17.1勾股定理(1)公开课

合集下载

勾股定理公开课课件

勾股定理公开课课件
(项明达证明) 项明达:清代数学家
勾股定理的证明
走 进 数 学 史
勾股定理是几何学中的明珠,所以它充满魅力,千百年
来,人们对它的证明趋之若骛,其中有著名的数学家,也有
业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,
甚至有国家总统。也许是因为勾股定理既重要又简单,更容
易吸引人,才使它成百次地反复被人炒作,反复被人论证。
b
即 直角三角形两直角边的平方和等 于斜边的平方。
表示为:Rt△ABC中,∠C=90°
则 a2 b2 c2
议一议:判断下列说法是否正确,并说明理由: (1)在△ABC中,若a=3,b=4,则c=5 (2)在Rt△ABC中,如果a=3,b=4,则c=5. (3)在Rt△ABC中,∠C=90° , 如果a=3,b=4,则c=5.
快 方法小结: 可用勾股定理建立方程.

1、如图,一个长8 米,宽6 米的草地,需在相对角的
顶点间加一条小路,则小路的长为 ( )
C
A.8 米 B.9 米 C.10米 D.14米
化简得: a2 b2 c2
方法三:
c
b b-a c
a c
c
S正
c2
4
1 2
ab
(b
a)2

化简得: a2 b2 c2
1.求下列图中表示边的未知数x、y、z的值.
81 144
144 169
z
625 576



2.求下列直角三角形中未知边的长:

5

比8
17

x
16
x 12

x

20

人教版八年级数学下册第17章《勾股定理(1)》公开课课件

人教版八年级数学下册第17章《勾股定理(1)》公开课课件

理 的
(3)已知c=25,c=b1=315,求a.
解:由勾股定理
b



a2+152=252
a=20
引导学生读懂数学书课题研究成果配套课件
课件制作:徐志才
三、研读课文
知 识
1、赵爽弦图利用了__面__积___关系
点 进行勾股定理的证明.

勾 2、剪4个全等的直角三角形,拼
股 成如图图形,其中直角三角形的
形E的面积.

B

A
C
定 理
D


E

引导学生读懂数学书课题研究成果配套课件
课件制作:徐志才
三、研读课文
知 解:如图所示
识 正方形A、B、C、D的边长分别是

,12,16,9,12 设直角三角形的斜边长为c ,由勾股定理
二知
B
勾 162+122=c2
c=20 ,即正方形F边长为20
股 同理可得, 正方形G的边长为15
三、研读课文
知 识 点 认真阅读课本第22至24页的内容, 一 完成下面练习并体验知识点的形成 勾 过程. 股 定 理 的 探 究
引导学生读懂数学书课题研究成果配套课件
课件制作:徐志才
三、研读课文

识 点 一
1、如图,邮票图案的三个 正方形小方格中间是一个直 角三角形,如果1个小方格 为1个单位面积,那么直角
AH
F
定 故直角三角形的两直角边分别为.20,15
C
D
G
设它的斜边长为k,由勾股定理知
理 152+202=k2 的 k=25
K
E

