通信原理实验报告蔡成灼
通信原理实验报告

实验十九滤波法及数字锁相环法位同步提取实验一、实验目的1、掌握滤波法提取位同步信号的原理及其对信息码的要求。
2、掌握用数字锁相环提取位同步信号的原理及其对信息代码的要求。
3、掌握位同步器的同步建立时间、同步保持时间、位同步信号同步抖动等概念。
二、实验器材1、主控&信号源、13、8号模块各一块2、双踪示波器一台3、连接线若干三、实验原理1、滤波法位同步提取实验原理框图滤波法位同步提取实验框图2、滤波法位同步提取实验框图说明将单刀双掷开关S2上拨,选择滤波法位同步提取电路,输入HDB3单极性码信号经一个256K窄带滤波器,滤出同步信号分量,通过门限判决后提取位同步信号。
但由于有其他频率成分的干扰,导致时钟有些部分的占空比不为50%,因此需要通过模拟锁相环进行平滑处理;数字的256K时钟经过4分频之后,已经得到一定的平滑效果,送入CD4046鉴相输入A脚的是64KHz的时钟信号,当CD4046处于同步状态时,鉴相器A脚的时钟频率及相位应该与鉴相器B脚的相同。
由于鉴相器B脚的时钟是VCO经8分频得到的。
因此,VCO输出的频率为512K。
3、数字锁相环法位同步提取实验原理框图数字锁相环位同步提取实验原理框图4、数字锁相环法位同步提取实验框图说明锁相法位同步提取是在接收端利用锁相环电路比较接收码元和本地产生的位同步信号的相位,并调整位同步信号的相位,最终获得准确的位同步信号。
4位拨码开关S3设置BCD 码控制分频比,从而控制提取的位同步时钟频率,例如设置分频频率“0000”输出4096KHz 频率,“0011”输出512KHz频率,“0100”输出256KHz频率,“0111”输出32KHz频率。
数字锁相环(DPLL)是一种相位反馈控制系统。
它根据输入信号与本地估算时钟之间的相位误差对本地估算时钟的相位进行连续不断的反馈调节,从而达到使本地估算时钟相位跟踪输入信号相位的目的。
DPLL 通常有三个组成模块:数字鉴相器(DPD)、数字环路滤波器(DLF)、数控振荡器(DCO)。
通信原理实验报告

通信原理实验报告学号:姓名:2012年12月25日实验1抽样定理与PAM通信系统实验一、实验内容样脉冲通过开关J601来选择。
可在TP62处很方便地观测到脉冲频率变化情况和输出的脉冲波形。
2、PAM解调与滤波电路该电路即为前面介绍的话路终端接收滤波电路,解调滤波电路由集成运放电路TL084组成。
即一个二阶有源低通滤波器,其截止频率设计在3.4KHz左右,因为该滤波器有着解调的作用,因此它的质量好坏直接影响着系统的工作状态。
三、实验步骤及注意事项1、脉冲幅度调制实验步骤用示波器在TP61处观察,以该点信号输出幅度不失真时为好,如有削顶失真则减小外加信号源的输出幅度或调节W03。
在TP62处观察其抽样时钟信号。
2、PAM通信系统实验步骤分别将J601的第1排、第2排和第3排相连,即改变抽样频率f s,使f c=2f s、f c>2f s、f c<2f s,在TP63、TP64处用示波器观测系统输出波形,以判断和验证抽样定理在系统中的正确性,同时做详细记录和绘图。
四、测量点说明TP61:若外加信号幅度过大,则该点信号波形被限幅电路限幅成方波了,因此信号波形幅度尽量小一些。
方法是:减小外加信号幅度或调节通信话路终端发送放大电路中的电位器W03。
TP62:抽样时钟输出,有三种抽样时钟:等于8KHz抽样脉冲、大于8KHz抽样脉冲、小于8KHz抽样脉冲。
由J601的选择决定。
TP63:抽样信号输出。
TP64:收端PAM解调信号输出。
六、实验报告要求绘出三种抽样时钟情况下测得各点的波形、频率,对所测波形做简要分析说明。
