浙教版八年级数学上《第5章一次函数》单元测试(3)含答案解析初二数学试题学案
浙教版八年级上册数学 第五章 一次函数 单元复习试卷(含答案解析)

浙教版八年级上册数学第五章一次函数单元复习试卷一、单选题1.已知函数y=(a﹣1)x的图象过一、三象限,那么a的取值范围是()A.a>1B.a<1C.a>0D.a<02.当b<0时,一次函数y=x+b的图象大致是()A. B. C. D.3.如图,在圆锥形的稻草堆顶点P处有一只猫,看到底面圆周上的点A处有一只老鼠,猫沿着母线PA下去抓老鼠,猫到达点A时,老鼠已沿着底面圆周逃跑,猫在后面沿着相同的路线追,在圆周的点B处抓到了老鼠后沿母线BP回到顶点P处.在这个过程中,假设猫的速度是匀速的,猫出发后与点P距离s,所用时间为t,则s与t之间的函数关系图象是()A. B. C. D.4.若直线y=kx+k+1经过点(m,n+3)和(m+1,2n﹣1),且0<k<2,则n的值可以是()A.3B.4C.5D.65.对于函数,下列表述正确的是()A.图象一定经过B.图象经过一、二、三象限C.随的增大而减小D.与坐标轴围成的三角形面积为6.一次函数y = kx + 4的图象与坐标轴围成的三角形的面积为4,则k的值为().A.2B.−2C.±2D.不存在7.对于函数y=﹣k2x(k是常数,k≠0)的图象,下列说法不正确的是()A.是一条直线B.过点(,﹣k)C.经过一、三象限或二、四象限D.y随着x增大而减小8.在平面直角坐标系中,正比例函数y=kx(k<0)的图象的大体位置是()A. B. C. D.9.已知汽车油箱内有油40L,每行驶100km耗油10L,则汽车行驶过程中油箱内剩余的油量Q (L)与行驶路程s(km)之间的函数表达式是()A.Q=40﹣B.Q=40+C.Q=40﹣D.Q=40+10.已知函数y=(m﹣2)x m2﹣3是正比例函数,则m=()A. -2B.2C.±2D.1二、填空题11.如图,直线y1=k1x+b和直线y2=k2x+b分别与x轴交于A(﹣1,0)和B(3,0)两点.则不等式组k1x+b>k2x+b>0的解集为________.12.在函数y= 中,自变量x的取值范围是________。
浙教版八年级数学上册《第五章一次函数》章节检测卷-带答案

浙教版八年级数学上册《第五章一次函数》章节检测卷-带答案学校:___________班级:___________姓名:___________考号:___________一、选择题(每题3分,共30分)1.下列函数中是正比例函数的是()2+1D.y=0.6x−5 A.y=−7x B.y=−7x C.y=2x2.已知一次函数y=mnx与y=mx+n(m,n为常数,且mn≠0),则它们在同一平面直角坐标系内的图象可能为()A.B.C.D.3.水滴进玻璃容器(滴水速度相同)实验中,水的高度随滴水时间变化的情况(下左图),下面符合条件的示意图是()A.B.C.D.4.如图,小刚骑电动车到单位上班,最初以某一速度匀速行进,途中由于遇到火车挡道,停下等待放行,耽误了几分钟,为了按时到单位,小刚加快了速度,仍保持匀速行进,结果准时到单位.小刚行进的路程y(千米)与行进时间t(小时)的函数图象的示意图,你认为正确的是()A.B.C.D.5.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂物体质量x(kg)之间有如下关系(其中x≤12)x kg⁄012345y/cm1010.51111.51212.5下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为10cmC.所挂物体质量x每增加1kg,弹簧长度y增加0.5cmD.所挂物体质量为7kg时,弹簧长度为14.5cm6.如图,直线l1:y=x+3与l2:y=kx+b相交于点P(1,m),则方程组{y=x+3y=kx+b的解是()A.{x=4y=1B.{x=1y=4C.{x=1y=3D.{x=3y=17.一次函数y=(m-2)x+2-m和y=x+m在同一平面直角坐标系中的图象可能是()A.B.C.D.8.如图,在平面直角坐标系中,一次函数y=x+4的图象与x轴交于点A,与y轴交于点B,点P在线段AB上,PC⊥x轴于点C,则△PCO周长的最小值为()A.2√2B.4+2√2C.4D.4+4√29.若A(x1,y1),B(x2,y2)是一次函数y=ax+2x−2图象上的不同的两点,记m=(x1−x2)(y1−y2),则当m>0时,a的取值范围是()A.a<0B.a>0C.a<−2D.a>−210.如图,已知点P(6,2),点M,N分别是直线l1:y=x和直线l2:y=12x上的动点,连接PM,MN.则PM+MN的最小值为()A.2B.2√5C.√6D.2√3二、填空题填空题(每题4分,共24分)11.函数y=√x−3中,自变量x的取值范围是.12.若函数y=x m−1+m是关于x的一次函数,则常数m的值是.13.如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解集为.14.已知一次函数y=kx+b,当−2≤x≤3时−1≤y≤9,则k=.15.已知A(a,b),B(c,d)是一次函数y=kx−3x+2图象上不同的两个点,若(c−a)(d−b)<0,则k的取值范围是.16.如图,已知一次函数y=kx+b的图象与x轴,y轴分别交于点(2,0),点(0,3),有下列结论:①图象经过点(1,−3);②关于x的方程kx+b=0的解为x=2;③关于x的方程kx+b=3的解为x=0;④当x>2时y<0.其是正确的是.三、综合题(17-21每题6分,22、23每题8分,共46分)17.如图,在平面直角坐标系xOy中,直线y=−2x+4与直线y=kx相交于点E(m,2).(1)求m,k的值;(2)直接写出不等式−2x+4≥kx的解集.18.如图,一次函数y=12x+3与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.(1)求直线BC的函数解析式;(2)设点M是x轴上的一个动点,过点M作y轴的平行线,交直线AB于点P,交直线BC于点Q.若△PQB的面积为3,求点M的坐标.19.如图,直线AB与x轴,y轴分别交于点A和点B,点A的坐标为(−1,0),且2OA=OB.(1)求直线AB解析式;(2)如图,将△AOB向右平移3个单位长度,得到△A1O1B1,求线段OB1的长;(3)在(2)中△AOB扫过的面积是.20.如图,直线l1:y=x+3与过点A(3,0)的直线l2交于点C(m,4),与x轴交于点B.(1)求直线l2的解析式y=kx+b;(2)直接写出不等式0<kx+b<x+3的解集;(3)点M在直线l1上,MN∥y轴,交直线l2于点N,若MN=AB,求点M的坐标.21.北京园博园是一个集园林艺术、文化景观、生态休闲、科普教育于一体的大型公益性城市公园.小田和小旭在北京园博园游玩,两人同时从永定塔出发,沿相同的路线游览到达国际展园,路线如图所示.记录得到以下信息:a.小田和小旭从永定塔出发行走的路程y1和y2(单位:km)与游览时间x(单位:min)的对应关系如下图:b.在小田和小旭的这条游览路线上,依次有4个景点,从永定塔到这4个景点的路程如下表:景点济南园忆江南北京园锦绣谷路程(km)12 2.53根据以上信息,回答下列问题:(1)在这条游览路线上,永定塔到国际展园的路程为km;(2)小田和小旭在游览过程中,除永定塔与国际展园外,在相遇(填写景点名称),此时距出发经过了min;(3)下面有三个推断:①小旭从锦绣谷到国际展园游览的过程中,平均速度是245km/min;②小旭比小田晚到达国际展园30min;③60min时,小田比小旭多走了23km.所有合理推断的序号是.22.已知直线l1:y1=x−3m+15;l2:y2=−2x+3m−9.(1)当m=3时,求直线l1与l2的交点坐标;(2)若直线l1与l2的交点在第一象限,求m的取值范围;(3)若等腰三角形的两边为(2)中的整数解,求该三角形的面积.23.如图,已知直线y=kx+b经过A(6,0),B(0,3)两点.(1)求直线y=kx+b的解析式;(2)若 C 是线段OA 上一点,将线段CB 绕点 C 顺时针旋转90∘得到CD ,此时点D 恰好落在直线AB 上①求点C 和点D 的坐标;②若点P 在y 轴上,Q 在直线AB 上,是否存在以C,D,P,Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点Q 的坐标,否则说明理由.参考答案1-5.【答案】ADDDD6-10.【答案】BBBDB11.【答案】x≥312.【答案】213.【答案】x≤114.【答案】2或−215.【答案】k<316.【答案】②③④17.【答案】(1)解:将点E(m,2)代入y=−2x+4可得:2=−2m+4解得:m=1∴E(1,2)∵E(1,2)过直线y=kx∴k×1=2,即k=2∴直线OE的解析式为:y=2x即:k=2,m=1;(2)解:结合函数图象可知:不等式−2x+4≥2x的解集为:x≤1.18.【答案】(1)解:对于y=12x+3当y=0时0=12x+3,解得x=−6,∴A(−6,0)当x=0时y=3,∴B(0,3)∵点C与点A关于y轴对称∴点C(6,0)设直线BC 的解析式为y =kx +b(k ≠0)∴{6k +b =0b =3,解得:{k =−12b =3∴直线BC 的解析式为y =−12x +3;(2)解:设M(m,0),则点P(m,12m +3),Q(m,−12m +3)如图,过点B 作BD ⊥PQ 于点D则PQ =|−12m +3−(12m +3)|=|m|,BD =|m|∵△PQB 的面积为3∴12PQ ⋅BD =12m 2=3解得:m =±√6∴点M 的坐标为(√6,0)或(−√6,0).19.【答案】(1)解:∵点A 的坐标为(−1,0)∴OA =1 ∵2OA =OB ∴OB =2OA =2 ∴B(0,2)设直线AB 解析式为 y =kx +b将 A(−1,0) 和 B(0,2) 代入 y =kx +b 中{0=−k +b 2=b解得 {k =2b =2∴y =2x +2 ;故直线AB 解析式为 y =2x +2(2)解:∵将△AOB 向右平移3个单位长度,得到△A 1O 1B 1∴B 1(3,2)∴OB 1=√(3−0)2+(2−0)2=√13 (3)720.【答案】(1)解:把C(m,4)代入直线l 1:y =x +3得到4=m +3,解得m =1∴点C(1,4)设直线l 2的解析式为y =kx +b 把A 和C 的坐标代入 ∴{k +b =43k +b =0 解得{k =−2b =6∴直线l 2的解析式为y =−2x +6; (2)1<x <3;(3)解:当y =0时x +3=0,解得x =−3 ∴点B 的坐标为(−3,0)AB =3−(−3)=6设M(a,a +3),由MN ∥y 轴,得N(a,−2a +6)MN =|a +3−(−2a +6)|=AB =6解得a =3或a =−1 ∴M(3,6)或(−1,2).21.【答案】(1)4(2)忆江南(3)②③22.【答案】(1)解:将m =3代入直线l 1:y 1=x −3m +15,l 2:y 2=−2x +3m −9得y 1=x −9+15=x +6,y 2=−2x +9−9=−2x联立得{y =x +6y =−2x 解得{x =−2y =4∴直线l 1与l 2的交点坐标为(−2,4);(2)解:联立直线l 1与l 2得方程组{y =x −3m +15y =−2x +3m −9 解得{x =2m −8y =−m +7∴直线l 1与l 2的交点为(2m −8,−m +7)∵交点在第一象限∴{2m −8>0−m +7>0解得4<m <7即m 的取值范围为4<m <7 (3)解:∵4<m <7 ∴等腰三角形的两边为5,6①如图,当AB =AC =6,BC =5时,过点A 作AD ⊥BC 于D∴BD =CD =12BC =52∴AD =√AB 2−BD 2=√62−(52)2=√1192∴S △ABC =12×5×√1192=5√1194;②如图,当AB =AC =5,BC =6时,过点A 作AD ⊥BC 于D∴BD =CD =12BC =3 ∴AD =√AB 2−BD 2=√52−32=4∴S △ABC =12×6×4=12. 综上所述,该三角形的面积为5√1194或4.23.【答案】(1)解:将A(6,0),B(0,3)代入y =kx +b 得: {6k +b =0b =3解得{k =−12b =3∴直线AB 得表达式为y =−12x +3.(2)解:①过点D 作DE ⊥x 于点E∵∠BOC=∠BCD=∠CED=90°∴∠OCB+∠DCE=90°,∠DCE+∠CDE=90°∴∠BCO=∠CDE又BC=CD∴△BOC≅CED(ASA)∴OC=DE,BO=CE=3.设OC=DE=m,则点D得坐标为(m+3,m)∵点D在直线AB上∴m=−12(m+3)+3∴m=1∴点C得坐标为(1,0),点D得坐标为(4,1).②存在点Q得坐标为(3,32),(−3,92)或(5,12).理由如下:设点Q的坐标为(n,-12n+3).分两种情况考虑,如图2所示:当CD为边时∵点C的坐标为(1,0),点D的坐标为(4,1),点P的横坐标为0∴0-n=4-1或n-0=4-1∴n=-3或n=3∴点Q 的坐标为(3,32),点Q '的坐标为(-3,92); 当CD 为对角线时∵点C 的坐标为(1,0),点D 的坐标为(4,1),点P 的横坐标为0∴n+0=1+4∴n=5∴点Q″的坐标为(5,12). 综上所述:存在以C 、D 、P 、Q 为顶点的四边形是平行四边形,点Q 的坐标为(3,32),(-3,92)或(5,12)。
