关标准规范,确保其具有足够的强度、刚度 和稳定性。
注意事项
在拉压杆的设计过程中,还需要考虑制造工艺、使用环境和维修保养等因素, 以确保其性能和安全可靠性。
感谢您的观看
THANKS
为了提高拉压杆的整体稳定性,可以通过优化设计、选择合 适的材料和加强结构措施等手段来改善斜截面上的应力分布 。例如,可以通过改变截面形状、增加加强筋或采用复合材 料等方法来提高拉压杆的承载能力和稳定性。
05 拉压杆的设计与优化
拉杆的设计与优化
拉杆的设计
拉杆的设计应考虑其承受的拉力 大小、方向和作用点,以及使用 环境和材料特性等因素。
表面。
斜截面上的应力方向与截面的 法线方向垂直,并垂直于杆件
的轴线。
在拉压杆的轴线方向上,斜截 面上的应力呈现对称分布,而 在垂直方向上呈现非对称分布 。
轴向拉(压)杆截面上的应力

轴向拉(压)杆截面上的应力
【解】(1)内力分析。取结点D为研究对象,其受力图如图56(b)所示,求各杆轴力:
∑Fy=0,FNBD·cos 45°-F=0,FNBD=2F=31.4 kN ∑Fx=0,-FNCD-FNBD·sin 45°=0,FNCD=-F=-22.2 kN可见, BD杆受拉,CD杆受压。 (2)求各杆的应力。 根据公式(5-2)可得
工程力学
Hale Waihona Puke 轴向拉(压)杆截面上的应力
1.1 轴向拉压杆横截面上的应力
在已知轴向拉压杆横截面轴力的情况 下,确定该横截面的应力,必须要首先了 解横截面上应力的分布规律。由于应力分 布与构件变形之间存在着一定的物理关系, 因此可以从杆件的变形特点上着手,分析 应力在横截面上的变化规律。
轴向拉(压)杆截面上的应力
现以拉杆为例,杆的横截面积为A,受轴向拉力F的作
用,如图5-7(a)所示。为了研究任意斜截面上的应力,用
一个与横截面夹角为α的斜截面m—m,将杆分成两部分
[见图5-7(b)]。用Aα表示斜截面面积,用pα表示斜截面 上的应力,Fα表示斜截面上分布内力的合力。按照研究横截 面上应力分布情况的方法,同样可以得到斜截面上各点处的
轴向拉(压)杆截面上的应力
【例5-3】
工程力学
首先取一等直杆,在其表面等间距地刻画出与杆轴线平行的 纵向线和垂直轴线的横向线,如图5-5(a)所示。当杆受到拉力 F作用时,观察变形后的杆件,发现:纵向线仍为直线,且仍与 轴线平行;横向线仍为直线,且仍与轴线垂直;横向线的间距增 加,纵向线的间距减小,变形前横向线和纵向线间相交得到的一 系列正方形都沿轴向伸长,横向缩短,变成一系列矩形,如图55(b)所示。根据观察到的变形现象和材料的连续性假设,可以 由表及里地对杆件内部变形做出如下假设:变形前为平面的横截 面,在变形后仍然保持为平面,并且垂直于轴线,只是各横截面 沿杆轴线间距增加,此即为平面假设。
轴向拉压杆的应力

1
FN1 A1
103.9 103 N 300 106 m2
346MPa(拉)
2
FN 2 A2
120 103 N 1274.8 106 m2
94MPa(压)
30° F
2
(a)
FN1
A
30
FN 2 F
(b)
工程力学
cos
FN A
cos
cos
p cos cos2
p
sin
2
sin 2
2、符号规定
m n p
mt
⑴、α:斜截面外法线与x轴的夹角。
x 轴正向逆时针转到 n 轴“α”规定为正值;
x 轴正向顺时针转到 n 轴“α”规定为负值。 ⑵、σα:同“σ”的符号规定
⑶、τα:在保留段内任取一点,如果“τα”对其点之矩为顺 时针方向规定为正值,反之为负值。
工程力学
轴向拉压杆的应力
一、轴向拉压杆横截面上正应力的确定
推导的思路:实验→变形规律→应力的分布规律→应力的
1、实验:
计算公式
变形前
F
F
受力后
2、变形规律: 横向线——仍为平行的直线,且间距增大。 纵向线——仍为平行的直线,且间距减小。
3、平面假设:变形前的横截面,变形后仍为平面且各横截面 沿杆轴线作相对平移
8、公式Байду номын сангаас使用条件
(1) 轴向拉压杆 (2) 除外力作用点附近以外其它各点处(范围:不超过杆的横 向尺寸)--圣维南原理
二、轴向拉压杆任意斜面上应力的计算
1、斜截面上应力确定
m
m
n
(1) 内力确定:
F
F
O
FNα=FN=F
02.3.应力·拉(压)杆内的应力解析