2022年人教版《勾股定理》公开课教案

2022年人教版《勾股定理》公开课教案

17.1勾股定理第1课时勾股定理1.经历探索及验证勾股定理的过程,体会数形结合的思想;(重点)2.掌握勾股定理,并运用它解决简单的计算题;(重点)3.了解利用拼图验证勾股定理的方法.(难点)一、情境导入如以下图的图形像一棵枝叶茂盛、姿态优美的树,这就是著名的毕达哥拉斯树,它由假设干个图形组成,而每个图形的根本元素是三个正方形和一个直角三角形.各组图形大小不一,但形状一致,结构奇巧.你能说说其中的奥秘吗?二、合作探究探究点一:勾股定理【类型一】直接运用勾股定理如图,在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,CD⊥AB于D,求:(1)AC的长;(2)S△ABC;(3)CD的长.解析:(1)由于在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,根据勾股定理即可求出AC的长;(2)直接利用三角形的面积公式即可求出S△ABC;(3)根据面积公式得到CD·AB=BC·AC即可求出CD.解:(1)∵在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,∴AC=AB2-BC2=12cm;(2)S△ABC=12CB·AC=12×5×12=30(cm2);(3)∵S△ABC=12AC·BC=12CD·AB,∴CD =AC·BCAB=6013cm.方法总结:解答此类问题,一般是先利用勾股定理求出第三边,然后利用两种方法表示出同一个直角三角形的面积,然后根据面积相等得出一个方程,再解这个方程即可.【类型二】分类讨论思想在勾股定理中的应用在△ABC中,AB=15,AC=13,BC边上的高AD=12,试求△ABC的周长.解析:此题应分△ABC为锐角三角形和钝角三角形两种情况进行讨论.解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,如图①所示.在Rt△ABD中,BD=AB2-AD2=152-122△ACD中,CD=AC2-AD2=132-122=5,∴BC=5+9=14,∴△ABC 的周长为15+13+14=42;(2)当△ABC为钝角三角形时,如图②所示.在Rt△ABD中,BD=AB2-AD2=152-122△ACD中,CD=AC2-AD2=132-122=5,∴BC=9-5=4,∴△ABC 的周长为15+13+4=32.∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC 为钝角三角形时,△ABC的周长为32.方法总结:解题时要考虑全面,对于存在的可能情况,可作出相应的图形,判断是否符合题意.【类型三】勾股定理的证明探索与研究:方法1:如图:对任意的符合条件的直角三角形ABC 绕其顶点A旋转90°得直角三角形AED,所以∠BAE=90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE的面积相等,而四边形ABFE的面积等于Rt△BAE和Rt△BFE的面积之和.根据图示写出证明勾股定理的过程;方法2:如图:该图形是由任意的符合条件的两个全等的Rt△BEA和Rt△ACD拼成的,你能根据图示再写出一种证明勾股定理的方法吗?解析:方法1:根据四边形ABFE面积等于Rt△BAE和Rt△BFE的面积之和进行解答;方法2:根据△ABC和Rt△ACD的面积之和等于Rt△ABD和△BCD的面积之和解答.解:方法1:S正方形ACFD=S四边形ABFE=S△BAE+S△BFE,即b2=12c2+12(b+a)(b-a),整理得2b2=c2+b2-a2,∴a2+b2=c2;方法2:此图也可以看成Rt△BEA绕其直角顶点E顺时针旋转90°,再向下平移得到.∵S四边形ABCD=S△ABC+S△ACD,S四边形ABCD =S△ABD+S△BCD,∴S△ABC+S△ACD=S△ABD+S△BCD,即12b2+12ab=12c2+12a(b-a),整理得b2+ab=c2+a(b-a),b2+ab=c2+ab-a2,∴a2+b2=c2.方法总结:证明勾股定理时,用几个全等的直角三角形拼成一个规那么的图形,然后利用大图形的面积等于几个小图形的面积和化简整理证明勾股定理.探究点二:勾股定理与图形的面积如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,假设正方形A、B、C、DE 的面积是________.解析:根据勾股定理的几何意义,可得正方形A、B的面积和为S1,正方形C、D 的面积和为S2,S1+S2=S3,即S3=2+5+1+2=10.故答案为10.方法总结:能够发现正方形A、B、C、D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A、B、C、D的面积和即是最大正方形的面积.三、板书设计1.勾股定理如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.2.勾股定理的证明“赵爽弦图〞、“刘徽青朱出入图〞、“詹姆斯·加菲尔德拼图〞、“毕达哥拉斯图〞.3.勾股定理与图形的面积课堂教学中,要注意调动学生的积极性.让学生满怀激情地投入到学习中,提高课堂效率.勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,设计一些拼图活动,并自制精巧的课件让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究突破本节课的难点.第2课时百分率和配套问题教学目标1.学会运用二元一次方程组解决百分率和配套问题;2.进一步经历和体验方程组解决实际问题的过程。