【八年级数学试题】八年级数学上第五章一次函数单元测试题(浙教版含答案和解释)

八年级数学上第五章一次函数单元测试题(浙教版含答案和
解释)
第五一次函数单元测试题
一、单选题(共10题;共30分)
1、下列函数中,自变量的取值范围选取错误的是()
A、=2x2中,x取全体实数
B、= 中,x取x≠-1的实数
c、= 中,x取x≥2的实数 D、= 中,x取x≥-3的实数
2、如图所示边长分别为1和2的两个正方形,其中一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内去掉小正方形后的面积为s,那么s与t的大致图象应为
A、 B、
c、 D、
3、函数= +1中,自变量x的取值范围是()
A、x>2
B、x<2 c、x≥2 D、x≤2
4、下列函数①=﹣πx,②=﹣0125x,③=8,④=﹣8x2+6,⑤=﹣05x﹣1中,一次函数有()
A、1个
B、2个 c、3个 D、4个
5、若一次函数=x+17的图象经过点(﹣3,2),则的值为()
A、-6
B、6 c、-5 D、5
6、已知正比例函数=x(≠0)的图象经过点(1,﹣3),则此正比例函数的关系式为()
A、=3x
B、=﹣3x c、= x D、=- x
7、弹簧挂上物体后会伸长,测得一弹簧的长度(c)与所挂的物体的质量x(g)间有下面的关系
下列说法不正确的是()
A、x与都是变量,且x是自变量,是因变量
B、所挂物体质量。
浙教版八年级上第5章一次函数单元检测试卷含答案

第5章一次函数检测卷一、选择题(每题2分,共20分)1.关于直线y=-2x,下列结论正确的是( )A.图象必过点(1,2)B.图象经过第一、三象限C.与y=-2x+1平行D.y随x的增大而增大2.平面直角坐标系上,一直线过(-3,4)和(-7,4)两点,则此直线会过的两象限是( ) A.第一象限和第二象限B.第一象限和第四象限C.第二象限和第三象限D.第二象限和第四象限3.若点A(-3,y1),B(2,y2),C(3,y3)是函数y=-x+2图象上的点,则( )A.y1>y2>y3B.y1<y2<y3C.y1<y3<y2D.y2>y1>y3第4题图4.(重庆中考)某星期天下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y(公里)和所用时间x(分)之间的函数关系.下列说法中错误的是( )A.小强从家到公共汽车站步行了2公里B.小强在公共汽车站等小明用了10分钟C.公共汽车的平均速度是30公里/小时D.小强乘公共汽车用了20分钟5.下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m、n为常数,且mn≠0)的图象的是( )6.把直线y=-x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是( )A.1<m<7 B.3<m<4 C.m>1 D.m<47.下表给出的是关于某个一次函数的自变量x及其对应的函数值y的若干信息.x …-1 1 2 …y …m 2 n …请你根据表格中的相关数据计算:m+2n=( )A.5 B.6 C.7 D.8第8题图8.如图1,在矩形ABCD中,动点P从点B出发,沿矩形的边由B→C→D→A运动,设点P运动的路程为x,△ABP的面积为y,把y看作x的函数,函数的图象如图2所示,则△ABC的面积为( )A.10 B.16 C.18 D.20第9题图9.如图,直线y=-43x+8与x轴、y轴分别交于A、B两点,点M是OB上一点,若直线AB沿AM折叠,点B恰好落在x轴上的点C处,则点M的坐标是( )A.(0,4)B.(0,3) C.(-4,0)D.(0,-3)第10题图10.如图,点A,B,C在一次函数y=-2x+m的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是( )A.1 B.3 C.3(m-1) D. 32(m-2)二、填空题(每题3分,共30分)11.在圆的周长C=2πR中,常量是______.12.若点(m,m+3)在函数y=-x+2的图象上,则m=____.13.在一次函数y=2x-2的图象上,到x轴的距离等于1的点的坐标是____________.14.在函数x-2x-4中,自变量x的取值范围是____.15.已知点(3,5)在直线y=ax+b(a,b为常数,且a≠0)上,则ab-5的值为__________.16.已知函数y=(2m-3)x+(3m+1)的图象经过第二、三、四象限,则m的取值范围是__________.17.如图,已知函数y=x+b和y=ax+3的图象交点为P,则不等式x+b>ax+3的解集为___.第17题图第18题图第19题图第20题图18.如图,是在同一坐标系内作出的一次函数y 1、y 2的图象l 1、l 2,设y 1=k 1x +b 1,y 2=k 2x +b 2,则方程组⎩⎨⎧y1=k1x +b1,y2=k2x +b2的解是__________.19.如图,把Rt △ABC 放在直角坐标系内,其中∠CAB =90°,BC =5,点A 、B 的坐标分别为(1,0)、(4,0),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为________.20.如图,点M 是直线y =2x +3上的动点,过点M 作MN 垂直x 轴于点N ,y 轴上是否存在点P,使△MNP 为等腰直角三角形,请写出符合条件的点P 的坐标______________.三、解答题(共50分)21.(7分)已知y 1与x 成正比例,y 2与x +2成正比例,且y =y 1+y 2,当x =2时,y =4;当x =-1时,y =7,求y 与x 之间的函数关系式.22.(8分)已知一次函数y=kx+b的图象经过点A(-4,0),B(2,6)两点.第22题图(1)求一次函数y=kx+b的表达式;(2)在直角坐标系中,画出这个函数的图象;(3)求这个一次函数与坐标轴围成的三角形面积.23.(8分)某市生态公园计划在园内的坡地上造一片有A、B两种树的混合林,需要购买这两种树苗2000棵.种植A、B两种树苗的相关信息如表:品种树苗价格(元/棵)植树费用(元/棵)A 15 3B 20 4设购买A种树苗x棵,造这片林的总费用为y元.解答下列问题:(1)写出y(元)与x(棵)之间的函数关系式;(2)如果要求A种树苗的数量不超过B种树苗数量的两倍,问造这片林最多能种多少棵A种树苗?24.(8分)如图,直线l1过点A(0,4),点D(4,0),直线l2:y=12x+1与x轴交于点C,两直线l1、l2相交于点B.第24题图(1)求直线l1的函数关系式;(2)求点B的坐标;(3)求△ABC的面积.25.(9分)某水果店计划购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:进价(元/千克)售价(元/千克)甲种 5 8乙种9 13(1)若该水果店预计进货款为1000元,则这两种水果各购进多少千克?(2)若该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?26.(10分)(丽水中考)甲、乙两人匀速从同一地点到1500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲、乙两人相距s(米),甲行走的时间为t(分),s关于t的函数图象的一部分如图所示.(1)求甲行走的速度;(2)在坐标系中,补画s关于t的函数图象的其余部分;(3)问甲、乙两人何时相距360米?第26题图参考答案第5章 一次函数检测卷一、选择题1.C 2.A 3.A 4.D 5.A 6.C 7.B 8.A 9.B 10.B 11.2,π 12.-0.513.(0.5,-1)或(1.5,1) 14.x ≥2且x ≠4 15.-1316.m <-1317.x >118.⎩⎨⎧x =-2,y =319.1620.(0,0),(0,1),(0,34),(0,-3)三、解答题21.设y 1=kx ,y 2=m(x +2),∵y =y 1+y 2,∴y =kx +m(x +2),当x =2时,y =4;当x =-1时,y =7,可得方程组:⎩⎨⎧4=2k +4m ,7=-k +m ,解得:k =-4,m =3,∴y 与x 之间的函数关系式为:y =-x +6. 22.(1)y =x +4 (2)图略 (3)823.(1)y =(15+3)x +(20+4)(2000-x)=-6x +48000 (2)由题意得,x ≤2(2000-x),解得x ≤133313,∵A 种树苗的棵数为整数,∴x 的最大值为1333,答:造这片林最多能种1333棵A 种树苗.24.(1)设l 1的函数关系式为y =kx +b ,根据题意得⎩⎨⎧b =4,4k +b =0,解得k =-1,所以l 1:y =-x +4.(2)由题意得⎩⎪⎨⎪⎧y =-x +4,y =12x +1,解得⎩⎨⎧x =2,y =2, 所以B(2,2).(3)把y =0代入l 2:y =12x +1,得x =-2,∴C(-2,0),∴S △ABC =S △ACD -S △BCD =12×6×4-12×6×2=6.25.(1)设购进甲种水果x 千克,则购进乙种水果(140-x)千克,根据题意可得: 5x +9(140-x)=1000, 解得:x =65, ∴140-x =75(千克),答:购进甲种水果65千克,乙种水果75千克;(2)由图表可得:甲种水果每千克利润为:3元,乙种水果每千克利润为:4元, 设总利润为W ,由题意可得出:W =3x +4(140-x)=-x +560, 故W 随x 的增大而减小,则x 越小W 越大,因为该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍, ∴140-x ≤3x , 解得:x ≥35,∴当x =35时,W 最大=-35+560=525(元), 故140-35=105(kg ).答:当购进甲种水果35千克,乙种水果105千克时,此时利润最大为525元. 26.(1)甲行走的速度:150÷5=30(米/分); (2)补画的图象如图所示(横轴上对应的时间为50);第26题图(3)由函数图象可知,当t=12.5时,s=0.当12.5≤t≤35时,s=20t-250.当35<t≤50时,s=-30t+1500.∵甲、乙两人相距360米,即s=360,解得t1=30.5,t2=38. ∴当甲行走30.5分钟或38分钟时,甲、乙两人相距360米.。
第5章 一次函数单元检测卷(含解析)

