1.2.2分式的乘方及乘除混合运算

合集下载

(完整版)分式加减乘除运算

(完整版)分式加减乘除运算

(三)分式 的运算知识点一:分式 的乘法 ---分式乘分式,用分子 的积作为积 的分子,分母 的积作为积 的分母23bc 2a b 4、 ;3a 16b4b 9a 24x y2b 2a 1、; 2、; 3、; 3y 2x 3 5a 2 2b5a 2 3c 22x 2 2x 2 4;x y x y ;x y x y3a 3b 25a b 396、; 7、5、a 2b 2x 2x x 3x210ab知识点二:分式 的乘方 ---要把分式 的分子、分母分别乘方 23222222 y 2x y 24a b a1 b 2a 2; 2、; 3、; 4、; 5、; 6、1、3y3x3zx y知识点四:分式 的除法 --分式除以分式,把除式 的分子、分母颠倒位置后,与被除式相乘2y 2 3x ab 22c 23a b 223x5y 220a y 4;3x512xy 5a28x y ;2、 3xy6xy16a y 321、;3、 ;4、 ;5、 4cd2x 2 y 2xyx 1 1 x x 2 4x 4 x 2;9、 x 4y 22x 2y2y x ;7、;8、6、x 2x xx 2xy y 2 2x 2xy2 2 x 1x 1知识点五:分式 的乘除混合运算322x 222322x 2 x x 2x x 21aab 2x y y 1、; 4、; 5、;2 x2b b4x2axay23232ab 3 6a 4 b 33c a b aba a ab 2;7、6、2b 22c db a1.下列各式计算结果是分式 的是( ). x 37x 2 n a m bn 3m m 2n(C) 3 5x x(A)(B)(D) 3y 24y32.下列计算中正确 的是().- 1(A)(-1)=- 1 (B)(- 1)=11 1 (C) 2a 33(D) ( a) ( a)72a 3a 43.下列各式计算正确 的是().1 (A) m ÷n · m =m (B) m nmn(C) 1 m m 1m (D) n ÷m · m =n).4.计算 ( a b )4 (a ) 5 的结果是 (ab a 1 a (A)-1(B)1(C) (D)aa b5.下列分式中,最简分式是( ).x 2xy y 2 2x y 2 2x 2y 221xy (A)(B)(C) (D) x yx y15 y 2x y2y 2 x x 9. ( ) ( )2 __________.3 10. [(x ) ]3 2__________.y 2 y知识点六:分式 的加减运算法则:①同分母分式相加减,分母不变,把分子相加减②异分母分式相加减,先通分,变为同分母 的分式,再加减x 1 1; 2、a 2a 3c117102;1、; 3、; 4、22c d 3cd 222xxabc abc abcx yz x y xyza 2a 3a3 8 11 x y y2x y ;y x; 6、 ; 7、 y x x y 5、 x 1 x 1 x 2 2 21b 1 b 1 b 1 1 y 1 2xy 3 2m n 8、; 9、; 10、;2x y x 2 y 222x y2m ny 2x2m n4 x 2 y 2 x 2 y 211、 a 2;12、 xy2 axy知识点 7:分式 的混合运算 2x y x 2y 2 x 11x a 1 2 a ; ;2、x1 ;3、 1、2x y 2 x a 2a 3 a 9 a2 2y1 1x y 1 x 2 y 21 3 x 5 4、5、x 22x 4x 2知识点 8:化简求值 ---化简求值问题 的解题步骤一般都是先对式子进行化简,再将已知值代入求值 2x 2 x 2 2x 11x 2x 2 2x 2 1、先化简,再求值: (2x 3xx 9,其中 x 2.2、先化简,再求值: 1)÷x ,其中 x=.x321 x 1 x 3 5 ),其中 x =- 4x 2x 3.4、先化简,再求值:2、先化简,再求值: 1,其中(x 2x 22x 4x 2a 1a 1a 1,其中aa 1 25、先化简,再求值:a 2 2a 1分式阶段水平测评(二)1.下列分式中是最简分式 的是( ).2x 4 x 1 1 x (D )x 1(A )(B )(C )22x 12xx 12.用科学记数法表示 0.000078,正确 的是().(A )7.8×10-5 (B )7.8×10-4 (C )0.78×10-3(D )0.78×10-41 3.下列计算:① ( 1)01;② ( 1) 1 1;③ 3a 35( x) ( x) 3 x 2.其;④3a 3中正确 的个数是().(A )4 (B )3(C )1( D )0 1 1 1(R 1 R ),则表示 R 的公式是( 4.已知公式1).2R R 1 R 2R 2 RRR 2RR 2 R( R R )2(A ) R 1(C ) R 1) .(D ) R 1() R 1B RR 2RR 2R 2RR 25.下列分式 的运算中,其中结果正确 的是(( a ) 231a 1 b2 a 3(A )( B )abaa 2b 2a 3a 2 6a 91 (C )a b( D )a b a 3a a ).a 24 a 2a6.化简 ( (A )-4的结果是().a 2(B ) 4 (C )2a(D)2a+4二、填空题(每小题 4分,计 16分)27.若 (a 1)0有意义,则 a ≠. 8.纳米是非常小 的长度单位, 1纳米 =0.000000001米,那么用科学记数法表示 1纳米 =米.x y y 1 2 x y9.如果= .,则 a b 2m dc10.若 a 、b 互为相反数, c 、d 互为倒数, m 的绝对值为 2,则 .a b c三、解答题11.计算化简(每小题 5分,计 20分)x 2 4x 2(x 9);( 1) 2 x x 2;(2)2x 3x2 3a 4 1 a 1;( 4) a(3) a 2 a 1.2a 4a 4 a 1 a 2 a 112.请将下面 的代数式尽可能化简,再选择一个你喜欢 的数(要合适哦! )代入求值:a 2 a 1 1.2a (a 1)2x 111 213.(10分)先化简,再求值,其中 x. 2x 2x 1 2x 2a x2bx 3 3 aba14.(10分)若关于 x 的方程的解是 x=2,其中 a b ≠ 0,求 的值. b快速练习21.①若 9x kxy 16y 2k =是一个完全平方式,则;2②若三项式 x 8xy m 是一个完全平方式,则 m = . 2.已知 a 2 ab 5,ab b 222,那么 a b 2.2x(x y 2 xy) y(x 2 x y) 2 34、 (3x 2y) (3x y)(3x y)5、211 2 23b c 27、 2m 26、 2a b 2ab c;2mnmn4 2228.已知 x y 3, xy 2,求 x 2 y ,x y的值。