《勾股定理》PPT优质课件(第1课时)

《勾股定理》PPT优质课件(第1课时)

A. 3
B.3
C. 5
D.5
E
课堂检测
基础巩固题
1. 若一个直角三角形的两直角边长分别为9和12,则斜边的
长为( C)
A.13
B.17
C. 15
D.18
2.若一个直角三角形的斜边长为17,一条直角边长为15,则
另一直角边长为( A )
A.8
B.40
C.50
D.36
3.在Rt△ABC中,∠C=90°,若a︰b=3︰4,c=100,则 a= _6_0___,b = __8_0___.
课堂检测
4.如图,所有的四边形都是正方形,所有的三角形都是直角三角 形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面 积之和为_____4_9_____cm2 .
C D
B A
7cm
课堂检测
能力提升题
在Rt△ABC中,AB=4,AC=3,求BC的长.
解:本题斜边不确定,需分类讨论:
当AB为斜边时,如图,BC 42 32 7;
形,拼成一个新的正方形.
探究新知 剪、拼过程展示:
b
a ca
朱实
b 朱实 黄实朱实
c 〓b
ba
朱实
a
M a P bb
N
探究新知 “赵爽弦图”
c
朱实
b
朱实
黄实 朱实
a
朱实
证明:∵S大正方形=c2, S小正方形=(b-a)2,
∴S大正方形=4·S三角形+S小正方形,
探究新知
毕达哥拉斯证法:请先用手中的四个全等的直角三角形按图 示进行拼图,然后分析其面积关系后证明吧.
因此设a=x,c=2x,根据勾股定理建立方程得 (2x)2-x2=152,

17.1勾股定理 公开课教学设计

17.1勾股定理 公开课教学设计
八年级下数学讲学稿系列——人教版
第十七章
勾股定理
2017-2018 学年第二学期
乌苏市第四中学师生共用讲学稿 内容:17.1.1 勾股定理(1) 课型:新授课 学习目标: 探索、掌握勾股定理,并能运用勾股定理 解决一些实际问题。 学习重点:勾股定理的发现及其简单应用。 学习难点:勾股定理的发现。 一、学前准备:(预习课本 P22- 24 页 17.1 内容) 请以下图中的线段为边画正方形,并数出 你所画正方形的面积(图中每个小方格代表一 个单位面积)
C

; .
(3)若 c=13,a=5,则 b= 2.求下列图中所代表的正方形的面积。
(2)若 c=25, b=24,求 a;
SA= (3)若 c= 2 ,a=1,求 b;
SB=
3、将长为 10 米梯子斜靠在墙上,若梯子上端 到墙的底部距离为 8 米,则梯足到墙的底端的 距离为多少米?
公式变形:由 a2+b2=c2 可得 c= b=
SC =
你能看出所观察的图中 A、B、C 三者之
(1) (3)
间面积有什么关系?
问题:
(2)
三个小正方形 A、B、C 的面积之间的
关系 个单位面积 个单位面积 个单位面积 问题:你发现了任意直角三角形两直角边 a、 b 与斜边 c 的长之间有什么关系吗? 猜想: (二)师生交流·合作探究 例 1:如图这是由四个全等的直角三角形拼出 的正方形。直角三角形中,两直角边分别为 a、b,斜边为 c。 a 试说明:a2+b2=c2。
数学是思维的体操,问题是数学的心脏。 17
八年级下数学讲学稿系列——人教版
第十七章
勾股定理
2017-2018 学年第二学期
勾股定理:

人教新课标版八年级数学下册17.1勾股定理 公开课课件

人教新课标版八年级数学下册17.1勾股定理 公开课课件

解:AC = 6 – 1 = 5 ,
BC
=
24
×
1 2
= 12,
由勾股定理得
AB2= AC2+ BC2=169, ∴AB=13(m) .
三、长方体中的最值问题
例4、如图,一只蚂蚁从实心长方体的顶点A出发, 沿长方体的表面爬到对角顶点C1处(三条棱长如图 所示),问怎样走路线最短?最短路线长为多少?
二填空题 1.在 ABC中, ∠C=90°,AC=6,CB=8,则
ABC面积为__24___,斜边为上的高为___4_.8__.
A
D
C
B
二填空题 1.在 ABC中,C=90°, (1)若c=10,a:b=3:4,则 a=__6__,b=_8__.
(2)若a=9,b=40,则c=_4_1____. 2.在 ABC中, C=90°,若 AC=6,CB=8,则ABC面积为 __2_4__,斜边为上的高为_4_._8___.
B1
AC1 =√52+22 =√29 .
如图,小颍同学折叠一个直角三角形 的纸片,使A与B重合,折痕为DE,若已知 AC=10cm,BC=6cm,你能求出CE的长吗?
D
B
A
C
E
如图,把长方形纸片ABCD折叠,使顶点A 与顶点C重合在一起,EF为折痕。若 AB=9,BC=3,试求以折痕EF为边长的正方 形面积。
试一试:
在我国古代数学著作 《九章算术》中记载了一道 有趣的问题,这个问题的意 思是:有一个水池,水面是 一个边长为10尺的正方形,在 水池的中央有一根新生的芦 苇,它高出水面1尺,如果把 这根芦苇垂直拉向岸边,它 的顶端恰好到达岸边的水面, 请问这个水池的深度和这根 芦苇的长度各是多少?

17.1勾股定理(第1课时)-公开课-优质课(人教版教学设计精品)

17.1勾股定理(第1课时)-公开课-优质课(人教版教学设计精品)

17.1勾股定理(第1课时)-公开课-优质课(人教版教学设计
精品)
17.1 勾股定理(第1课时)
一、内容及内容解析
1.内容
勾股定理的探究、证明及简单应用.
2.内容解析
勾股定理:直角三角形两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.勾股定理是中学数学重要定理之一,它揭示了直角三角形三边之间的数量关系.由此,在直角三角形中已知任意两边长,就可以求出第三边长.勾股定理常用来求解线段长度或距离问题.勾股定理的探究是从特殊的等腰直角三角形出发,到网格中直角三角形,再到一般的直角三角形,体现了从特殊到一般的探究过程和研究方法.证明勾股定理的关键是利用割补法求以斜边为边长的正方形的面积,并以此引导学生发现证明勾股定理的思路.我国对于勾股定理的研究与其他国家相比是比较早的,在国际上得到肯定.要通过我国古代研究勾股定理的成就的介绍,培养学生的民族自豪感.通过对勾股定理的探索和发现,有助于培养学生学好数学的自信心.
基于以上分析,可以确定本课的教学重点是:探索并证明勾股定理.
二、目标和目标解析
1.目标
(1)经历勾股定理的探究过程.了解关于勾股定理的一些文化历史背景,通过对于我国古代研究勾股定理的成就的介绍,培养学生的民族自豪感.
(2)能用勾股定理解决一些简单问题.
2.目标解析
目标(1)要求学生先观察以直角三角形的三边为边长的正方形面积之间的关系,通过归纳和合理的数学表示发现勾股定理的结论.理解
赵爽弦图的意义及其证明勾股定理的思路,能通过割补法构造图形证明勾股定理.了解勾股定理相关的史料,知道我国古代在研究勾股定理上的杰出成就.
目标(2)要求学生能运用勾股定理进行简单的计算,重点是已知直角三角形的两边长能求第三条边的长度.
1。