浙教版2022年八年级上册第5章《一次函数》单元检测卷一.选择题(共10小题,满分30分,每小题3分)1.在圆的面积公式S=πr2中,变量是()A.S,πB.S,r C.π,r D.只有r2.如图图象中,表示y是x的函数的是()A.B.C.D.3.下列y关于x的函数中,一次函数为()A.y=(a﹣2)x+b B.y=(1+k2)x+1C.D.y=2x2+14.小亮用100元钱去买单价是5元的笔记本,则他剩余的钱y(元)与他买这种笔记本的本数x之间的表达式是()A.y=5x B.y=100﹣5x C.y=5x﹣100D.y=5x+1005.若正比例函数y=kx的图象经过点(﹣2,2),则k的值是()A.﹣1B.1C.﹣4D.46.下列函数其图象经过一、二、四象限的是()A.y=﹣2x+1B.y=3x+5C.y=﹣x﹣3D.y=4x﹣37.在平面直角坐标系中,一次函数y=2x﹣1和y=x+1图象交点坐标为()A.(﹣2,3)B.(2,﹣3)C.(﹣2,﹣3)D.(2,3)8.周日,东东从家步行到图书馆查阅资料,查完资料后,东东立刻按原路回家.已知回家时的速度是去时速度的1.5倍,在整个过程中,东东离家的距离s(单位:m)与他所用的时间t(单位:min)之间的关系如图所示,则东东在图书馆查阅资料的时间为()A.55min B.40min C.30min D.25min9.点P1(x1,y1),点P2(x2,y2)是一次函数y=kx+b(k<0)图象上两点,x1<x2,则y1与y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能确定10.若m<﹣2,则一次函数y=(m+1)x﹣m+1的图象可能是()A.B.C.D.二.填空题(共6小题,满分24分,每小题4分)11.函数y=﹣2x中的常量是.12.若函数y=(m﹣2)x+|m|﹣2是正比例函数,则m=.13.某工厂剩余煤量y吨与烧煤天数x天满足函数关系y=90﹣6x,则工厂每天烧煤量是吨.14.在一次函数y=(m﹣3)x+6中,y随x的增大而增大,则m的取值范围是.15.将正比例函数y=﹣7x的图象向下平移3个单位长度,则平移后所得到的一次函数的解析式为.16.如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(﹣1,2),则当y1<y2时,x的取值范围是.三.解答题(共7小题,满分66分)17.(8分)已知y与x之间成正比例关系,且当x=﹣1时,y=3.(1)求y与x之间的函数关系式;(2)当x=2时,求y的值.18.(8分)已知一次函数y=kx+5的图象经过点A(2,﹣1).(1)求k的值;(2)在平面直角坐标系中画出这个函数的图象.19.(9分)如图,在平面直角坐标系中,点B(2,0)、点C(6,0),点A(x,y)是直线y=2x上的一点,设△ABC的面积为S,求:(1)当点A在第一象限时,S与x的函数关系式;(2)当S=8时,求A点的坐标.20.(9分)如图,正方形ABCD的边长为8cm,动点P、Q同时从点A出发,以2cm/s的速度分别沿A→B→C,和A→D→C的路径向点C移动.设运动时间为,由点P、B、D、Q确定的图形的面积为scm2,求s与t(0≤t ≤8)之间的函数关系式.21.(10分)李老师一家去离家200千米的某地自驾游,周六上午8点整出发.下面是他们离家的距离y(千米)与汽车行驶时间x(千米)之间的函数图象.(1)求他们出发半小时时,离家多少千米?(2)出发1小时后,在服务区等另一家人一同前往,等到后以每小时80千米的速度直达目的地;求等候的时间及直线BC的解析式;(3)上午11点时,离目的地还有多少千米?22.(10分)如图,已知直线y=﹣x+2与x轴,y轴分别交于点A和点B,另一直线y=kx+b(k≠0)经过C(1,0),且把△AOB分成两部分.(1)若直线y=kx+b也经过点B,试说明△BOC与△ABC的面积相等;(2)若△AOB被分成的两部分面积比为1:5,求k和b的值.23.(12分)如图1,直线AB交x轴于点A(a,0),交y轴于点B(0,b),且a,b满足(a+b)2+(a﹣4)2=0.(1)如图1,若C的坐标为(﹣1,0),且AH⊥BC于点H,AH交OB于点P,求点P的坐标;(2)如图2,连接OH,求证:∠AHO=45°;(3)如图3,若点D为AB的中点,点M为y轴正半轴上一动点,连接MD,过D作DN⊥DM交x轴于N点,当M点在y轴正半轴上运动的过程中,式子S△BDM﹣S△ADN的值是否发生改变,如发生改变,求出该式子的值的变化范围;若不改变,求该式子的值.浙教版2022年八年级上册第5章《一次函数》单元检测卷参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:根据常量和变量的定义得S、R是变量,π是常量.故选:B.2.【解答】解:A、B、C中对于自变量x的每一个值,因变量y不是都有唯一的值与它对应,所以不能表示y是x 的函数;D选项中对于自变量x的每一个值,因变量y都有唯一的值与它对应,所以能表示y是x的函数.故选:D.3.【解答】解:A.当a=0时,y=(a﹣2)x+b不是一次函数,故本选项不符合题意;B.y=(1+k2)x+1是一次函数,故本选项符合题意;C.等式的右边是分式,不是整式,不是一次函数,故本选项不符合题意;D.y=2x2+1是二次函数,不是一次函数,故本选项不符合题意;故选:B.4.【解答】解:∵小亮用100元钱去买单价是5元的笔记本,∴买这种笔记本的本数x花去的钱为:5x,∴剩余的钱为:100﹣5x,∴他剩余的钱(y元)与他买这种笔记本的本数x之间的函数关系式是:y=100﹣5x,故选:B.5.【解答】解:∵正比例函数y=kx的图象经过点(﹣2,2),∴2=﹣2k,解得:k=﹣1.故选:A.6.【解答】解:A选项,图象过第一、二、四象限,符合题意;B选项,图象过第一、二、三象限,不符合题意;C选项,图象过第二、三、四象限,不符合题意;D选项,图象过第一、三、四象限,不符合题意;故选:A.7.【解答】解:联立解得:,∴函数y=2x﹣1与y=x+1的图象的交点坐标为(2,3).故选:D.8.【解答】解:根据图象可知,东东从家步行到图书馆的速度为:=80(m/min),∵回家时的速度是去时速度的1.5倍,∴回家时的速度为:1.5×80=120(m/min),则回家所用的时间为:=10(m/min),∴东东在图书馆查阅资料的时间为:55﹣(15+10)=30(min),故选:C.9.【解答】解:∵一次函数y=kx+b(k<0),∴此函数中y随x的增大而减小,∵x1<x2,∴y1>y2.故选:A.10.【解答】解:∵m<﹣2,∴m+1<0,﹣m+1>0,∴一次函数y=(m+1)x﹣m+1的图象经过一二四象限.故选:D.二.填空题(共6小题,满分24分,每小题4分)11.【解答】解:y=﹣2x中的常量是﹣2,故答案为:﹣2.12.【解答】解:由题意得:|m|﹣2=0且m﹣2≠0,∴m=±2且m≠2,∴m=﹣2,故答案为:﹣2.13.【解答】解:某工厂剩余煤量y吨与烧煤天数x天满足函数关系y=90﹣6x,则工厂每天烧煤量是6吨,故答案为:6.14.【解答】解:根据题意得:m﹣3>0,解得m>3.故答案为:m>3.15.【解答】解:将正比例函数y=﹣7x的图象向下平移3个单位长度,所得的函数解析式为y=﹣7x﹣3.故答案为:y=﹣7x﹣3.16.【解答】解:∵函数y1=﹣2x与y2=ax+3的图象相交于点A(﹣1,2),∴当y1<y2时,x的取值范围是x>﹣1.故答案为:x>﹣1.三.解答题(共7小题,满分66分)17.【解答】解(1)设y=kx(k≠0),把x=﹣1,y=3代入y=kx,得k=﹣3,所以y=﹣3x.(2)把x=2代入y=﹣3x,得y=﹣3×2=﹣6.18.【解答】解:(1)把点A(2,﹣1)代入一次函数y=kx+5,得﹣1=2k+5,解得k=﹣3.(2)当x=0时,y=5,可知直线与y轴交点为(0,5),作过B、C的直线可得如图所示直线,即为所求.19.【解答】解:(1)∵B(2,0)、C(6,0),∴BC=6﹣2=4,∵第一象限内的点A(x,y)是直线y=2x上一点,∴△P AO的面积为S=×4×2x=4x;(2)S=4x=8,解得x=2,∴y=2×2=4,∴A点的坐标(2,4).20.【解答】解:①0≤t≤4时,∵正方形的边长为8cm,∴y=S△ABD﹣S△APQ,=×8×8﹣•2t•2t,=﹣2t2+32,②4≤t≤8时,y=S△BCD﹣S△CPQ,=×8×8﹣•(16﹣2t)•(16﹣2t),=﹣2t2+32t﹣96.综上所述,S=.21.【解答】解:(1)由图象知,李老师从家到服务区时的速度为=60千米/小时,∴李老师出发半小时离家的距离为:60×0.5=30(千米),答:他们出发半小时时,离家30千米;(2)李老师一家从服务区B到C地所用时间为:(100﹣60)÷80=0.5(小时),∴李老师一家在服务区等了2﹣1﹣0.5=0.5(小时);设线段BC的函数表达式为y=kx+b,因为B(1.5,60),C(2,100)在BC上,∴,解得,∴直线BC的解析式为y=80x﹣60;(3)上午11点时,即x=3时,y=80×3﹣60=180,∴200﹣180=20(千米),答:上午11点时,离目的地还有20千米.22.【解答】解:(1)在y=﹣x+2中,令y=0,则﹣x+2=0,解得x=2,∴A(2,0),∴OA=2,∵C(1,0),∴OC=1,∴点C是线段OA的中点,∴△BOC与△ABC的面积相等;(2)∵S△AOB=×2×2=2,∵△AOB被分成的两部分面积比为1:5,那么直线y=kx+b(k≠0)与y轴或AB交点的纵坐标就应该是:2×2×=,①当y=kx+b(k≠0)与直线y=﹣x+2相交时,交点为D,如图(2)所示,当y=时,直线y=﹣x+2与y=kx+b(k≠0)的交点D的横坐标就应该是﹣x+2=,∴x=,即交点D的坐标为(,),又根据C点的坐标为(1,0),可得:∴,②当y=kx+b(k≠0)与y轴相交时,交点为E,如图(3)所示,∴交点E的坐标就应该是(0,),又有C点的坐标(1,0),可得:,∴,综上所述,k=2,b=﹣2或k=﹣,b=.23.【解答】解:(1)如图1,∵(a+b)2+(a﹣4)2=0.∴a+b=0,a﹣4=0,∴a=4,b=﹣4,则OA=OB=4.∵AH⊥BC即∠AHC=90°,∠COB=90°∴∠HAC+∠ACH=∠OBC+∠OCB=90°,∴∠HAC=∠OBC.在△OAP与△OBC中,,∴△OAP≌△OBC(ASA),∴OP=OC=1,则P(0,﹣1);(2)过O分别作OM⊥CB于M点,作ON⊥HA于N点,如图2.在四边形OMHN中,∠MON=360°﹣3×90°=90°,∴∠COM=∠PON=90°﹣∠MOP.在△COM与△PON中,,∴△COM≌△PON(AAS),∴OM=ON.∵OM⊥CB,ON⊥HA,∴HO平分∠CHA,∴∠OHP=∠CHA=45°;(3)S△BDM﹣S△ADN的值不发生改变,等于4.理由如下:连接OD,如图3.∵∠AOB=90°,OA=OB,D为AB的中点,∴OD⊥AB,∠BOD=∠AOD=45°,OD=DA=BD,∴∠OAD=45°,∠MOD=90°+45°=135°,∴∠DAN=135°=∠MOD.∵MD⊥ND即∠MDN=90°,∴∠MDO=∠NDA=90°﹣∠MDA.在△ODM与△ADN中,,∴△ODM≌△ADN(ASA),∴S△ODM=S△ADN,∴S△BDM﹣S△ADN=S△BDM﹣S△ODM=S△BOD=S△AOB=×AO•BO=××4×4=4.。
浙教版八年级上《第5章一次函数》单元测试含答案解析

第5章一次函数一、解答题1.为顺利通过“国家文明城市”验收,东营市政府拟对城区部分路段的人行道地砖、绿化带、排水管道等公用设施全面更新改造,根据市政建设的需要,需在40天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.2.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.(1)求出图中m,a的值;(2)求出甲车行驶路程y(km)与时间x(h)的函数解析式,并写出相应的x的取值范围;(3)当乙车行驶多长时间时,两车恰好相距50km.3.已知某工厂计划用库存的302m3木料为某学校生产500套桌椅,供该校1250名学生使用,该厂生产的桌椅分为A,B两种型号,有关数据如下:设生产A型桌椅x(套),生产全部桌椅并运往该校的总费用(总费用=生产成本+运费)为y元.(1)求y与x之间的关系式,并指出x的取值范围;(2)当总费用y最小时,求相应的x值及此时y的值.4.有2条生产线计划在一个月(30天)内组装520台产品(每天产品的产量相同),按原先的组装速度,不能完成任务;若加班生产,每条生产线每天多组装2台产品,能提前完成任务.(1)每条生产线原先每天最多能组装多少台产品?(2)要按计划完成任务,策略一:增添1条生产线,共要多投资19000元;策略二:按每天能组装最多台数加班生产,每条生产线每天共要多花费350元;选哪一个策略较省费用?5.随着地球上的水资源日益枯竭,各级政府越来越重视倡导节约用水.某市民生活用水按“阶梯水价”方式进行收费,人均月生活用水收费标准如图所示,图中x表示人均月生活用水的吨数,y表示收取的人均月生活用水费(元).请根据图象信息,回答下列问题:(1)该市人均月生活用水的收费标准是:不超过5吨,每吨按元收取;超过5吨的部分,每吨按元收取;(2)请写出y与x的函数关系式;(3)若某个家庭有5人,五月份的生活用水费共76元,则该家庭这个月用了多少吨生活用水?6.已知某市2013年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图所示.