《分式的乘除++第2课时》精品教学方案

《分式的乘除++第2课时》精品教学方案

第十五章分式15.2.1分式的乘除第2课时一、教学目标1.理解分式乘方的运算法则;2.能熟练地进行分式乘方及乘、除、乘方混合运算;3.经历乘方法则的探究过程,培养学生的观察、类比、归纳等数学能力;4.通过乘方以及分式乘、除、乘方混合的运算,使学生感受到数学的严谨,从而体会学习数学的价值.二、教学重难点重点:分式乘方运算法则的运用,分式乘除法以及与乘方的混合运算.难点:分式乘方法则及混合运算的准确使用.三、教学用具多媒体等.四、教学过程设计423⎛⎫= ⎪⎝⎭22223333⨯⨯⨯=22223333⨯⨯⨯=⨯⨯⨯1681.2222233333nn ⎛⎫=⨯⨯⨯⨯⎪⎝⎭个.教师活动:衔接分数乘方的回顾,引导学生根据分式的乘法运算写出运算过程,并设出疑问:多个相同分式的乘法,是否可以简写呢? 回顾板书:3355x x y y ⋅=3355x xy y ⋅=⋅22925x y . 333555x x x y y y ⋅⋅=333555x x xy y y⋅⋅=⋅⋅3327125x y . 33335555x x x x y y y y ⋅⋅⋅=33335555x x x xy y y y ⋅⋅⋅=⋅⋅⋅4481625x y . 35nx y ⎛⎫ ⎪⎝⎭33335555n x x xxy y y y⋅⋅⋅⋅个环节二探究新知【探究】教师活动:带领学生根据乘方的意义和分式的乘法法则进行运算.让学生了解字母可以表示数,最后类比数的乘方,得出分式乘方的运算法则.2()a =b a a b b⋅ a a=b b ⋅⋅ 22a =b . 3()a =b a a a b b b ⋅⋅ a a a=b b b⋅⋅⋅⋅ 33a =b . 10()a=b10a a a b b b ⋅⋅⋅个1010a a a=b b b⋅⋅⋅⋅⋅⋅个个 1010a =b . ()n a=bn a a a b b b ⋅⋅⋅个n n a a a=b b b⋅⋅⋅⋅⋅⋅个个n n a =b .集体回答通过类比分数的乘方,归纳总结分式的乘方,实现学生主动参与、探究新知的目的,培养学生类比的思想方法,提高分析问题,解决问题的能力.n ab b b ⋅⋅⋅个nna a a==b b b⋅⋅⋅⋅⋅⋅个个nnab=nnab.分式乘方要把分子、分母分别乘方.分别表示分子与分母,它们可以是单项式,也可以是多巩固例题练习。