各点波形如下:TP61抽样频率:4kHzTP62TP63 TP64抽样频率:8kHzTP62TP63 TP64抽样频率:16kHzTP62TP63 TP64说明:在不同的抽样频率下,可以看见波形的失真程度不同,由抽样频率大于等于2倍的信号最高频率,可以验证,抽样频率在满足条件的基础上,越大,失真程度越小。
通信原理实验报告

通信原理实验报告引言:通信原理是现代通信技术的基础,通过实验可以更深入地理解通信原理的各个方面。
本次实验主要涉及到调制解调和频谱分析。
调制解调是将原始信号转换成适合传输的信号形式,频谱分析则是对信号的频域特性进行研究。
通过这些实验,我们可以进一步了解调制解调原理、频谱分析技术以及其在通信领域中的应用。
实验一:调制解调实验调制解调是将信息信号转换为适合传输的信号形式的过程。
在实验中,我们使用了模拟调制技术。
首先,我们通过声卡输入一个带通信号,并将其调制成调幅信号。
接着,通过示波器观察和记录调制信号的波形,并利用解调器将其还原为原始信号。
实验二:频谱分析实验频谱分析是对信号在频域上的特性进行研究。
在实验中,我们使用了频谱分析仪来观察信号的频谱分布情况。
首先,我们输入一个具有特定频率和幅度的正弦信号,并使用频谱分析仪来观察其频谱。
然后,我们改变信号的频率和幅度,继续观察和记录频谱的变化情况。
实验三:应用实验在实际通信中,调制解调和频谱分析技术有着广泛的应用。
通过实验三,我们可以了解到这些技术在通信领域中的具体应用。
例如,我们可以模拟调制解调技术在调制解调器中的应用,观察和分析不同调制方式下的信号特性。
同样,我们可以使用频谱分析仪来研究和理解不同信号在传输过程中的频谱分布。
这些实验将帮助我们更好地理解通信系统中的调制解调和频谱分析技术,从而为实际应用提供支持。
结论:通过本次实验,我们对通信原理中的调制解调和频谱分析技术有了更深入的了解。
调制解调是将信息信号转换为适合传输的信号形式,而频谱分析则是对信号的频域特性进行研究。
这些技术在通信领域中有着广泛的应用,对于实际通信系统的设计和优化非常重要。
通过实验的学习和实践,我们能够更好地掌握调制解调和频谱分析的原理和应用,从而提高我们在通信领域中的能力和技术水平。
总结:通过本次实验,我们对通信原理中的调制解调和频谱分析技术进行了学习和实践。
通过实验的过程,我们深入了解了这些技术的原理和应用,并通过观察和记录不同信号的波形和频谱特征,加深了我们对通信原理的理解。
103120201班通信原理实验报告成绩

优秀 良好 良好 良好 良好 良好 优秀 中等 良好 良好 良好 优秀 良好 良好 良好 良好 良好 良好 优秀 良好 良好 良好 良好 良好
优秀 良好 良好 良好 良好 良好 良好 良好 良好 良好 良好 良好 良好 良好 良好 良好 优秀 优秀 良好 良好 良好 良好 良好 良好
优秀 优秀 优秀 优秀 优秀 优秀 优秀 优秀 良好 优秀 良好 良好 优秀 良好 良好 良好 优秀 优秀 优秀 良好 优秀 良好
良好 良好 良好 良好 良好 良好 良好 良好 良好 良好 良好 良好 良好 良好 良好 良好 良好 良好 良好 良好 良好 良好 良好 良好
优秀 良好 优秀 优秀 良好 优秀 良好 优秀 优秀 优秀 优秀 良好 优秀 良好 良好 良好 良好 良好 良好 良好 良好 中等 良好 良好
良好 良好 良好 中等 中等 良好 良好 良好 良好 良好 良好 良好 良好 良好 良好 良好 中等 优秀 中等 良好 良好 良好 良好 良好
优秀 良好 良好 良好 良好 中等 良好
优秀 良好 良好 良好 良好 中等 良好
优秀:20% ;良好:45%;中等:20%;及格:10%;不及格:5%;
良好 优秀
25 26 27 28 29 30 31
魏玥莘 李 航 谢 星 池敬兵 周汝鹏 郭正辉 商微
优秀 优秀 良好 良好 良好 良好 良好
良好 良好 良好 良好 良好 良好 良好
优秀 优秀 良好 良好 良好 良好 优秀
良好 良好 良好 良好 良好 良好 良好