(1)当x≥50时,求y关于x的函数关系式;(2)若某企业2013年10月份的水费为620元,求该企业2013年10月份的用水量;(3)为贯彻省委“五水共治”发展战略,鼓励企业节约用水,该市自2014年1月开始对月用水量超过80吨的企业加收污水处理费,规定:若企业月用水量x超过80吨,则除按2013年收费标准收取水费外,超过80吨部分每吨另加收元,若某企业2014年3月份的水费和污水处理费共600元,求这个企业该月的用水量.7.已知,A、B两市相距260千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M地后又经过20分钟修好甲车后以原速原路返回,同时甲车以原速1.5倍的速度前往B市,如图是两车距A市的路程y(千米)与甲车行驶时间x(小时)之间的函数图象,结合图象回答下列问题:(1)甲车提速后的速度是千米/时,乙车的速度是千米/时,点C的坐标为;(2)求乙车返回时y与x的函数关系式并写出自变量x的取值范围;(3)求甲车到达B市时乙车已返回A市多长时间?8.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车.设慢车行驶的时间为x小时,两车之间的距离为y千米,图中折线表示y与x之间的函数图象,请根据图象解决下列问题:(1)甲乙两地之间的距离为千米;(2)求快车和慢车的速度;(3)求线段DE所表示的y与x之间的函数关系式,并写出自变量x的取值范围.9.在一次蜡烛燃烧实验中,蜡烛燃烧时剩余部分的高度y(cm)与燃烧时间x(h)之间为一次函数关系.根据图象提供的信息,解答下列问题:(1)求出蜡烛燃烧时y与x之间的函数关系式;(2)求蜡烛从点燃到燃尽所用的时间.10.某校一课外小组准备进行“绿色环保”的宣传活动,需要制作宣传单,校园附近有甲、乙两家印刷社,制作此种宣传单的收费标准如下:甲印刷社收费y(元)与印制数x(张)的函数关系如下表:乙印刷社的收费方式为:500张以内(含500张),按每张0.20元收费;超过500张部分,按每张0.10元收费.(1)根据表中规律,写出甲印刷社收费y(元)与印数x(张)的函数关系式;(2)若该小组在甲、乙两家印刷社共印制400张宣传单,用去65元,问甲、乙两家印刷社各印多少张?(3)活动结束后,市民反映良好,兴趣小组决定再加印800张宣传单,若在甲、乙印刷社中选一家,兴趣小组应选择哪家印刷社比较划算?11.在“黄袍山国家油茶产业示范园”建设中,某农户计划购买甲、乙两种油茶树苗共1000株.已知乙种树苗比甲种树苗每株贵3元,且用100元钱购买甲种树苗的株数与用160元钱购买乙种树苗的株数刚好相同.(1)求甲、乙两种油茶树苗每株的价格;(2)如果购买两种树苗共用5600元,那么甲、乙两种树苗各买了多少株?(3)调查统计得,甲、乙两种树苗的成活率分别为90%,95%.要使这批树苗的成活率不低于92%,且使购买树苗的费用最低,应如何选购树苗?最低费用是多少?12.为了鼓励居民节约用水,某市采用“阶梯水价”的方法按月计算每户家庭的水费:每月用水量不超过20吨时,按每吨2元计费;每月用水量超过20吨时,其中的20吨仍按每吨2元计费,超过部分按每吨2.8元计费,设每户家庭每月用水量为x 吨时,应交水费y 元.(1)分别求出0≤x ≤20和x >20时,y 与x 之间的函数表达式;(2)小颖家四月份、五月份分别交水费45.6元、38元,问小颖家五月份比四月份节约用水多少吨?13.在一条笔直的公路旁依次有A 、B 、C 三个村庄,甲、乙两人同时分别从A 、B 两村出发,甲骑摩托车,乙骑电动车沿公路匀速驶向C 村,最终到达C 村.设甲、乙两人到C 村的距离y 1,y 2(km )与行驶时间x (h )之间的函数关系如图所示,请回答下列问题:(1)A 、C 两村间的距离为 km ,a= ;(2)求出图中点P 的坐标,并解释该点坐标所表示的实际意义;(3)乙在行驶过程中,何时距甲10km ?14.今年我市水果大丰收,A 、B 两个水果基地分别收获水果380件、320件,现需把这些水果全部运往甲、乙两销售点,从A 基地运往甲、乙两销售点的费用分别为每件40元和20元,从B 基地运往甲、乙两销售点的费用分别为每件15元和30元,现甲销售点需要水果400件,乙销售点需要水果300件.(1)设从A 基地运往甲销售点水果x 件,总运费为W 元,请用含x 的代数式表示W ,并写出x 的取值范围;(2)若总运费不超过18300元,且A 地运往甲销售点的水果不低于200件,试确定运费最低的运输方案,并求出最低运费.15.某景区的三个景点A、B、C在同一线路上,甲、乙两名游客从景点A出发,甲步行到景点C,乙乘景区观光车先到景点B,在B处停留一段时间后,再步行到景点C.甲、乙两人离开景点A后的路程S(米)关于时间t(分钟)的函数图象如图所示.根据以上信息回答下列问题:(1)乙出发后多长时间与甲第一次相遇?(2)要使甲到达景点C时,乙与C的路程不超过400米,则乙从景点B步行到景点C的速度至少为多少?(结果精确到0.1米/分钟)16.绵州大剧院举行专场音乐会,成人票每张20元,学生票每张5元,暑假期间,为了丰富广大师生的业余文化生活,影剧院制定了两种优惠方案,方案1:购买一张成人票赠送一张学生票;方案2:按总价的90%付款,某校有4名老师与若干名(不少于4人)学生听音乐会.(1)设学生人数为x(人),付款总金额为y(元),分别建立两种优惠方案中y与x的函数关系式;(2)请计算并确定出最节省费用的购票方案.第5章一次函数参考答案与试题解析一、解答题1.为顺利通过“国家文明城市”验收,东营市政府拟对城区部分路段的人行道地砖、绿化带、排水管道等公用设施全面更新改造,根据市政建设的需要,需在40天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.【考点】一次函数的应用;分式方程的应用.【专题】工程问题.【分析】(1)如果设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天.再根据“甲、乙两队合作完成工程需要10天”,列出方程解决问题;(2)首先根据(1)中的结果,从而可知符合要求的施工方案有三种:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:由甲乙两队合作完成.针对每一种情况,分别计算出所需的工程费用.【解答】解:(1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天,由题意得=解得:x=15,经检验,x=15是原分式方程的解,2x=30.答:甲工程队单独完成此项工程需15天,乙工程队单独完成此项工程需30天.(2)设甲工程队做a天,乙工程队做b天根据题意得 a/15+b/30=1整理得b+2a=30,即b=30﹣2a所需费用w=4.5a+2.5b=4.5a+2.5(30﹣2a)=75﹣0.5a根据一次函数的性质可得,a 越大,所需费用越小,即a=15时,费用最小,最小费用为75﹣0.5×15=67.5(万元)所以选择甲工程队,既能按时完工,又能使工程费用最少.答:选择甲工程队,既能按时完工,又能使工程费用最少.【点评】本题考查分式方程在工程问题中的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.2.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.(1)求出图中m,a的值;(2)求出甲车行驶路程y(km)与时间x(h)的函数解析式,并写出相应的x的取值范围;(3)当乙车行驶多长时间时,两车恰好相距50km.【考点】一次函数的应用;一元一次方程的应用.【专题】行程问题;数形结合.【分析】(1)根据“路程÷时间=速度”由函数图象就可以求出甲的速度求出a的值和m的值;(2)由分段函数当0≤x≤1,1<x≤1.5,1.5<x≤7由待定系数法就可以求出结论;(3)先求出乙车行驶的路程y与时间x之间的解析式,由解析式之间的关系建立方程求出其解即可.【解答】解:(1)由题意,得m=1.5﹣0.5=1.120÷(3.5﹣0.5)=40,∴a=40.答:a=40,m=1;(2)当0≤x≤1时设y与x之间的函数关系式为y=k1x,由题意,得40=k1,∴y=40x当1<x≤1.5时,y=40;当1.5<x≤7设y与x之间的函数关系式为y=k2x+b,由题意,得,解得:,∴y=40x﹣20.y=;(3)设乙车行驶的路程y与时间x之间的解析式为y=k3x+b3,由题意,得,解得:,∴y=80x﹣160.当40x﹣20﹣50=80x﹣160时,解得:x=.当40x﹣20+50=80x﹣160时,解得:x=.=,.答:乙车行驶小时或小时,两车恰好相距50km .【点评】本题考出了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一次函数与一元一次方程的运用,解答时求出一次函数的解析式是关键.3.已知某工厂计划用库存的302m 3木料为某学校生产500套桌椅,供该校1250名学生使用,该厂生产的桌椅分为A ,B 两种型号,有关数据如下:设生产A 型桌椅x (套),生产全部桌椅并运往该校的总费用(总费用=生产成本+运费)为y 元.(1)求y 与x 之间的关系式,并指出x 的取值范围;(2)当总费用y 最小时,求相应的x 值及此时y 的值.【考点】一次函数的应用.【专题】应用题;函数思想.【分析】(1)利用总费用y=生产桌椅的费用+运费列出函数关系,根据需用的木料不大于302列出一个不等式,两种桌椅的椅子数不小于学生数1250列出一个不等式,两个不等式组成不等式组得出x 的取值范围;(2)利用一次函数的增减性即可确定费用最少的方案以及费用.【解答】解:(1)设生产A 型桌椅x 套,则生产B 型桌椅的套数(500﹣x )套,根据题意得,,解这个不等式组得,240≤x ≤250;总费用y=(100+2)x+(120+4)(500﹣x )=102x+62000﹣124x=﹣22x+62000,即y=﹣22x+62000,(240≤x ≤250);(2)∵y=﹣22x+62000,﹣22<0,∴y 随x 的增大而减小,∴当x=250时,总费用y取得最小值,此时,生产A型桌椅250套,B型桌椅250套,最少总费用y=﹣22×250+62000=56500元.【点评】本题考查了一次函数的应用,一元一次不等式组的应用,此类题目难点在于从题目的熟练关系确定出两个不等关系,从而列出不等式组求解得出x的取值范围.4.有2条生产线计划在一个月(30天)内组装520台产品(每天产品的产量相同),按原先的组装速度,不能完成任务;若加班生产,每条生产线每天多组装2台产品,能提前完成任务.(1)每条生产线原先每天最多能组装多少台产品?(2)要按计划完成任务,策略一:增添1条生产线,共要多投资19000元;策略二:按每天能组装最多台数加班生产,每条生产线每天共要多花费350元;选哪一个策略较省费用?【考点】一次函数的应用;一元一次不等式的应用.【专题】优选方案问题.【分析】(1)首先设小组原先生产x件产品,根据“不能完成任务”“提前完成任务”列出不等式组,解不等式组,根据x是整数可得出x的值;(2)由(1)中的数值,算出策略二的费用,进一步比较得出答案即可.【解答】解:(1)每条生产线原先每天最多能组装x台产品,即两条生产线原先每天最多能组装2x台产品,根据题意可得解得:6<x<8,∵x的值应是整数,∴x为7或8.答:每条生产线原先每天最多能组装8台产品.(2)策略一:增添1条生产线,共要多投资19000元;策略二:一共需要天数: =26天,共要投资26×350×2=18200元;所以策略二较省费用.【点评】此题考查一元一次不等式组的实际运用,需要注意台数与天数的取值为整数.5.随着地球上的水资源日益枯竭,各级政府越来越重视倡导节约用水.某市民生活用水按“阶梯水价”方式进行收费,人均月生活用水收费标准如图所示,图中x表示人均月生活用水的吨数,y表示收取的人均月生活用水费(元).请根据图象信息,回答下列问题:(1)该市人均月生活用水的收费标准是:不超过5吨,每吨按 1.6 元收取;超过5吨的部分,每吨按 2.4 元收取;(2)请写出y与x的函数关系式;(3)若某个家庭有5人,五月份的生活用水费共76元,则该家庭这个月用了多少吨生活用水?【考点】一次函数的应用.【分析】(1)由图可知,用水5吨是8元,每吨按8÷5=1.6元收取;超过5吨的部分,每吨按(20﹣8)÷(10﹣5)=2.4元收取;(2)根据图象分x≤5和x>5,分别设出y与x的函数关系式,代入对应点,得出答案即可;(3)把y=76代入x>5的y与x的函数关系式,求出x的数值即可.