分式的乘除乘方混合运算

分式的乘除乘方混合运算

t t
1 1

1 1
t t
,并取一个你喜欢的数代入
计算这个代数式的值.
1.老师布置了一道作业 题,“计算
x2 x x2 2x
1
(xx11)3
1
1
x
x
其中 x =2013.”小明错把x=2013错抄 成 x =2031,但他的计算结果也是正 确的,请你分析一下原因。
2.已知 a²+3a+1=0,求:
16
a4 2a 8
a a
2 2
解:原式=
4
a 4 a 42
a
2
a 4
a4
a a
2 2
= 2a 4 a2
课堂 练习
计算
(1)
2x2 y
2
2y2 3x
3
2y x
4
;
解:原式= 4x4 8y6 x4 y2 27x3 16y4
= 2x5 27
课堂
练习
.. 先化简再求值:
解:原式
4 m4m 2m 4 m2
4 m2
m4 m2
24 m2 4 mm 2 4 m2 m 4m 2
2m 2
m2
2m 4(或 2m 4)
m2
m2
当m
1时, 原式=
21 4 1 2
2 3
下面的计算是否正确,若不正确,请指出哪一步 有错误并加以改正:
a
2
2
(a
2)
a2
(2)能约分的要约分;(3)有多项式的要因式分解;
(4)最后结果是分式的一定要是最简分式。
计算
5
2x x
3
3 25x2

分式的乘除法教案

分式的乘除法教案

分式的乘除法教案一、教学目标:1. 让学生理解分式的乘法和除法运算规则。

2. 培养学生运用分式的乘除法解决实际问题的能力。

3. 提高学生对分式运算的兴趣和自信心。

二、教学内容:1. 分式的乘法运算:分子乘分子,分母乘分母;2. 分式的除法运算:将除法转化为乘法,即乘以倒数;3. 特殊情况的处理:分式的值为0和不存在的情况。

三、教学重点与难点:1. 教学重点:分式的乘法运算规则和除法运算规则;2. 教学难点:特殊情况下分式的处理和实际应用。

四、教学方法:1. 采用直观演示法,通过例题展示分式的乘除法运算过程;2. 采用归纳法,引导学生总结分式的乘除法运算规则;3. 采用小组讨论法,让学生合作解决实际问题。