优秀 良好 良好 良好 良好 良好 良好
103120201班通信原理实验报告成绩
序号
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
《通信原理实验报告》实验报告

《通信原理实验报告》内容:实验一、五、六、七实验一数字基带信号与AMI/HDB3编译码一、实验目的1、掌握单极性码、双击行码、归零码、非归零码等基带信号波形特点。
2、掌握AMI、HDB3码的编码规则。
3、掌握从HDB3码信号中提取位同步信号的方法。
4、掌握集中插入帧同步码同步时分复用信号的帧结构特点。
二、实验内容及步骤1、用开关K1产生代码X1110010,K2,K3产生任意信息代码,观察NRZ码的特点为不归零型且为原码的表示形式。
2、将K1,K2,K3置于011100100000110000100000态,观察对应的AMI码和HDB3码为:HDB3:0-11-1001-100-101-11001-1000-10AMI :01-1100-1000001-100001000003、当K4先置左方AMI端,CH2依次接AMI/HDB3模拟的DET,BPF,BS—R和NRZ,观察它们的信号波形分别为:BPF为方波,占空比为50%,BS—R为三角波,NRZ为不归零波形。
DET是占空比等于0.5的单极性归零信号。
三、实验思考题1、集中插入帧同步码同步时分复用信号的帧结构有何特点?答:集中插入法是将标志码组开始位置的群同步码插入于一个码组的前面。
接收端一旦检测到这个特定的群同步码组就马上知道了这组信息码元的“头”。
所以这种方法适用于要求快速建立同步的地方,或间断传输信息并且每次传输时间很短的场合。
检测到此特定码组时可以利用锁相环保持一定的时间的同步。
为了长时间地保持同步,则需要周期性的将这个特定的码组插入于每组信息码元之前。
2、根据实验观察和纪录回答:(1)不归零码和归零码的特点是什么?(2)与信源代码中的“1”码相对应的AMI 码及HDB3 码是否一定相同?答:1)不归零码特点:脉冲宽度τ等于码元宽度Ts归零码特点:τ<Ts2)与信源代码中的“1”码对应的AMI 码及HDB3 码不一定相同。
因信源代码中的“1”码对应的AMI 码“1”、“-1”相间出现,而HDB3 码中的“1”,“-1”不但与信源代码中的“1”码有关,而且还与信源代码中的“0”码有关。
2023年通信原理实验报告

2023年通信原理实验报告2023年通信原理实验报告1一、实验目的1、掌握用数字环提取位同步信号的原理及对信息代码的要求。
2、掌握位同步器的同步建立时间、同步保持时间、位同步信号同步抖动等概念。
二、实验内容1、观察数字环的失锁状态和锁定状态。
2、观察数字环锁定状态下位同步信号的相位抖动现象及相位抖动大小与固有频差的'关系。
3、观察数字环位同步器的同步保持时间与固有频差之间的关系。
三、实验器材1、移动通信原理实验箱2、20M双踪示波器一台一台四、实验步骤1、安装好发射天线和接收天线。
2、插上电源线,打开主机箱右侧的交流开关,再按下开关POWER301、POWER302、POWER401和POWER402,对应的发光二极管LED301、LED302、LED401和LED402发光,CDMA系统的发射机和接收机均开始工作。
3、发射机拨位开关“信码速率”、“扩频码速率”、“扩频”均拨下,“编码”拨上,接收机拨位开关“信码速率”、“扩频码速率”、“跟踪”均拨下,“调制信号输入”和“解码”拨上。
此时系统的信码速率为1Kbit/s,扩频码速率为100Kbit/s。
将“第一路”连接,“第二路”断开,这时发射机发射的是第一路信号。
将拨码开关“GOLD3置位”拨为与“GOLD1置位”一致。
4、根据实验四中步骤8~11的方法,调节“捕获”和“跟踪”旋钮,使接收机与发送机GOLD码完全一致。