【解答】解:(1)该市人均月生活用水的收费标准是:不超过5吨,每吨按1.6元收取;超过5吨的部分,每吨按2.4元收取;(2)当0≤x≤5时,设y=kx,代入(5,8)得8=5k,解得k=∴y=x;当x>5时,设y=kx+b,代入(5,8)、(10,20)得,解得k=,b=﹣4,∴y=x﹣4;综上所述,y=;(3)把y=代入y=x﹣4得x﹣4=,解得x=8,5×8=40(吨).答:该家庭这个月用了40吨生活用水.【点评】此题考查一次函数的实际运用,结合图形,利用基本数量关系,得出函数解析式,进一步利用解析式解决问题.6.已知某市2013年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图所示.(1)当x≥50时,求y关于x的函数关系式;(2)若某企业2013年10月份的水费为620元,求该企业2013年10月份的用水量;(3)为贯彻省委“五水共治”发展战略,鼓励企业节约用水,该市自2014年1月开始对月用水量超过80吨的企业加收污水处理费,规定:若企业月用水量x超过80吨,则除按2013年收费标准收取水费外,超过80吨部分每吨另加收元,若某企业2014年3月份的水费和污水处理费共600元,求这个企业该月的用水量.【考点】一次函数的应用;一元二次方程的应用.【专题】应用题.【分析】(1)设y关于x的函数关系式y=kx+b,代入(50,200)、(60,260)两点求得解析式即可;(2)把y=620代入(1)求得答案即可;(3)利用水费+污水处理费=600元,列出方程解决问题.【解答】解:(1)设y关于x的函数关系式y=kx+b,∵直线y=kx+b经过点(50,200),(60,260)∴解得∴y关于x的函数关系式是y=6x﹣100;(2)由图可知,当y=620时,x>50,∴6x﹣100=620,解得x=120.答:该企业2013年10月份的用水量为120吨.(3)由题意得6x﹣100+(x﹣80)=600,化简得x2+40x﹣14000=0解得:x1=100,x2=﹣140(不合题意,舍去).答:这个企业2014年3月份的用水量是100吨.【点评】此题考查一次函数的运用,一元二次方程和一元一次方程的运用,注意理解题意,结合图象,根据实际选择合理的方法解答.7.已知,A、B两市相距260千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M地后又经过20分钟修好甲车后以原速原路返回,同时甲车以原速1.5倍的速度前往B市,如图是两车距A市的路程y(千米)与甲车行驶时间x(小时)之间的函数图象,结合图象回答下列问题:(1)甲车提速后的速度是60 千米/时,乙车的速度是96 千米/时,点C的坐标为(,80);(2)求乙车返回时y与x的函数关系式并写出自变量x的取值范围;(3)求甲车到达B市时乙车已返回A市多长时间?【考点】一次函数的应用.【专题】数形结合.【分析】(1)由甲车行驶2小时在M地且M地距A市80千米,由此求得甲车原来的速度80÷2=40千米/小时,进一步求得甲车提速后的速度是40×1.5=60千米/时;乙车从出发到返回共用4﹣2=2小时,行车时间为2﹣=小时,速度为80×2÷=96千米/时;点C的横坐标为2++=,纵坐标为80;(2)设乙车返回时y与x的函数关系式y=kx+b,代入点C和(4,0)求得答案即可;(3)求出甲车提速后到达B市所用的时间减去乙车返回A市所用的时间即可.【解答】解:(1)甲车提速后的速度:80÷2×1.5=60千米/时,乙车的速度:80×2÷(2﹣)=96千米/时;点C的横坐标为2++=,纵坐标为80,坐标为(,80);(2)设乙车返回时y与x的函数关系式y=kx+b,代入(,80)和(4,0)得,解得,所以y与x的函数关系式y=﹣96x+384(≤x≤4);(3)(260﹣80)÷60﹣80÷96=3﹣=(小时).答:甲车到达B市时乙车已返回A市小时.【点评】此题考查一次函数的实际运用,结合图象,理解题意,正确列出函数解析式解决问题.8.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车.设慢车行驶的时间为x小时,两车之间的距离为y千米,图中折线表示y与x之间的函数图象,请根据图象解决下列问题:(1)甲乙两地之间的距离为560 千米;(2)求快车和慢车的速度;(3)求线段DE所表示的y与x之间的函数关系式,并写出自变量x的取值范围.【考点】一次函数的应用.【专题】应用题.【分析】(1)根据函数图象直接得出甲乙两地之间的距离;(2)根据题意得出慢车往返分别用了4小时,慢车行驶4小时的距离,快车3小时即可行驶完,进而求出快车速度以及利用两车速度之比得出慢车速度;(3)利用(2)所求得出D,E点坐标,进而得出函数解析式.【解答】解:(1)由题意可得出:甲乙两地之间的距离为560千米;故答案为:560;(2)由题意可得出:慢车和快车经过4个小时后相遇,相遇后停留了1个小时,出发后两车之间的距离开始增大,快车到达甲地后两车之间的距离开始缩小,由图分析可知快车经过3个小时后到达甲地,此段路程慢车需要行驶4小时,因此慢车和快车的速度之比为3:4,∴设慢车速度为3xkm/h,快车速度为4xkm/h,∴(3x+4x)×4=560,x=20,∴快车的速度是80km/h,慢车的速度是60km/h.(3)由题意可得出:快车和慢车相遇地离甲地的距离为4×60=240km,当慢车行驶了7小时后,快车已到达甲地,此时两车之间的距离为240﹣3×60=60km,∴D(8,60),∵慢车往返各需4小时,∴E(9,0),设DE的解析式为:y=kx+b,∴,解得:.∴线段DE所表示的y与x之间的函数关系式为:y=﹣60x+540(8≤x≤9).【点评】此题主要考查了待定系数法求一次函数解析式以及一次函数的应用,根据题意得出D,E点坐标是解题关键.9.在一次蜡烛燃烧实验中,蜡烛燃烧时剩余部分的高度y(cm)与燃烧时间x(h)之间为一次函数关系.根据图象提供的信息,解答下列问题:(1)求出蜡烛燃烧时y与x之间的函数关系式;(2)求蜡烛从点燃到燃尽所用的时间.【考点】一次函数的应用.【专题】应用题.【分析】(1)根据图象知,该函数是一次函数,且该函数图象经过点(0,24),(2,12).所以利用待定系数法进行解答即可;(2)由(1)中的函数解析式,令y=0,求得x的值即可.【解答】解:(1)由于蜡烛燃烧时剩余部分的高度y(cm)与燃烧时间x(h)之间为一次函数关系.故设y与x之间的函数关系式为y=kx+b(k≠0).由图示知,该函数图象经过点(0,24),(2,12),则,解得.故函数表达式是y=﹣6x+24.(2)当y=0时,﹣6x+24=0解得x=4,即蜡烛从点燃到燃尽所用的时间是4小时.【点评】此题考查一次函数的实际运用,理解题意,结合图象,利用待定系数法求一次函数解析式是关键.10.某校一课外小组准备进行“绿色环保”的宣传活动,需要制作宣传单,校园附近有甲、乙两家印刷社,制作此种宣传单的收费标准如下:甲印刷社收费y(元)与印制数x(张)的函数关系如下表:乙印刷社的收费方式为:500张以内(含500张),按每张0.20元收费;超过500张部分,按每张0.10元收费.(1)根据表中规律,写出甲印刷社收费y(元)与印数x(张)的函数关系式;(2)若该小组在甲、乙两家印刷社共印制400张宣传单,用去65元,问甲、乙两家印刷社各印多少张?(3)活动结束后,市民反映良好,兴趣小组决定再加印800张宣传单,若在甲、乙印刷社中选一家,兴趣小组应选择哪家印刷社比较划算?【考点】一次函数的应用.【专题】应用题.【分析】(1)设甲印刷社收费y(元)与印数x(张)的函数关系式为y=kx+b,由待定系数法求出其解即可;(2)设在甲印刷社印刷a张,则在乙印刷社印刷(400﹣a)张,由总费用为65元建立方程求出其解即可;(3)分别计算在两家印刷社印刷的费用,比较大小就可以得出结论.【解答】解:(1)设甲印刷社收费y(元)与印数x(张)的函数关系式为y=kx+b,由题意,得,解得:,∴y=0.15x.∴甲印刷社收费y(元)与印数x(张)的函数关系式为y=0.15x;(2)设在甲印刷社印刷a张,则在乙印刷社印刷(400﹣a)张,由题意,得0.15a+0.2(400﹣a)=65,解得:a=300,在乙印刷社印刷400﹣300=100张.答:在甲印刷社印刷300张,在乙印刷社印刷100张;(3)由题意,得在甲印刷社的费用为:y=0.15×800=120元.在乙印刷社的费用为:500×0.2+0.1(800﹣500)=130元.∵120<130,∴印刷社甲的收费<印刷社乙的收费.∴兴趣小组应选择甲印刷社比较划算.【点评】本题考查了单价×数量=总价的运用,待定系数法求一次函数的解析式的运用,列一元一次方程解实际问题的运用,解答时求出一次函数的解析式是关键.11.在“黄袍山国家油茶产业示范园”建设中,某农户计划购买甲、乙两种油茶树苗共1000株.已知乙种树苗比甲种树苗每株贵3元,且用100元钱购买甲种树苗的株数与用160元钱购买乙种树苗的株数刚好相同.(1)求甲、乙两种油茶树苗每株的价格;(2)如果购买两种树苗共用5600元,那么甲、乙两种树苗各买了多少株?(3)调查统计得,甲、乙两种树苗的成活率分别为90%,95%.要使这批树苗的成活率不低于92%,且使购买树苗的费用最低,应如何选购树苗?最低费用是多少?【考点】一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.【专题】应用题.【分析】(1)设甲、乙两种油茶树苗每株的价格分别为x元,y元,根据条件中树苗的数量与单价之间的关系建立二元一次方程组求出其解即可;(2)设购买甲种树苗a株,乙种树苗则购买(1000﹣a)株,根据两种树苗共用5600元建立方程求出其解即可;(3)设甲种树苗购买b株,则乙种树苗购买(1000﹣b)株,购买的总费用为W元,根据条件建立不等式和W与b的函数关系式,由一次函数的性质就可以得出结论.【解答】解:(1)设甲、乙两种油茶树苗每株的价格分别为x元,y元,由题意得,解得:.答:甲、乙两种油茶树苗每株的价格分别为5元,8元;(2)设甲购买了a株,乙购买了(1000﹣a)株,由题意得5a+8(1000﹣a)=5600,。
浙教版初中数学八年级上册第五单元《一次函数》单元测试卷(标准难度)(含答案解析)

浙教版初中数学八年级上册第五单元《一次函数》单元测试卷考试范围:第五章;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1.如图,在平面直角坐标系中,将△OAB沿直线y=−3x平移后,4点O′的纵坐标为6,则点B平移的距离为( )A. 4.5B. 6C. 8D. 102.火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的长度为120米;②火车的速度为30米/秒;③火车整体都在隧道内的时间为25秒;④隧道长度为750米,其中正确结论的个数有( )A. 1个B. 2个C. 3个D. 4个3.小明从早晨8时从家出发到郊外赏花.他所走的路程(千米)随时间(时)变化的情况如图所示,则下面说法中错误的是( )A. 在这个变化过程中,自变量是时间,因变量是路程B. 小明在途中休息了半小时C. 从8时到10时,小明所走的路程约为9千米D. 小明从休息后直至到达目的地的平均速度约为1.25千米/时4.某电视台记者乘汽车赴360km外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路.若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y(km)与时间x(ℎ)之间的关系如图所示,则下列结论正确的是.( )A. 汽车在高速公路上的行驶速度为100km/ℎB. 乡村公路总长为90kmC. 汽车在乡村公路上的行驶速度为60km/ℎD. 该记者在出发后4.5ℎ到达采访地5.实验证实,放射性物质在放出射线后,质量将减少,减少的速度开始较快,后来较慢,实际上,物质所剩的质量与时间成某种函数关系.如图为表示镭的放射规律的函数图象,据此可计算32mg镭缩减为1mg所用的时间大约是( )A. 4860年B. 6480年C. 8100年D. 9720年6.下列函数中,y是x的一次函数但不是正比例函数的是( )A. y=1−x2B. y=2xC. y=x2D. y=x2+17.2020年12月1日下午6点,京张高铁延庆线正式启用,“复兴号”列车在北京北站与延庆站之间往返,途径清河站、昌平站、八达岭站、如图是从北京北站到延庆站的线路图,其中延庆站到八达岭站,全长9.33公里、某天“复兴号”列车从八达岭站出发,终点为北京北.列车始终以每小时160公里的速度匀速行驶,那么在到达昌平站之前,“复兴号”列车到延庆站的距离与对应的行驶的时间满足的函数关系是( )A. 正比例函数关系B. 反比例函数关系C. 