4
FF
90106 Pa 90MPa
x
s2
FN 2 A2
20103 152 106
FN1 28.38k9N106 PaFN289M20PkaN
第19页
武生院建筑工程学院:材料力学
第二章 轴向拉伸和压缩
Ⅲ. 拉(压)杆斜截面上的应力
k
F
F
k
k
F
F
斜截面上的内力: F F
k
变形假设:两平行的斜截面在杆受拉(压)而变形后仍相 互平行。
第二章 轴向拉伸和压缩
平均应力的定义
受力杆件(物体)某一截面的M点附近微面积ΔA上分布 内力的平均集度即平均应力, p F ,其方向和大小一般
m A
随所取ΔA的大小而不同。
F
M
A
第3页
武生院建筑工程学院:材料力学
第二章 轴向拉伸和压缩
总应力定义:
该截面上M点处分布内力的集度为
p
lim F
A0 A
武生院建筑工程学院:材料力学
第二章 轴向拉伸和压缩
ac
F
a
c
F
b
d
bd
3. 推论:拉(压)杆受力后任意两个横截面之间纵向线段 的伸长(缩短)变形是均匀的。由于假设材料是均匀的,而杆 的分布内力集度又与杆件纵向线段的变形相对应,因而杆件
横截面上的正应力s呈均匀分布,亦即横截面上各点处的正 应力s 都相等。由合力概念知:
第15页
武生院建筑工程学院:材料力学
第二章 轴向拉伸和压缩
例题2-3 已知薄壁圆环 d = 200 mm,δ= 5 mm,p = 2 MPa。试求薄壁圆环在内压力作用下径向截面上的拉应力。
拉压杆应力、变形分析

通过这些数学模型,可以计算出在给定外力作用下物体的应 力和变形,从而对物体的力学性能进行评估。
应力与变形的实验验证
为了验证应力与变形的数学模型的正确性和可靠性,需要 进行实验验证。
实验中,可以通过测量物体的应力和变形数据,与数学模 型计算结果进行对比,以评估模型的准确性和适用范围。
05 拉压杆的优化设计
实验结果表明,拉压杆的应力分布不均匀,呈现 中间大、两端小的趋势。变形则表现为杆件中部 向下弯曲,两端向上翘起。
本研究采用有限元分析方法对拉压杆进行应力、 变形分析,得到了与实验结果较为一致的分析结 果,验证了有限元方法的可行性和有效性。
研究展望
虽然本研究取得了一定的成 果,但仍有许多问题需要进 一步探讨。例如,可以考虑 研究不同材料属性、不同截 面形状和不同边界条件等因 素对拉压杆应力、变形的影 响。
基于应力的优化设计
总结词
在基于应力的优化设计中,主要目标 是减小拉压杆的最大应力值,使其不 超过材料的许用应力。
详细描述
通过调整拉压杆的截面尺寸、长度、 材料等参数,可以改变其应力分布和 大小。常用的方法包括有限元分析和 数学优化算法。
基于变形的优化设计
总结词
基于变形的优化设计旨在减小拉压杆 的最大变形量,以确保其在工作过程 中具有良好的性能和精度。
根据应力的性质,可分为 拉应力和压应力;根据应 力的分布,可分为均匀应 力和非均匀应力。
应力状态
描述杆件内部各点的应力 状态,包括正应力和剪应 力。
拉压杆应力计算
轴向拉压杆
通过材料力学中的胡克定律计算拉压 杆的应力。
弯曲梁
扭转变形
利用扭矩和剪切模量计算扭转变形的 应力。
利用弯矩和剪力计算弯曲梁的应力。
第2讲 轴向拉压杆的内力和应力

解:当载荷W移到A点时,斜杆AB
受到拉力最大,设其值为Fmax。
讨论横梁平衡 Mc 0
W
Fmax Fmax sin AC W AC 0
FmaxA
Fmax
W
sin
W
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
0.8m
B C
Fmax
FRCx C FRCy
d
A
1.9m
拉伸
F
F
压缩
F
F
目录
§2.1 轴向拉伸与压缩的概念和实例 举例说明:
A
计算简图
P1
拉杆
P1
B P2
压杆
P2
C
F
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
m
F m
F
FN
FN
Fx 0
FN F 0 FN F
1、截面法求内力
F (1)假想沿m-m横截面将
杆切开
(2)留下左半段或右半段
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
A
FN1 28.3kN FN 2 20kN
1
2、计算各杆件的应力。
45° B
C
2
FN1
yF
FN 2 45° B x
F
Байду номын сангаас1
FN1 A1
28.3103 202 106
4
90106 Pa 90MPa
2
FN 2 A2
(3)内力均匀分布,各点正应力相等,为常量
ac
材料力学章节重点和难点