5、根据实验五中步骤6~7的方法,调节“频率调节”旋钮,恢复出相干载波。
6、用示波器双踪同时观察“整形前”和“整形电平”,并将双通道置于直流耦合,零电平、电压设为一致。
调节“整形”旋钮,使整形电平置于“整形前”波形上部凸出部分。
用示波器观察“整形后”的波形,并与“整形前”比较,如完全相同,则整形电平调节正确。
7、用示波器观察接收机“BS”信号,该点即为接收机恢复出的位同步信号,将其与发射机的“S1-BS”进行比较。
8、改变系统的信码速率,按“发射机复位”和“接收机复位”键,通过与发射机的“S1-BS”对比观察“BS”信号的变化。
实验三_抽样定理和PAM调制解调实验

《通信原理》实验报告系别:信息科学与工程学院专业班级:电信学生姓名:学号:同组学生:成绩:指导教师:实验三 抽样定理和PAM 调制解调实验一、实验目的1、通过脉冲幅度调制实验,使学生能加深理解脉冲幅度调制的原理。
2、通过对电路组成、波形和所测数据的分析,加深理解这种调制方式的优缺点。
二、实验内容1、 观察模拟输入正弦波信号、抽样时钟的波形和脉冲幅度调制信号,并注意观察它们之间的相互关系及特点。
2、 改变模拟输入信号或抽样时钟的频率,多次观察波形。
三、实验器材1、 信号源模块 一块2、 ①号模块 一块3、 60M 双踪示波器 一台4、 连接线 若干四、实验原理 (一)基本原理 1、抽样定理抽样定理表明:一个频带限制在(0,Hf )内的时间连续信号()m t ,如果以T ≤Hf 21秒的间隔对它进行等间隔抽样,则()m t 将被所得到的抽样值完全确定。
假定将信号()m t 和周期为T 的冲激函数)t (Tδ相乘,如图3-1所示。
乘积便是均匀间隔为T 秒的冲激序列,这些冲激序列的强度等于相应瞬时上()m t 的值,它表示对函数()m t 的抽样。
若用()m t s 表示此抽样函数,则有:()()()s T m t m t t δ=图3-1 抽样与恢复假设()m t 、()T t δ和()s m t 的频谱分别为()M ω、()T δω和()sMω。
按照频率卷积定理,()m t ()T t δ的傅立叶变换是()Mω和()T δω的卷积:[]1()()()2s T M Mωωδωπ=*因为 2()T T s n n Tπδδωω∞=-∞=-∑Tsπω2=所以1()()()s Ts n M M n T ωωδωω∞=-∞⎡⎤=*-⎢⎥⎣⎦∑ 由卷积关系,上式可写成1()()s sn M M n Tωωω∞=-∞=-∑该式表明,已抽样信号()m t s 的频谱()M s ω是无穷多个间隔为ωs 的()M ω相迭加而成。
通信原理实验实验报告

通信原理实验实验报告实验名称:通信原理实验实验目的:1. 理解基本的通信原理和通信系统的工作原理;2. 掌握各种调制解调技术以及通信信号的传输方式;3. 熟悉通信系统的基本参数和性能指标。
实验设备和器材:1. 信号发生器2. 采样示波器3. 调制解调器4. 麦克风和扬声器5. 示波器6. 功率分贝计7. 电缆和连接线等实验原理:通信原理主要涉及调制解调、传输媒介、信道编码和解码等方面的内容。
本次实验主要内容为调幅、调频和数字调制解调技术的验证,以及传输信号质量的评估和性能测量。
实验步骤:1. 调幅实验:将信号发生器产生的正弦波信号调幅到载波上,并使用示波器观察调幅波形,记录幅度调制度;2. 调频实验:使用信号发生器产生调制信号,将其调频到载波上,并使用示波器观察调频波形,记录调频的范围和带宽;3. 数字调制实验:使用调制解调器进行数字信号调制解调实验,并观察解调的信号质量,记录解调信号的正确性和误码率;4. 信号质量评估:使用功率分贝计测量信号传输过程中的信噪比和失真程度,并记录测量结果;5. 性能测量:采用示波器和其他测量设备对通信系统的带宽、传输速率等性能指标进行测量,记录测量结果。