一次函数关系D. 二次函数关系8.下列选项中,y与x的关系为正比例函数关系的是( )A. 正方形的周长y(cm)与边长x(cm)的关系B. 圆的面积y(cm2)与半径x(cm)的关系C. 直角三角形中一个锐角的度数y与另一个锐角的度数x的关系D. 矩形的面积为20cm2,长y(cm)与宽x(cm)之间的关系9.已知在平面直角坐标系xOy中,直线y=2x+2和直线y=2x+2分别交x轴于点A和点B.3则下列直线中,与x轴的交点不在线段AB上的直线是( )A. y=x+2B. y=√2x+2C. y=4x+2D. y=2√3x+2310.已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是( )A. B.C. D.11.把直线y=−x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是( )A. 1<m<7B. 3<m<4C. m>1D. m<412.如图 ①,在Rt△ABC中,∠ACB=90∘,点P以每秒1cm的速度从点A出发,沿折线AC−CB运动,到点B停止.过点P作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图 ②所示.则当点P运动3秒时,PD的长是( )A. 3cmB. 4cmC. 5cmD. 12cm5第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13.如果用总长为60m的篱笆围成一个长方形场地,设长方形的面积为S(m2),周长为p(m),一边长为a(m),那么在S,p,a中变量是.14.一棵树高ℎ(m)与生长时间n(年)之间满足一定的关系,请你根据下表中的数写出ℎ(m)与n(年)之间的关系式:ℎ=.n/年246810⋯ℎ/m 2.6 3.2 3.8 4.4 5.0⋯15.如图1,在长方形ABCD中,动点P从点B出发,沿B−C−D−A匀速运动至点A处停止,设点P运动的路程为x,△PAB的面积为y.若y关于x的图象如图2所示,则长方形ABCD的周长为.16.对于一次函数y=kx+2,当−2≤x≤3时,y有最大值5,则k=.三、解答题(本大题共9小题,共72.0分。
浙教版八年级数学上册《第5章一次函数》单元测试题含答案

浙教版八年级数学上册第5章一次函数单元测试题第Ⅰ卷 (选择题 共30分)一、选择题(本题共10小题,每小题3分,共30分) 1.函数y =x -1的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限2.函数y =x -1x -3中,自变量x 的取值范围是( ) A .x ≥1且x ≠3 B .x ≥1 C .x ≠3 D .x>1且x ≠33.已知函数y =(1-2k)x 是正比例函数,且y 随x 的增大而减小,那么k 的取值范围是( )A .k <12B .k >12C .k >0D .k <14.已知点(-1,y 1),(4,y 2)在一次函数y =3x -2的图象上,则y 1,y 2,0的大小关系是( )A .0<y 1<y 2B .y 1<0<y 2C .y 1<y 2<0D .y 2<0<y 15.一水池蓄水20 m 3,打开阀门后每小时流出5 m 3,放水后池内剩余的水量Q(m 3)与放水时间t(时)的函数关系用图象表示为( )6.如图所示,若一次函数y =k 1x +b 1的图象l 1与y =k 2x +b 2的图象l 2相交于点P ,则方程组⎩⎪⎨⎪⎧y =k 1x +b 1,y =k 2x +b 2的解是( )A .⎩⎪⎨⎪⎧x =-2,y =3B .⎩⎪⎨⎪⎧x =3,y =-2C .⎩⎪⎨⎪⎧x =2,y =3D .⎩⎪⎨⎪⎧x =-2,y =-37.若kb >0,则函数y =kx +b 的图象可能是( )8.小李与小陆从A 地出发,骑自行车沿同一条路行驶到B 地,他们离出发地的距离s(单位:km )和行驶时间t(单位:h )之间的函数关系的图象如图所示,根据图中提供的信息,有下列说法:①他们都行驶了20 km ; ②小陆全程共用了1.5 h ;③小李与小陆相遇后,小李的速度小于小陆的速度; ④小李在途中停留了0.5 h . 其中正确的有( )A .4个B .3个C .2个D .1个9.在同一平面直角坐标系中,对于函数:①y =-x -1;②y =x +1;③y =-x +1;④y =-2(x +2)的图象,下列说法正确的是( )A .经过点(-1,0)的是①③B .交点在y 轴上的是②④C .相互平行的是①③D .交点在x 轴上的是②④10.如图所示,点A ,B ,C 在一次函数y =-2x +m 的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是( )A .3(m -1)B .32(m -2) C .1 D .3第Ⅱ卷 (非选择题 共90分)二、填空题(本题共6小题,每小题4分,共24分)11.已知正比例函数y =kx 的图象经过点A(-1,2),则正比例函数的表达式为________. 12.一次函数y =kx +b(k <0)的图象如图所示,当y>0时,x 的取值范围是________.13.已知函数y =3x 的图象经过点A(-1,y 1),B(-2,y 2),则y 1________y 2(填“>”“<”或“=”).14.腰长为x ,底边长为y 的等腰三角形的周长为12,则y 与x 的函数表达式为____________,自变量x 的取值范围为____________.15.一次函数y =kx +b(k ,b 都是常数,且k ≠0)的图象如图所示,根据图象信息可求得关于x 的方程kx +b =4的解为________.16.如图所示,射线OA ,BA 分别表示甲、乙两人骑自行车运动过程的一次函数的图象,图中s ,t 分别表示行驶路程和时间,则这两人骑自行车的速度相差________km /h .三、解答题(本题共8小题,共66分)17.(6分)已知一次函数y=kx+2,当x=-1时,y=1,求此函数的表达式,并在平面直角坐标系中画出此函数的图象.18.(6分)已知一次函数y=kx+b的图象经过M(0,2),N(1,3)两点.(1)求k,b的值;(2)若一次函数的图象与x轴的交点为A(a,0),求a的值.19.(6分)已知一次函数y=kx+b的图象与x轴交于点A(-2,0),与y轴交于点B.若△AOB的面积为8,求一次函数的表达式.20.(8分)已知一次函数y1=2x-3,y2=-x+6在同一直角坐标系中的图象如图所示,它们的交点坐标为C(3,3).(1)根据图象指出x为何值时,y1>y2;x为何值时,y1<y2.(2)求这两条直线与x轴所围成的△ABC的面积.21.(8分)某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨1.9元收费;每户每月用水量如果超过20吨,未超过的部分仍按每吨1.9元收费,超过部分按每吨2.8元收费.设某户每月用水量为x吨,应收水费为y元.(1)分别写出每月用水量未超过20吨和超过20吨时,y与x之间的函数表达式;(2)若该城市某户5月份水费平均每吨2.2元,求该户5月份用水多少吨.22.(10分)在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的长方形的周长与面积相等,则这个点叫做和谐点.例如,下图中过点P分别作x轴、y轴的垂线PA,PB,与坐标轴围成的长方形OAPB的周长与面积的数值相等,则P是和谐点.(1)判断M(1,2),N(4,4)是否为和谐点,并说明理由;(2)若和谐点P(a,3)在直线y=-x+b(b为常数)上,求a,b的值.23.(10分)今年4月初,某地连续降雨导致该地某水库水位持续上涨,下表是该水库4月1日~4月4日的水位变化情况:日期x 1 2 3 4水位y(米) 20.00 20.50 21.00 21.50(1)请建立该水库水位y(米)与日期x之间的函数模型,求出函数表达式;(2)请用求出的函数表达式预测该水库今年4月6日的水位;(3)你能用求出的函数表达式预测该水库今年12月1日的水位吗?请简要说明.24.(12分)小慧和小聪沿图①中的景区公路游览.小慧乘坐车速为30 km /h 的电动汽车,早上7:00从宾馆出发,游玩后中午12:00回到宾馆.小聪骑车从飞瀑出发前往宾馆,速度为20 km /h ,途中遇见小慧时,小慧恰好游完一景点后乘车前往下一景点.上午10:00小聪到达宾馆.图②中的图象分别表示两人离宾馆的路程s(km )与时间t(h )的函数关系.试结合图中信息回答:(1)小聪上午几点钟从飞瀑出发?(2)试求线段AB ,GH 的交点B 的坐标,并说明它的实际意义;(3)如果小聪到达宾馆后,立即以30 km /h 的速度按原路返回,那么返回途中他几点钟遇见小慧?参考答案1. D 2. A 3. B 4. B 5. D6. A 7. A. 8. A 9. C 10.D 11.y =-2x 12.x <2 13.>14.y =-2x +12 3<x <6 15.x =3 16. 417.解:将x =-1,y =1代入一次函数表达式y =kx +2, 得1=-k +2,解得k =1, ∴一次函数的表达式为y =x +2. 当x =0时,y =2;当y =0时,x =-2. ∴函数图象经过点(0,2),(-2,0). 此函数图象如图所示.18.解:(1)由题意,得⎩⎪⎨⎪⎧b =2,k +b =3,解得⎩⎪⎨⎪⎧k =1,b =2,∴k ,b 的值分别是1和2.(2)由(1)得y =x +2,∴当y =0时,x =-2,即a =-2. 19.解:∵一次函数y =kx +b 的图象经过点A (-2,0), ∴0=-2k +b ,∴b =2k .①∵一次函数y =kx +b 的图象与y 轴的交点是B (0,b ), ∴S △AOB =12OA ·OB =8,即12×2×|b |=8, ∴|b |=8,∴b 1=8,b 2=-8.将b 1=8,b 2=-8分别代入①式,得k 1=4,k 2=-4, ∴一次函数的表达式是y =4x +8或y =-4x -8. 20.解:(1)当x >3时,y 1>y 2;当x <3时,y 1<y 2. (2)把y =0代入y =2x -3,得2x -3=0, 解得x =32,则点A 坐标为⎝ ⎛⎭⎪⎫32,0. 把y =0代入y =-x +6,得-x +6=0, 解得x =6,则点B 坐标为(6,0),所以这两条直线与x 轴所围成的△ABC 的面积为12×3×⎝ ⎛⎭⎪⎫6-32=274.21.解:(1)当0≤x ≤20时,y =1.9x ;当x >20时,y =1.9×20+(x -20)×2.8=2.8x -18.(2)因为2.2>1.9,所以可以确定该户5月份用水量超过20吨. 设该户5月份用水a 吨.由题意,得2.8a -18=2.2a ,解得a =30.答:该户5月份用水30吨.22.解:(1)M 不是和谐点,N 是和谐点.理由:∵1×2≠2×(1+2),4×4=2×(4+4),∴M 不是和谐点,N 是和谐点.(2)当a >0时,(a +3)×2=3a ,∴a =6.∵点P (6,3)在直线y =-x +b 上,∴代入得b =9;当a <0时,(-a +3)×2=-3a ,∴a =-6.∵点P (-6,3)在直线y =-x +b 上,∴代入得b =-3.∴a =6,b =9或a =-6,b =-3.23.解:(1)水库的水位y 随日期x 的变化是均匀的,∴y 与日期x 之间的函数为一次函数,设y =kx +b ,把(1,20)和(2,20.5)代入,得⎩⎪⎨⎪⎧k +b =20,2k +b =20.5, 解得⎩⎪⎨⎪⎧k =0.5,b =19.5, ∴函数表达式为y =0.5x +19.5.(2)当x =6时,y =3+19.5=22.5.故今年4月6日的水位为22.5米.(3)不能,理由如下:∵12月离4月时间比较长,∴用所建立的函数模型预测水位是不可靠的.24.解:(1)小聪骑车从飞瀑出发到宾馆所用时间为50÷20=2.5(h),∵上午10:00小聪到达宾馆,∴小聪上午7:30从飞瀑出发.(2)3-2.5=0.5,∴点G 的坐标为(0.5,50).设GH 对应的函数表达式为s =kt +b ,把G (0.5,50),H (3,0)代入s =kt +b ,得⎩⎪⎨⎪⎧0.5k +b =50,3k +b =0, 解得⎩⎪⎨⎪⎧k =-20,b =60, ∴s =-20t +60.当s =30时,t =1.5,∴点B 的坐标为(1.5,30).点B 的实际意义是当小慧出发1.5 h 时,小慧与小聪相遇,且离宾馆的路程为30 km.