人教版八年级数学下册第十七章《勾股定理》优质公开课课件

人教版八年级数学下册第十七章《勾股定理》优质公开课课件

例4:边长为8和4的矩形OABC的两边分别在直角坐标系 的X轴和Y轴上,若 沿对角线AC折叠后,点B落在第四象 限B1处,设B1C交X轴于点D,求(1)三角形ADC的面积, (2)点B1的坐标,(3)AB1所在的直线解析式。
C1
B
2
O
D E3 A
B1
折叠三角形
例1、如图,小颍同学折叠一个直角三角形 的纸片,使A与B重合,折痕为DE,若已知 AC=10cm,BC=6cm,你能求出CE的长吗?
利用勾股定理作出长为 1, 2, 3, 4, 5的线段.
1 12
34 5
圆柱(锥)中的最值问题
例1、 有一圆柱,底面圆的半径为3cm,高为12cm, 一只蚂蚁从底面的A处爬行到对角B处 吃食物,它爬行的最短路线长为多少?
B
C
B
A
A
一只蚂蚁从距底面1cm的A处爬行到对角B处 吃食物,它爬行的最短路线长为多少?
• 11、一个好的教师,是一个懂得心理学和教育学的人。2021/7/272021/7/272021/7/27Jul-2127-Jul-21
• 12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/7/272021/7/272021/7/27Tuesday, July 27, 2021
17.1 勾股定理
实数 一一对应 数轴上的点
说出下列数轴上各字母所表示的实数:
A
B
C
D
-2
-1
0
1
2
点A表示 2
点C表示 1
点B表示
2
3
点D表示 7
3
我们知道数轴上的点有的表示有理数,有的表示
无理数,你能在数轴上表示出 2 的点吗?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习、进步:
习题17.1P281、2、3。
板书设计
勾股定理(1)
例1例2命题1:小结:
课后反思新《数学课程标准》在关于课程目标的阐述中,首次大量使用了"经历(感受)、体验(体会)、探索"等刻画数学活动水平的过程性目标动词,就是要求在数学学习的过程中,让学生经历知识与技能形成与巩固过程,经历数学思维的发展过程,经历应用数学能力解决问题的过程,从而形成积极的数学情感与态度。教学从学生感兴趣的涂鸦开始,再经历观察、分析、猜想、验证的全过程,让学生充分的经历了完整的数学知识的发现过程,使学生获得对数学理解的同时,在知识技能、思维能力以及情感态度等多方面都得到了进步和发展。
教学重点
知道勾股定理的结果,并能运用于解题
知识
难点
用拼图的方法证明勾股定理.
切入关键
通过学生的准备,利用自做图形进行讨论归纳出勾股定理,交流证法;
教学方法
启发引导式
教具准备
1、学生准备(有关勾股定理的材料)2.教师准备:PPT,直尺
教学过程
学生学习
教师导学创设情境3~4钟参与、思考:[活动1](教材21页)2002年在北京召开了第24届国际数学家大会,它是最高水平的全球性数学科学学术会议,被誉为数学界的“奥运会”.这就是本届大会的会徽的图案.
勾股定理如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2
推理格式:∵△ABC为直角三角形
∴AC2+BC2=AB2.
(或a2+b2=c2)
图二
勾股定理的应用
例1、求下列直角三角形中未知边的长。
课堂练习
1.根据如图所示,利用面积法证明勾股定理。
2、求下列图中未知数x、y、z的值
3.一个直角三角形的两边长分别为3cm和4cm,则第三边的长为。
(1)你见过这个图案吗?你知道它叫什么图?
(2)你听说过“勾股定理”吗?
对于任意的直角三角形也有这个性质吗?
教师出示照片及图片.学生观察图片发表见解.教师作补充说明:这个图案是我国汉代数学家赵爽在证明勾股定理时用到的,被称为“赵爽弦图”.“赵爽弦图”既标志着中国古代数学成就,又像一只转动着的风车,欢迎着来自世界各地的数学家们。
归纳小结
1~2分钟
总结、反思:1.知识:
一结论1:以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积
二结论2:勾股定理如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2
2.方法:①观察—探索—猜想—验证—归纳—应用②面积法;③“割、补、拼、接”法.
3.思想:
教师提出问题,学生在独立思考的基础上以小组为单位,动手拼接.