实验结果:1. 对于调幅实验,观察到正弦波信号成功调幅到载波上,并记录幅度调制度为X%;2. 对于调频实验,观察到调制信号成功调频到载波上,并记录调频的范围为X Hz,带宽为X Hz;3. 对于数字调制实验,观察到解调后的信号正确性良好,误码率为X%;4. 信号质量评估测量结果显示信噪比为X dB,失真程度为X%;5. 性能测量结果显示通信系统的带宽为X Hz,传输速率为X bps。
实验总结:通过本次实验,我们深入了解了通信原理中的调制解调技术和信号传输方式,并且成功进行了调幅、调频和数字调制解调实验。
通过信号质量评估和性能测量,我们对通信系统的性能指标有了更深入的了解。
在实验过程中,我们还发现了一些问题和改进的空间,例如在数字调制实验中,我们可以进一步优化解调算法,提高解调的正确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
哈尔滨理工大学实验报告课程名称:通信原理与通信技术学院:自动化学院专业班级:电技12-3班学生姓名:蔡成灼学号:1212020301指导教师:刘燕姜云霞实验一一.实验目的:1.熟悉通信原理综合实验电箱。
2.熟悉示波器的使用方法。
3.掌握用示波器观察电信号波形;定量测试正弦信号和脉冲信号的波形参数。
4.熟悉信号发生器的使用方法。
二.实验内容:本实验平台要求示波器最低配置为20M双踪模拟示波器,示波器的幅度档一般设置在2V档,探头1X无衰减。
测量时黑色的接地夹子应先接地。
一般情况下,本实验平台上元器件的标号都是按照模块划分的。
如标号58TP01,“58TP01”中的“58”表示模块的标号,即“XXX模块”;“01”表示编号,“TP”表示常规测试点;“位:A”表示此模块需要安置在底板的标号为“A”位置,合起来即表示“XXX模块”需安置在底板的标号为“A”位置,其中一个标号58TP01波形测量点(镀银测试针)。
另外,如标号为58P01,即表示一个信号输入(输出)连接点(铜质铆孔),如铆孔边的箭头背离铆孔,即表示是信号输出连接点;如箭头指向铆孔,即表示信号输入连接点。
本实验平台中,所有通信信号都是通过铆孔开放出来的,实验时需在了解实验结构的基础上,用铆孔连接线连接构成所需实验系统。
进行铆孔连接时,连接线接头插入铆孔后,轻轻旋转一个小角度,接头将和铆孔锁死;拔出时,回转一个小角度即可轻松拔出,切勿使用莽力拉扯,以免插头针断在铆孔中。
电子元器件标号首字母的意思:TP表示信号波形测量点,P表示信号输入输出铜铆孔,U表示芯片集成电路,R表示电阻,C表示普通电容,E表示电解电容,J表示接插件,JZ表示晶振或晶体,K表示选择开关等。
在本实验平台上,我们采用了红色的拨码器来设置各种实验的参数。
拨码器的白色开关:往上,记为1;往下,记为0。
拨码开关设置一览表:1、“时钟与基带数据产生模块”5位拨码开关4SW02:S1:00000:4P01铆孔,PN15 2K,15位m序列111101*********S2:00001:4P01铆孔,PN15 32K,15位m序列111101*********S3:00010:4P01铆孔,PN31 2K,31位m序列31位1111100110100100001010111011000S4:00011:4P01铆孔,PN31 32K,31位m序列31位1111100110100100001010111011000S5:00100:CVSD,编码速率8KS6:00101:CVSD,编码速率16KS7:00110:CVSD,编码速率32KS8:00111:CVSD,编码速率64KS9:01000:PCM,线路编码速率64KS10:01001:PCM,线路编码速率128K(或标准E1速率)S15:01110:4SW01拨码器设置数据(8bit数据)64KS16:01111:时分复用(4SW01拨码器设置数据64K, PCM编码64K、CVSD编码64K、滤波器2.65K)。