五、教学准备:1. 教案、PPT、黑板;2. 练习题;3. 教学工具:多媒体设备。

【教学环节】1. 导入:通过生活实例引入分式的乘除法运算,激发学生兴趣。

2. 新课讲解:讲解分式的乘法运算规则,举例说明,让学生跟随老师一起动手操作。

3. 课堂练习:布置练习题,让学生独立完成,巩固新知识。

4. 讲解分式的除法运算:讲解除法转化为乘法的原理,举例说明。

5. 课堂练习:布置练习题,让学生独立完成,巩固新知识。

6. 特殊情况处理:讲解分式的值为0和不存在的情况,举例说明。

7. 课堂练习:布置练习题,让学生独立完成,巩固新知识。

8. 总结:让学生总结分式的乘除法运算规则,加深印象。

9. 课堂小测:进行课堂小测,了解学生掌握情况。

10. 课后作业:布置课后作业,让学生巩固所学知识。

六、教学评估:1. 通过课堂练习和小测,评估学生对分式乘除法的理解和应用能力。

2. 观察学生在小组讨论中的表现,了解他们的合作能力和解决问题的策略。

3. 收集学生的课后作业,分析他们的错误类型和解决问题的思路。

七、教学反思:1. 反思教学过程中的有效性和学生的参与度,考虑如何改进教学方法以提高学生的学习兴趣。

2. 分析学生的学习困难,针对性地调整教学内容和策略。

人教版八年级上册1.分式的乘方及乘方与乘除的混合运算

人教版八年级上册1.分式的乘方及乘方与乘除的混合运算
1第1.2分分课式式时的的分乘分乘除除式式((的法22课课乘法的时时方则))及 .乘乘方方与乘运除的算混合这运算一课的教学先让学生回忆以前学过的分
2.运算中的注意事项.
数的乘方的运算方法,然后采用类比的方法让学生得出分 1第2分课式时的乘分除式(的2课乘时方)及乘方与乘除的混合运算
教2.材运第算14中6的页注习意题事15项. .
本例题是本节课运算题目的拓展,对于(1)指数为字母, 不过方法不变;(2)(3)是较复杂的乘除乘方混合运算,要进 一步让学生熟悉运算顺序,注意做题步骤.
教学设计
四、巩固练习 教材第139页练习第1,2题. 五、课堂小结 1.分式的乘方法则. 2.运算中的注意事项. 六、布置作业 教材第146页习题15.2第3题.
分第式2课的时除法分法式则的:乘分方式及除乘以方分与式乘,除把的除混式合的运分算子、分母颠倒位置后,与被除式相乘. 1第.2课分式时的分乘式除的法乘法方则. 及乘方与乘除的混合运算 第2课时 分式的乘方及乘方与乘除的混合运算 教分材式第 的1乘3法9页法练则习:第分1式,乘2题分.式,用分子的积作为积的分子,用分母的积作为积的分母. 第2课时 分式的乘方及乘方与乘除的混合运算
2x 3 x 教材第139页练习第1,2题. 解: ÷ · 2.理解分式乘方的原理,掌握乘方的规律,并能运2用乘方规律进行分式的乘方运算. 5x-3 25x -9 5x+3 1.分式的乘除法法则.
第1 2分课式时的分乘除式(的2课乘时方)及乘方与乘除的混合运算2
2x 25x -9 x 教材第139页练习第1,2题. = · · 第2课时 分式的乘方及乘方与乘除的混合运算 5x-3 3 5x+3 1.分式的乘除法法则.
(3)确定分式的符号,然后约分;

湘教版八年级上册分式的乘法与除法课件(2课时38张)

湘教版八年级上册分式的乘法与除法课件(2课时38张)
=

解:原式
3
3

= 2 ∙ 3

4
=

新知探究
2 2 3 4
(2)( ) ∙ ( ) ÷ ( )



2
解:原式 =

6 4


2 3 4
2 ∙ 6 ∙ 4
= 2 3 4
∙ ∙
= 3
新知探究
混合运算顺序:先算乘方,再算乘除.
新知探究
例3:计算
v m

ab n
分式乘法
v
ab
.
;
新课导入
[问题2]:大拖拉机m天耕地a公顷,小拖拉机n天耕地 b公顷,大拖拉机的工作
效率是小拖拉机的工作效率的多少倍?
大拖拉机的工作效率是
小拖拉机的工作效率是
a
m
公顷/天;
b
公顷/天;
n
大拖拉机的工作效率是小拖拉机的工作;
a b
效率的(
)倍.

m n
分式除法
新知探究
4ab
2a
1+ 1−
1
+2
=


2
+2
−1 −1
3 −
2
2
=
∙ 8 ∙
4
+ −
+1
=−
.
+2 −1
122
=
.
+
八年级数学湘教版·上册
第1章
分式
1.2.2分式的乘方
授课人:X
学习目标
1.分式乘方的法则和运算;(重点)
2.分式乘方法则的推导过程的理解及利用分式乘方法则进行运算.(难点)

15.2.1.2 分式的乘方及乘除混合运算(课件)人教版数学八年级上册

15.2.1.2 分式的乘方及乘除混合运算(课件)人教版数学八年级上册
= 27z3 =- 27z3 .
3
2)原式=
2 2
2=
(3np) 9n p
小组讨论
1. 请同学们根据刚才有关分式乘方的练习,总结一下进行分
式乘方时,有哪些需要注意的地方.
要先确定乘方结果的符号,负的分式的偶次方为正,奇次方为负
2.如果将分式的乘方和乘除运算混合在一起,运算顺序应该




1
a-b2 -a 3

÷2
5:计算:
2.
·
a -b
ab b-a
2
3
(a-b)2
a
+ab
a
解:原式= a2b2 ·
(a+b)(a-b)= b2 .