方法一:如图1,将正方形C分割为四个全等的直角三角形和一个小正方形 方法二:如图2,在正方形C外补四个全等的直角三角形,形成大正方形,用大正方形的面积减去四个直角三角形的面积, 方法三:如图3,正方形C中除去中间5个小正方形外,将周围部分适当拼接可成为正方形,如图3中两块红色(或两块绿色)部分可拼成一个小正方形,按此拼法, 。
(3)你有新的结论吗?
做一做(教材23页探究题)观察图3三个正方形之间围成了一个什么样的三角形?你能计算出图中A、B、C的面积吗?如何计算C的面积?请将结果填入下表,你能发现正方形A、B、C的面积关系吗?
即SA+SB=SC即直角边上的正方形的面积和等于斜边上的正方形的面积
若直角三角形的直角边长为a、b,斜边c你能表示正方形的面积吗?
教师展示图片并提出问题.学生观察图片,分组交流讨论.
教师引导学生总结:结论1以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积。进而得到:等腰直角三角形的两条直角边平方的和等于斜边的平方.
在独立探究的基础上,学生分组交流.教师参与小组活动,指导、倾听学生交流.针对不同认识水平的学生,引导其用不同的方法得出大正方形的面积.
①特殊—一般—特殊; ②数形结合思想。
(1)本节课你学会了些什么?你有哪些收获?还有什么疑问?
(1)通过本节课学习,你学会了哪些?有哪些收获:还有什么疑问?
(2)本节课我们共同欣赏了生活中的轴对称图案,通过图形理解了轴对称图形和关于直线成轴对称两个概念,请大家回忆一下,它们有什么区别和联系?
布置作业
如果有机会再上这节课,我想我会投入更多的精力对学生可能会给出的答案进行预想,以便在课堂上给予学生更多的启迪,让他们走的更远。一堂课,虽已结束,但对于生命课堂的领悟这条路,还有很长的路要走,我将继续上下求索,做学生更好的支点。
3题引导学生双答案要想全面
自学交流3~3分钟
阅读、寻找:阅读课本P22~24内容.
[活动2](教材22页思考题)毕达哥拉斯是古希腊著名的数学家.相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的某种特性.
(1)现在请你也观察一下,你能有什么发现吗?
(2)等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有这样的特点呢?
A的面积
B的面积
C的面积
图1
图2
图3
探究讨论3~4分钟
讨论、体会:
议一议:1、你是怎样得到正方形C的面积的?
2、分析数据,你发现了什么?
展评明理6~8分钟
展评、提高:
命题1:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2
证一证:命题1的证明方法有多种
方法一:我国古人赵爽的证法,
通过分析数据,归纳出:结论2以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积
教师深入小组参与活动,倾听学生的交流,帮助指导学生完成拼图活动.
学生展示分割、拼接过程.
学生谈体会.教师进行补充、总结,为下节课做好铺垫.
课下根据自己的情况选择完成.
勾股定理从边的角度刻画了直角三角形的又一特征.人类对勾股定理的研究已有近3000年的历史,在西方,勾股定理又称“毕达哥拉斯定理”、“百牛定理”、“驴桥定理”
利用“赵爽弦图”证明.(图一)
大正方形的面积可以表示

还可以表示为
结论:
图一
方法二:
大正方形的面积可以表示为
还可以表示为
结论:
方法三:
分析:左右两边的正方形边长相等,则两个正方形的面积相等。
左边S=4× ab+c2
右边S=(a+b)2
左边和右边面积相等即
4× ab+c2=(a+b)2化简可证。
我国古代学者把直角三角形较短的直角边称为“勾”,较长的直角边称为“股”,斜边称为“弦”.因此就把命题1称为勾股定理.
课题
17.1勾股定理(1)
教学目标
【知识与技能】了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理,能说出勾股定理,并能应用其进行简单的计算和实际运用.
【过程与方法】经历观察—猜想—归纳—验证的数学发现过程,发展合情推理的能力,体会数形结合和由特殊到一般的数学思想.
【情感、态度与价值观】通过对勾股定理历史的了解和实例应用,体会勾股定理的文化价值;通过获得成功的经验和克服困难的经历,增进数学学习的信心.激发学生的民族自豪感,和爱国情怀。
相关文档
最新文档