下面是常见码型变换的开关设置:S17:1X000:单极性归零编码S18:1X001:双极性不归零S19:1X010:双极性归零S20:1X011:CMIS21:1X100:曼彻斯特S22:1X101:密勒S23:1X110:PST注:4P01为原始基带数据。
X=0时为4SW01拨码器设置8bit数据,X=1时为15位m序列。
4TP01为码型变换后输出数据。
2、“复接/解复接、同步技术模块”的4位拨码器开关39SW01(1)同步、时钟提取和码型转换功能。
数据从39P01输入0001 2K时钟提取。
0010 32K DPSK时钟提取、相对码绝对码转换(对应于“时钟与基带数据产生模块”中生成的绝对码4P01、相对码4P03)。
39P06输出同步时钟,39P07输出位同步和码型转换后信号。
0011 32K PSK时钟提取、位同步。
39P06输出提取时钟,39P07输出位同步信号。
(2)时分复接/解复接功能1111 实现4SW01拨码器(8bit数据)、PCM编码、CVSD编码等数据的时分复接解复接功能。
(3)码分复接/解复接功能0111 实现4SW01拨码器(8bit数据)、PCM编码等数据的码分复接解复接功能。
(4)外部数据的绝对码与相对码转换功能0100 绝相转换:基带绝对码输入铆孔39P02;相对码输出铆孔39P06; 相绝转换:相对码输入铆孔39P01;基带绝对码输出铆孔39P07;基带绝对码速率为:2K左右(可为计算机串口数据:波特率2400)3、面板输入输出点说明K01:非同步函数信号类型选择,正弦波、三角波、方波。
W01:非同步函数信号的频率调节,一般使用频率值范围为1~4KHZ。
W02:非同步函数信号的直流电平调节,调节范围至少为0~2V,视信号幅度而定,一般调节为0V(出厂前已调好,该电位器学生可不调节)。
W03:非同步函数信号的幅度调节,一般使用峰峰值范围为0~4V。
P03:非同步函数信号的输出连接铆孔。
W04: 同步函数信号的幅度调节,一般使用峰峰值范围为0~4V。
P04:同步正弦波信号的输出连接铆孔。
P05: 标准8KHZ方波抽样输出P07:音乐信号输出P08:语音信号输出,另外配置话筒SW01:音乐信号触发开关P22:输出数字信号,由学生进行单片机开发。
P23:输出数字时钟,由学生进行单片机开发。
P24:输出脉冲信号,用于抽样定理实验W05:脉冲频率调节W07:脉冲信号占空比调节三.实验结果分析:1.输出正弦波信号,使有效值为1v。
分别观测并记录100HZ和1KHZ时的波形2.输出正弦波信号,使频率为1KHZ。
分别观测并记录电压为0.1V和1V时的波这个实验让我们熟悉了通信原理综合实验电箱并练习使用了示波器。
掌握了用示波器观察电信号波形和相关数据,通过调节频率和幅度,定量测试正弦信号和脉冲信号的波形参数。
成绩评定:指导教师:年月日哈尔滨理工大学实验报告课程名称:通信原理与通信技术学院:自动化学院专业班级:电技12-3班学生姓名:蔡成灼学号:1212020301指导教师:刘燕姜云霞实验二四.实验目的:1.了解语音编码的工作原理,验证PCM编译码原理;2.熟悉PCM抽样时钟、编码数据和输入/输出时钟之间的关系;3.学习PCM编译码器的硬件实现电路,掌握它的调整测试方法。
五.实验内容:脉冲编码调制(PCM)是把一个时间连续、取值连续的模拟信号变换成时间离散、取值离散的数字信号在信道中传输。
脉冲编码调制是对模拟信号进行抽样,量化和编码三个过程完成的。
1.插入有关实验模块在关闭系统电源的条件下,将“时钟与基带数据发生模块”、“PCM/ADPCM 编译码模块”,插到底板“G、H”号的位置插座上(具体位置可见底板右下角的“实验模块位置分布表”)。