(3)50÷30=53(h),12-53=1013, ∴当小慧在D 点时,对应的时间点是10:20,而小聪到达宾馆返回的时间是10:00. 设小聪返回x h 后两人相遇,根据题意,得30x +30(x -错误!)=50,解得x =1,10+1=11,∴小聪到达宾馆后,立即以30 km/h 的速度按原路返回,那么返回途中他11:00遇见小慧.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5章一次函数一、选择题(共5小题)1.若等腰三角形的周长是100cm,则能反映这个等腰三角形的腰长y(cm)与底边长x(cm)之间的函数关系式的图象是()A.B.C.D.2.目前,我国大约有1.3亿高血压病患者,占15岁以上总人口数的10%﹣15%,预防高血压不容忽视.“千帕kpa”和“毫米汞柱mmHg”都是表示血压的单位,前者是法定的国际计量单位,而后者则是过去一直广泛使用的惯用单位.请你根据下表所提供的信息,判断下列各组换算正确的是()C.8kpa=60mmHg D.22kpa=160mmHg3.小文、小亮从学校出发到青少年宫参加书法比赛,小文步行一段时间后,小亮骑自行车沿相同路线行进,两人均匀速前行.他们的路程差s(米)与小文出发时间t(分)之间的函数关系如图所示.下列说法:①小亮先到达青少年宫;②小亮的速度是小文速度的2.5倍;③a=24;④b=480.其中正确的是()A.①②③B.①②④C.①③④D.①②③④4.小李与小陆从A 地出发,骑自行车沿同一条路行驶到B 地,他们离出发地的距离S (单位:km )和行驶时间t (单位:h )之间的函数关系的图象如图所示,根据图中提供的信息,有下列说法:(1)他们都行驶了20km ; (2)小陆全程共用了1.5h ;(3)小李与小陆相遇后,小李的速度小于小陆的速度; (4)小李在途中停留了0.5h . 其中正确的有( )A .4个B .3个C .2个D .1个5.甲、乙两辆摩托车同时从相距20km 的A ,B 两地出发,相向而行.图中l 1,l 2分别表示甲、乙两辆摩托车到A 地的距离s (km )与行驶时间t (h )的函数关系.则下列说法错误的是( )A .乙摩托车的速度较快B .经过0.3小时甲摩托车行驶到A ,B 两地的中点C .经过0.25小时两摩托车相遇D .当乙摩托车到达A 地时,甲摩托车距离A 地km二、填空题(共2小题)6.设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设x秒后两车间的距离为y米,y关于x的函数关系如图所示,则甲车的速度是米/秒.7.为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x的函数关系式;(3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y万元,且57<y≤60 时,求m的取值范围.三、解答题8.某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为yA(元),在B超市购买羽毛球拍和羽毛球的费用为yB(元).请解答下列问题:(1)分别写出yA 、yB与x之间的关系式;(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.9.“五一节”期间,申老师一家自驾游去了离家170千米的某地,下面是他们离家的距离y (千米)与汽车行驶时间x(小时)之间的函数图象.(1)求他们出发半小时时,离家多少千米?(2)求出AB段图象的函数表达式;(3)他们出发2小时时,离目的地还有多少千米?10.为提醒人们节约用水,及时修好漏水的水龙头.两名同学分别做了水龙头漏水实验,他们用于接水的量筒最大容量为100毫升.实验一:小王同学在做水龙头漏水实验时,每隔10秒观察量筒中水的体积,记录的数据如表(漏出的水量精确到1毫升):(2)如果小王同学继续实验,请探求多少秒后量筒中的水会满而溢出(精确到1秒)?(3)按此漏水速度,一小时会漏水千克(精确到0.1千克)实验二:小李同学根据自己的实验数据画出的图象如图2所示,为什么图象中会出现与横轴“平行”的部分?11.甲乙两车从A市去往B市,甲比乙早出发了2个小时,甲到达B市后停留一段时间返回,乙到达B市后立即返回.甲车往返的速度都为40千米/时,乙车往返的速度都为20千米/时,下图是两车距A市的路程S(千米)与行驶时间t(小时)之间的函数图象.请结合图象回答下列问题:(1)A、B两市的距离是千米,甲到B市后,小时乙到达B市;(2)求甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式,并写出自变量t的取值范围;(3)请直接写出甲车从B市往回返后再经过几小时两车相距15千米.12.某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?13.某物体从P点运动到Q点所用时间为7秒,其运动速度v(米每秒)关于时间t(秒)的函数关系如图所示.某学习小组经过探究发现:该物体前进3秒运动的路程在数值上等于矩形AODB的面积.由物理学知识还可知:该物体前t(3<t≤7)秒运动的路程在数值上等于矩形AODB的面积与梯形BDNM的面积之和.根据以上信息,完成下列问题:(1)当3<t≤7时,用含t的式子表示v;(2)分别求该物体在0≤t≤3和3<t≤7时,运动的路程s(米)关于时间t(秒)的函数关系式;并求该物体从P点运动到Q总路程的时所用的时间.14.为建设环境优美、文明和谐的新农村,某村村委会决定在村道两旁种植A,B两种树木,需要购买这两种树苗1000棵.A,B两种树苗的相关信息如表:(1)写出y(元)与x(棵)之间的函数关系式;(2)若这批树苗种植后成活了925棵,则绿化村道的总费用需要多少元?(3)若绿化村道的总费用不超过31000元,则最多可购买B种树苗多少棵?15.已知甲、乙两种原料中均含有A元素,其含量及每吨原料的购买单价如下表所示:A元素要排放废气0.5吨,若某厂要提取A元素20千克,并要求废气排放不超过16吨,问:该厂购买这两种原料的费用最少是多少万元?16.莲城超市以10元/件的价格调进一批商品,根据前期销售情况,每天销售量y(件)与该商品定价x(元)是一次函数关系,如图所示.(1)求销售量y与定价x之间的函数关系式;(2)如果超市将该商品的销售价定为13元/件,不考虑其它因素,求超市每天销售这种商品所获得的利润.17.华联超市欲购进A、B两种品牌的书包共400个.已知两种书包的进价和售价如下表所示.设购进A种书包x个,且所购进的两种书包能全部卖出,获得的总利润为W元.(2)如果购进两种书包的总费不超过18000元,那么该商场如何进货才能获利最大?并求出最大利润.(提示利润=售价﹣进价)18.漳州三宝之一“水仙花”畅销全球,某花农要将规格相同的800件水仙花运往A,B,C三地销售,要求运往C地的件数是运往A地件数的3倍,各地的运费如下表所示:(2)若总运费不超过12000元,最多可运往A地的水仙花多少件?第5章一次函数参考答案与试题解析一、选择题(共5小题)1.若等腰三角形的周长是100cm,则能反映这个等腰三角形的腰长y(cm)与底边长x(cm)之间的函数关系式的图象是()A.B.C.D.【考点】一次函数的应用;一次函数的图象;等腰三角形的性质.【分析】根据三角形的周长列式并整理得到y与x的函数关系式,再根据三角形的任意两边之和大于第三边,任意两边之差小于第三边列式求出x的取值范围,即可得解.【解答】解:根据题意,x+2y=100,所以,y=﹣x+50,根据三角形的三边关系,x>y﹣y=0,x<y+y=2y,所以,x+x<100,解得x<50,所以,y与x的函数关系式为y=﹣x+50(0<x<50),纵观各选项,只有C选项符合.故选C.【点评】本题考查了一次函数的应用,主要利用了三角形的周长公式,难点在于利用三角形的三边关系求出底边x的取值范围.2.目前,我国大约有1.3亿高血压病患者,占15岁以上总人口数的10%﹣15%,预防高血压不容忽视.“千帕kpa”和“毫米汞柱mmHg”都是表示血压的单位,前者是法定的国际计量单位,而后者则是过去一直广泛使用的惯用单位.请你根据下表所提供的信息,判断下列各组换算正确的是()C.8kpa=60mmHg D.22kpa=160mmHg【考点】一次函数的应用.【分析】观察不难发现,千帕每增加2,毫米汞柱升高15,然后设千帕与毫米汞柱的关系式为y=kx+b(k≠0),利用待定系数法求出一次函数解析式,再对各选项进行验证即可得解.【解答】解:设千帕与毫米汞柱的关系式为y=kx+b(k≠0),则,解得,所以y=7.5x,A、x=13时,y=13×7.5=97.5,即13kpa=97.5mmHg,故本选项错误;B、x=21时,y=21×7.5=157.5,所以,21kpa=157.5mmHg,故本选项错误;C、x=8时,y=8×7.5=60,即8kpa=60mmHg,故本选项正确;D、x=22时,y=22×7.5=165,即22kpa=165mmHg,故本选项错误.故选C.【点评】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,是基础题,比较简单.3.小文、小亮从学校出发到青少年宫参加书法比赛,小文步行一段时间后,小亮骑自行车沿相同路线行进,两人均匀速前行.他们的路程差s(米)与小文出发时间t(分)之间的函数关系如图所示.下列说法:①小亮先到达青少年宫;②小亮的速度是小文速度的2.5倍;③a=24;④b=480.其中正确的是()A.①②③B.①②④C.①③④D.①②③④【考点】一次函数的应用.【专题】压轴题.【分析】根据小文步行720米,需要9分钟,进而得出小文的运动速度,利用图形得出小亮的运动时间以及运动距离进而分别判断得出答案.【解答】解:由图象得出小文步行720米,需要9分钟,所以小文的运动速度为:720÷9=80(m/分),当第15分钟时,小亮运动15﹣9=6(分钟),运动距离为:15×80=1200(m),∴小亮的运动速度为:1200÷6=200(m/分),∴200÷80=2.5,(故②正确);当第19分钟以后两人之间距离越来越近,说明小亮已经到达终点,则小亮先到达青少年宫,(故①正确);此时小亮运动19﹣9=10(分钟),运动总距离为:10×200=2000(m),∴小文运动时间为:2000÷80=25(分钟),故a的值为25,(故③错误);∵小文19分钟运动距离为:19×80=1520(m),∴b=2000﹣1520=480,(故④正确).故正确的有:①②④.故选;B.【点评】此题主要考查了一次函数的应用,利用数形结合得出得出小亮的运动速度是解题关键.4.小李与小陆从A地出发,骑自行车沿同一条路行驶到B地,他们离出发地的距离S(单位:km)和行驶时间t(单位:h)之间的函数关系的图象如图所示,根据图中提供的信息,有下列说法:(1)他们都行驶了20km;(2)小陆全程共用了1.5h;(3)小李与小陆相遇后,小李的速度小于小陆的速度;(4)小李在途中停留了0.5h.其中正确的有()A.4个B.3个C.2个D.1个【考点】一次函数的应用.【分析】首先注意横纵坐标的表示意义,再观察图象可得他们都行驶了20km;小陆从0.5时出发,2时到达目的地,全程共用了:2﹣0.5=1.5h;小李与小陆相遇后,他们距离目的地有相同的路程,但是小陆到达目的地所用时间小于小李到达目的地所用时间,根据速度=路程÷时间可得小李的速度小于小陆的速度;小李出发0.5小时后停留了0.5小时,然后根据此信息分别对4种说法进行判断.【解答】解:(1)根据图象的纵坐标可得:他们都行驶了20km,故原说法正确;(2)根据图象可得:小陆全程共用了:2﹣0.5=1.5h,故原说法正确;(3)根据图象可得:小李与小陆相遇后,他们距离目的地有相同的路程,但是小陆用1个小时到B地,小李用1.5个小时到B地,所以小李的速度小于小陆的速度,故原说法正确;(4)根据图象可得:表示小李的S﹣t图象从0.5时开始到1时结束,时间在增多,而路程没有变化,说明此时在停留,停留了1﹣0.5=0.5小时,故原说法正确.故选:A.【点评】此题主要考查了学生从图象中读取信息的数形结合能力.同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.5.甲、乙两辆摩托车同时从相距20km 的A ,B 两地出发,相向而行.图中l 1,l 2分别表示甲、乙两辆摩托车到A 地的距离s (km )与行驶时间t (h )的函数关系.则下列说法错误的是( )A .乙摩托车的速度较快B .经过0.3小时甲摩托车行驶到A ,B 两地的中点C .经过0.25小时两摩托车相遇D .当乙摩托车到达A 地时,甲摩托车距离A 地km【考点】一次函数的应用.