材料力学章节重点和难点第一章绪论1.主要内容:材料力学的任务;强度、刚度和稳定性的概念;截面法、内力、应力,变形和应变的基本概念;变形固体的基本假设;杆件的四种基本变形。
2.重点:强度、刚度、稳定性的概念;变形固体的基本假设、内力、应力、应变的概念。
3.难点:第二章杆件的内力1.主要内容:杆件在拉压、扭转和弯曲时的内力计算;杆件在拉压、扭转和弯曲时的内力图绘制;平面弯曲的概念。
2.重点:剪力方程和弯矩方程、剪力图和弯矩图。
3. 难点:绘制剪力图和弯矩图、剪力和弯矩间的关系。
第三章杆件的应力与强度计算1.主要内容:拉压杆的应力和强度计算;材料拉伸和压缩时的力学性能;圆轴扭转时切应力和强度计算;梁弯曲时正应力和强度计算;梁弯曲时切应力和强度计算;剪切和挤压的实用计算方法;胡克定律和剪切胡克定律。
2.重点:拉压杆的应力和强度计算;材料拉伸和压缩时的力学性能;圆轴扭转时切应力和强度计算;梁弯曲时正应力和强度计算。
3.难点:圆轴扭转时切应力公式推导和应力分布;梁弯曲时应力公式推导和应力分布;第四章杆件的变形简单超静定问题1.主要内容:拉(压)杆的变形计算及单超静定问题的求解方法;圆轴扭转的变形和刚度计算;积分法和叠加法求弯曲变形;用变形比较法解超静定梁。
2.重点:拉(压)杆的变形计算;;圆轴扭转的变形和刚度计算;叠加法求弯曲变形;用变形比较法解超静定梁。
3.难点:积分法和叠加法求弯曲变形;用变形比较法解超静定结构。
第五章应力状态分析? 强度理论1.主要内容:应力状态的概念;平面应力状态分析的解析法和图解法;广义胡克定律;强度理论的概念及常用的四种强度理论。
2.重点:平面应力状态分析的解析法和图解法;广义虎克定律;常用的四种强度理论。
3.难点:主应力方位确定。
第六章组合变形1.主要内容:拉伸(压缩)与弯曲、斜弯曲、扭转与弯曲组合变形的强度计算;2.重点: 弯扭组合变形。
3.难点:截面核心的概念第七章压杆稳定1.主要内容:压杆稳定的概念;各种支座条件下细长压杆的临界载荷;欧拉公式的适用范围和经验公式;压杆的稳定性校核。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料力学大连理工大学王博
拉压杆的应力
判断:1 已知轴力求应力,这是静不定问题 2 需要研究变形才能解决
思路:
应力表达式 (由内力表示应力) 观察变形(外表)
变形假设(内部) 应变分布 应力分布 回顾:
应力的点、方向等概念 变形协调 物理关系 静力学条件
拉压杆的应力
F 1
F 2
1.
变形特点
纵线——仍为直线,平行于轴线横线——仍为直线,且垂直于轴线F
F 纵线横线
一、横截面上的应力
2. 平面假设 Plane cross-section assumption 杆件的任意横截面在杆件受力变形后
仍保持为平面, 且与轴线垂直。
3.应变分布
由平面假设,轴向应变分布是均匀的
4.应力分布
由均匀性假设,横截面上的应力也是均匀分布的,即各点应力相同
5. 应力公式
由平衡关系,横截面上 因此,拉压杆横截面上只存在正应力
静力学关系 ∴ d A σd A
N d F A A
σσ==⎰N F A
σ=0
τ=
F F F F
F 问题: 两杆横截面的正应力分布是否相同?
小讨论
N F A σ=N F A σ=F
原理:等效力系只影响
荷载作用点附近局部区
域的应力和应变分布。
结论:无论杆端如何受力,拉压杆横截面的正应力均可用下式计算: 二、圣维南(Saint-Venant ,1797-1886) 原理
N F A
σ=
F
A
C B
45º 2 1
例题
已知:A 1= 1000 mm 2, A 2= 20000 mm 2, F = 100 kN 求:各杆横截面的应力 ∑F y = 0, F N1 sin45°-F = 0 解:⑴ 轴力计算 取结点A 100221N ⨯==F F = 141.4 kN =-100 kN ∑F x = 0, -F N1cos45°-F N2 = 0 F N2 =-F N1cos45°
=-141.4 cos45° 45° F N2 F N1 A F x y
⑵ 应力计算 例题
F N1 = 141.4 kN F N2 =-100 kN ()+=⨯==MPa 4.1411000104.141311N 1A F σ()
--=⨯-==MPa
520000
10100322N 2A F σF
A C B
45º 2 1 45° F N2 F N1 A
F x y
三、斜截面的应力
拉压杆横截面上没有切应力,只有正应力,斜截面上
是否也是这样?
观察一个现象:
F N F N F N F N
横截面面积 A 正应力σ =F /A 斜截面面积 内力 全应力 分解:正应力和切应力 p α
P α 斜截面上的应力
F F k
k
α
F k k
α /cos A A αα=/cos p P A ααασα==F k
k α
α ασατp α α
σασαα2cos cos ==p α
σ
αασαταα2sin 2sin cos sin ===p P F α=
讨论
可见,斜截面上既有正应力,也有切应力。
F k k α
α ασατp α α
σ
τα2sin 2=ασσα2cos =(1) 0α=: max ασσ=, 0
ατ=(2) 45α=: /2ασσ=, max
/2ατσ=(3) 90α=: 0ασ=, 0ατ=。