注意模块插头与底板插座的防呆口一致,模块位号与底板位号的一致。
2.加电打开系统电源开关,底板的电源指示灯正常显示。
若电源指示灯显示不正常,请立即关闭电源,查找异常原因。
3.PCM的编码时钟设定“时钟与基带数据产生器模块”上的拨码器4SW02设置“01000”,则PCM 的编码时钟为64KHZ(后面将简写为:拨码器4SW02)。
拨码器4SW02设置“01001”,则PCM的编码时钟为128KHZ。
4.时钟为64KHZ,模拟信号为同步正弦波的 PCM编码数据观察(1)用专用铆孔导线将P04、34P01;34P02、34P03相连。
(2)拨码器4SW02设置“01000”,则PCM的编码时钟为64KHZ。
(3)双踪示波器探头分别接在测量点34TP01和34P02,观察抽样脉冲及 PCM 编码数据。
调节W04电位器,改变同步正弦波幅度,并仔细观察PCM编码数据的变化。
特别注意观察,当无信号输入时,或信号幅度为0时,PCM编码器编码为11010101或为01010101,并不是一般教材所讲授的编全0码。
因为无信号输入时,或信号幅度为0经常出现,编全0码容易使系统失步。
此时时钟为64KHZ,一帧中只能容纳1路信号。
注意:(4)双踪示波器探头分别接在34P01和34P04,观察译码后的信号与输入模拟信号是否一致。
5.时钟为128KHZ,模拟信号为同步正弦波的PCM编码数据观察上述信号连接不变,将拨码器4SW02设置“01001”,则PCM的编码时钟为128KHZ。
双踪示波器探头分别接在测量点34TP01和34P02,观察抽样脉冲及 PCM编码数据。
调节W04电位器,改变同步正弦波幅度,并仔细观察PCM编码数据的变化。
注意,此时时钟为128KHZ,一帧中能容纳2路信号。
本PCM编码仅一路信号,故仅占用一帧中的一半时隙。
用示波器观察34P01和34P04两点波形,比较译码后的信号与输入信号是否一致。
6.模拟信号为非同步正弦波的 PCM编码数据观察改用非同步函数信号输入,分别改变输入模拟信号的幅度和频率,重复上列6、7步骤,观察非同步正弦波及 PCM编码数据波形。
注意,频率范围不能超过4KHZ。
此处由于非同步正弦波频率与抽样、编码时钟不同步,需仔细调节非同步正弦波频率才能在普通示波器上看到稳定的编码数据波形。
7.语音信号PCM编码、译码试听将拨码器4SW02设置为“01111”,此时PCM编码时钟为64KHZ,接收滤波器截止频率为2.65KHZ。
用专用导线将P05(用户电话A语音信号发送输出)与34P01(模拟信号的输入)连接;34P04(译码输出的模拟信号)与P08(用户电话B语音信号接收输入)或与P4连接,34P02(编码输出)与34P03(译码输入)相连。
对着用户电话A话筒讲话,在用户电话B耳机或扬声器中试听,直观感受PCM编码译码的效果。
8.关机拆线实验结束,关闭电源,拆除信号连线,并按要求放置好实验模块。
六.实验结果分析:1.时钟为64KHZ,模拟信号为同步正弦波的 PCM编码数据观察:2.时钟为128KHZ,模拟信号为同步正弦波的PCM编码数据观察:3.同步正弦波(峰峰值0V~10V)的编码波形。
4.PCM和△M都是模拟信号数字化的基本方法,△M实际上是DPCM的一种特例。
PCM系统的特点:多路信号统一编码,一般采用8位编码,编码设备复杂,但质量较好。
PCM系统一般用于大容量的干线通信。
△M系统的特点:单路信号单用一个编码设备,设备简单,一般数码率比PCM码的低,质量次于PCM。
△M一般适用于小容量支线通信,话路增减方便灵活。
在相同的信道传输速率下,对于量化信噪比,在传输速率低时,△M性能优越,在编码位数多、码率较高时,PCM性能优越。
5.在通信系统中PCM接收端应如何获得接收输入时钟和接收帧同步时钟信号?答:将接受信号进行处理提取载波信号,从而获得接受输入时钟。