【分析】根据乙用时间比甲用的时间少可知乙摩托车的速度较快;根据甲0.6小时到达B 地判定B 正确;设两车相遇的时间为t ,根据相遇问题列出方程求解即可;根据乙摩托车到达A 地时,甲摩托车行驶了0.5小时,计算即可得解.【解答】解:A 、由图可知,甲行驶完全程需要0.6小时,乙行驶完全程需要0.5小,所以,乙摩托车的速度较快正确,故A 选项不符合题意;B 、因为甲摩托车行驶完全程需要0.6小时,所以经过0.3小时甲摩托车行驶到A ,B 两地的中点正确,故B 选项不符合题意;C 、设两车相遇的时间为t ,根据题意得, +=20,t=,所以,经过0.25小时两摩托车相遇错误,故C 选项符合题意;D 、当乙摩托车到达A 地时,甲摩托车距离A 地:×0.5=km 正确,故D 选项不符合题意. 故选:C .【点评】本题考查了一次函数的应用,主要利用了路程、速度、时间三者之间的关系,相遇问题的等量关系,从图形中准确获取信息是解题的关键.二、填空题(共2小题)6.设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设x秒后两车间的距离为y米,y关于x的函数关系如图所示,则甲车的速度是20 米/秒.【考点】一次函数的应用.【分析】设甲车的速度是a米/秒,乙车的速度为b米/秒,根据函数图象反应的数量关系建立方程组求出其解即可.【解答】解:设甲车的速度是a米/秒,乙车的速度为b米/秒,由题意,得,解得:.故答案为:20.【点评】本题是一道运用函数图象表示出来的行程问题,考查了追击问题的运用,路程=速度×时间的运用,解答时认真分析函数图象的含义是关键,根据条件建立方程组是难点.7.为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x的函数关系式;(3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y万元,且57<y≤60 时,求m的取值范围.【考点】一次函数的应用.【分析】(1)根据房款=房屋单价×人均住房面积就可以表示出应缴房款;(2)由分段函数当0≤x≤30,当30<x≤m时,当x>m时,分别求出y与x之间的表达式即可;(3)当50≤m≤60和当45≤m<50时,分别讨论建立不等式组就可以求出结论.【解答】解:(1)由题意,某三口之家的人均住房面积为: =40(平方米)得三口之家应缴纳房款为:0.3×3×30+0.5×3×10=42(万元);(2)由题意,得①当0≤x≤30时,y=0.3×3x=0.9x②当30<x≤m时,y=0.9×30+0.5×3×(x﹣30)=1.5x﹣18③当x>m时,y=0.3×3×30+0.5×3(m﹣30)+0.7×3×(x﹣m)=2.1x﹣18﹣0.6m∴y=(3)由题意,得①当50≤m ≤60时,y=1.5×50﹣18=57(舍). ②当45≤m <50时,y=2.1×50﹣0.6m ﹣18=87﹣0.6m . ∵57<y ≤60, ∴57<87﹣0.6m ≤60, ∴45≤m <50.综合①②得45≤m <50.【点评】本题考查了房款=房屋单价×购房面积在实际生活中的运用,求分段函数的解析式的运用,建立不等式组求解的运用,解答本题时求出函数的解析式是关键. 三、解答题8.某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x (x ≥2)个羽毛球,供社区居民 借用.该社区附近A 、B 两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A 超市:所有商品均打九折(按标价的90%)销售;B 超市:买一副羽毛球拍送2个羽毛球.设在A 超市购买羽毛球拍和羽毛球的费用为y A (元),在B 超市购买羽毛球拍和羽毛球的费用为y B (元).请解答下列问题:(1)分别写出y A 、y B 与x 之间的关系式;(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案. 【考点】一次函数的应用.【分析】(1)根据购买费用=单价×数量建立关系就可以表示出y A 、y B 的解析式; (2)分三种情况进行讨论,当y A =y B 时,当y A >y B 时,当y A <y B 时,分别求出购买划算的方案;(3)分两种情况进行讨论计算求出需要的费用,再进行比较就可以求出结论. 【解答】解:(1)由题意,得y A =(10×30+3×10x )×0.9=27x+270; y B =10×30+3(10x ﹣20)=30x+240;(2)当y A =y B 时,27x+270=30x+240,得x=10;当yA >yB时,27x+270>30x+240,得x<10;当yA <yB时,27x+270<30x+240,得x>10∴当2≤x<10时,到B超市购买划算,当x=10时,两家超市一样划算,当x>10时在A超市购买划算.(3)由题意知x=15,15>10,∴选择A超市,yA=27×15+270=675(元),先选择B超市购买10副羽毛球拍,送20个羽毛球,然后在A超市购买剩下的羽毛球:(10×15﹣20)×3×0.9=351(元),共需要费用10×30+351=651(元).∵651元<675元,∴最佳方案是先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球.【点评】本题考查了一次函数的解析式的运用,分类讨论的数学思想的运用,方案设计的运用,解答时求出函数的解析式是关键.9.“五一节”期间,申老师一家自驾游去了离家170千米的某地,下面是他们离家的距离y (千米)与汽车行驶时间x(小时)之间的函数图象.(1)求他们出发半小时时,离家多少千米?(2)求出AB段图象的函数表达式;(3)他们出发2小时时,离目的地还有多少千米?【考点】一次函数的应用.【分析】(1)先运用待定系数法求出OA的解析式,再将x=0.5代入,求出y的值即可;(2)设AB段图象的函数表达式为y=k′x+b,将A、B两点的坐标代入,运用待定系数法即可求解;(3)先将x=2代入AB段图象的函数表达式,求出对应的y值,再用170减去y即可求解.【解答】解:(1)设OA段图象的函数表达式为y=kx.∵当x=1.5时,y=90,∴1.5k=90,∴k=60.∴y=60x(0≤x≤1.5),∴当x=0.5时,y=60×0.5=30.故他们出发半小时时,离家30千米;(2)设AB段图象的函数表达式为y=k′x+b.∵A(1.5,90),B(2.5,170)在AB上,∴,解得,∴y=80x﹣30(1.5≤x≤2.5);(3)∵当x=2时,y=80×2﹣30=130,∴170﹣130=40.故他们出发2小时,离目的地还有40千米.【点评】本题考查了一次函数的应用及一次函数解析式的确定,解题的关键是通过仔细观察图象,从中整理出解题时所需的相关信息,本题较简单.10.为提醒人们节约用水,及时修好漏水的水龙头.两名同学分别做了水龙头漏水实验,他们用于接水的量筒最大容量为100毫升.实验一:小王同学在做水龙头漏水实验时,每隔10秒观察量筒中水的体积,记录的数据如表(漏出的水量精确到1毫升):(2)如果小王同学继续实验,请探求多少秒后量筒中的水会满而溢出(精确到1秒)?(3)按此漏水速度,一小时会漏水 1.1 千克(精确到0.1千克)实验二:小李同学根据自己的实验数据画出的图象如图2所示,为什么图象中会出现与横轴“平行”的部分?【考点】一次函数的应用.【分析】实验一:(1)根据图中的数据直接在坐标系中描出各点即可;(2)先设出V与t的函数关系式为V=kt+b,根据表中数据,得出,求出V与t的函数关系式,再根据t﹣1≥100和量筒的容量,即可求出多少秒后,量筒中的水会满面开始溢出;(3)根据(2)中的函数关系式,把t的值代入进行计算即可求出答案.实验二:根据小李同学接水的量筒装满后开始溢出,量筒内的水不再发生变化,即可得出图象中会出现与横轴“平行”的部分.【解答】解:实验一:(1)画图象如图所示:(2)设V与t的函数关系式为V=kt+b,根据表中数据知:当t=10时,V=2;当t=20时,V=5,所以,解得:,所以V与t的函数关系式为V=t﹣1,由题意得: t﹣1≥100,解得t≥=336,所以337秒后,量筒中的水会满面开始溢出;(3)一小时会漏水×3600﹣1=1079(毫升)=1079(克)≈1.1千克;故答案为:1.1;实验二:因为小李同学接水的量筒装满后开始溢出,量筒内的水位不再发生变化,所以图象中会出现与横轴“平行”的部分.【点评】此题考查了一次函数的应用,解题的关键是根据已知条件求出V与t的函数关系式,在解题时要能把函数的图象与实际相结合.11.(2013•牡丹江)甲乙两车从A市去往B市,甲比乙早出发了2个小时,甲到达B市后停留一段时间返回,乙到达B市后立即返回.甲车往返的速度都为40千米/时,乙车往返的速度都为20千米/时,下图是两车距A市的路程S(千米)与行驶时间t(小时)之间的函数图象.请结合图象回答下列问题:(1)A、B两市的距离是120 千米,甲到B市后, 5 小时乙到达B市;(2)求甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式,并写出自变量t的取值范围;(3)请直接写出甲车从B市往回返后再经过几小时两车相距15千米.【考点】一次函数的应用.【分析】(1)根据路程=速度×时间的数量关系用甲车的速度×甲车到达乙地的时间就可以求出两地的距离,根据时间=路程÷速度就可以求出乙需要的时间;(2)由(1)的结论可以求出BD的解析式,由待定系数法就可以求出结论;(3)运用待定系数法求出EF的解析式,再由两车之间的距离公式建立方程求出其解即可.【解答】解:(1)由题意,得40×3=120km.120÷20﹣3+2=5小时,故答案为:120,5;(2)∵AB两地的距离是120km,∴A(3,120),B(10,120),D(13,0).设线段BD 的解析式为S 1=k 1t+b 1,由题意,得.,解得:,∴S 1=﹣40t+520.t 的取值范围为:10≤t ≤13;(3)设EF 的解析式为s 2=k 2t+b 2,由题意,得,解得:,S 2=﹣20t+280.当﹣20t+280﹣(﹣40t+520)=15时,t=;∴﹣10=(小时),当﹣40t+520﹣(﹣20t+280)=15时,t=,∴﹣10=(小时),当120﹣20(t ﹣8)=15时,t=,∴﹣10=(小时),答:甲车从B 市往回返后再经过小时或小时或两车相距15千米.【点评】本题考查了待定系数法求一次函数的解析式的运用,自变量的取值范围的运用,一次函数与一元一次方程之间的关系的运用,解答本题时求出函数的解析式是关键.12.某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?【考点】一次函数的应用.【分析】(1)根据每个工人每天生产的产品个数以及每个产品的利润,表示出总利润即可;(2)根据每天获取利润为14400元,则y=14400,求出即可;(3)根据每天获取利润不低于15600元即y≥15600,求出即可.【解答】解:(1)根据题意得出:y=12x×100+10(10﹣x)×180=﹣600x+18000;(2)当y=14400时,有14400=﹣600x+18000,解得:x=6,故要派6名工人去生产甲种产品;(3)根据题意可得,y≥15600,即﹣600x+18000≥15600,解得:x≤4,则10﹣x≥6,故至少要派6名工人去生产乙种产品才合适.【点评】此题主要考查了一次函数的应用以及一元一次不等式的应用等知识,根据已知得出y 与x之间的函数关系是解题关键.13.某物体从P点运动到Q点所用时间为7秒,其运动速度v(米每秒)关于时间t(秒)的函数关系如图所示.某学习小组经过探究发现:该物体前进3秒运动的路程在数值上等于矩形AODB的面积.由物理学知识还可知:该物体前t(3<t≤7)秒运动的路程在数值上等于矩形AODB的面积与梯形BDNM的面积之和.根据以上信息,完成下列问题:(1)当3<t≤7时,用含t的式子表示v;(2)分别求该物体在0≤t≤3和3<t≤7时,运动的路程s(米)关于时间t(秒)的函数关系式;并求该物体从P点运动到Q总路程的时所用的时间.【考点】一次函数的应用.【分析】(1)设直线BC的解析式为v=kt+b,运用待定系数法就可以求出t与v的关系式;(2)由路程=速度×时间,就可以表示出物体在0≤t≤3和3<t≤7时,运动的路程s(米)关于时间t(秒)的函数关系式,根据物体前t(3<t≤7)秒运动的路程在数值上等于矩形AODB的面积与梯形BDNM的面积之和求出总路程,然后将其代入解析式就可以求出t值.【解答】解:(1)设直线BC的解析式为v=kt+b,由题意,得,。