(a-b)

ab2
6:已知(a-3)2+|b-4|=0,求a+b2


1
ab3
的值.
÷2

a -b 2(a-b)
3.通过经历转化过程,感受事物间辩证统一的相互关系,
让学生在探索讨论中养成与他人合作交流的习惯,并培
养克服困难的勇气和信心.
旧识回顾
2x
3
4b 25ac3
请同学们计算:(1)
÷
;(2)5a·6b2 .
5x-3 25x2-9
2x
3
(1) 原 式 =
÷

5x-3
(5x+3)(5x-3)
2
2x (5x+3)(5x-3) 10x +6x
15.2分式的运算
15.2.1分式的乘除
15.2.1.2
分式的乘方及乘除混合运算
学习目标
1. 通过转化思想将乘除混合运算统一为乘法运算,熟练地

分式的混合运算教学设计

分式的混合运算教学设计

15.2.2分式的加减法(第2课时)一、内容和内容解析 1.内容分式的混合运算. 2.内容解析本节课是在学生已经学习了分式的乘方、乘除法、加减法的基础上进行的混合运算.混合运算也是将整式的因式分解和分式的通分、约分进一步运用巩固的过程,是知识积累的一次升华.分式混合运算也是数的混合运算的推广,它们的本质相同,对于运算方法的归纳,体现了类比的思想方法.基于以上分析,可以确定本课的教学重点是:熟练进行分式的混合运算. 二、目标和目标解析 1.目标明确分式混合运算的顺序,熟练进行分式的混合运算. 2.目标解析学生已经有了多年数的运算经验,并且前几节课已经涉及了分式的多种相关运算,所以对于目标中的“运算顺序”还是易于把握的.对于达到“熟练运算”的目标,计算结果是否正确是重要衡量标准,但更应关注学生在运算过程中的基本方法(如通分、约分等)能否熟练准确进行,从中查出“病因”,从而改正和巩固.三、教学问题诊断分析运算能力是学生的一种基本功.虽然他们能够掌握分式的运算法则,但在独立进行实际计算时,还是分出现很多问题,如多项式不能正确因式分解,找不准最简公分母,变号细节的不注意,结果不化到最简等,这样都会倒致计算结果不正确,因此还需要一个长期强化和巩固的过程.基于以上分析,本节课的教学难点是:熟练进行分式的混合运算. 四、教学过程设计 (一)温故知新1.回忆分式加减、乘除、乘方法则.2.应用法则,实际计算.(1)2232324ab a b c cd -÷ (2)2111x x x x x ++÷-- (3)222231036x y y y x x ⎛⎫-•÷ ⎪-⎝⎭ (4)ab bb a a -+- (5)112---x x x (6)221y x -+xy x +21 师生活动:教师展示相关法则,让学生有一个感性认识后,再去实战计算,由学生板书过程.关注运算过程中暴露的不足,可开展“师生互助”和“生生互助”.设计意图:让学生感受“理论与实践的结合”.强化了通分、约分等基本方法的训练,为熟练进行混合运算做好帮助工作.(二)混合运算,做好总结例1. 例2.x x x x x x x x -÷+----+4)44122(2222a 1a b b a b b 4-÷-()·例3.师生活动:师生共同完成例1、例2的计算,感受混合运算顺序,学生独立完成例3.设计意图:通过例1、例2的计算和例3中两种不同计算规律的使用,再结合学生已有的类比经验,让学生体会分式的运算与数的运算的具有相同本质,掌握运算方法.(三)巩固练习1.2.师生活动:学生独立完成练习,小组成员相互评价,关注运算能力弱的学生,能否将“生生相助”活动的作用发挥出来.设计意图:在巩固训练的过程中,学生之间发现问题处理问题,既达到了“熟练运算”的目的,又提升了学生互助合作意识.(四)归纳小结通过本节课的运算练习,教师提出注意问题:1.一般按分式的运算顺序法则进行计算,但恰当地使用运算律会使运算简便。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

gn
(n为正整数)
合作学习
一、知识点一:分式的乘方
例1.P10例3(1)(2)
1
x2 y
3
2
-
3xy 2 4z
2
练一练
注意:做乘方运算要先确定符号.
判断下列各式是否成立,并改正.
1
b3 2a
2
b5 2a2
;
解:(1)不成立,改正:
b3 2a
2

b6 4a2
;
2
3b 2a
2
9b2 4a2
知识回顾1:乘方的意义
an=a·a·a·…·a (n个a相乘)
知识回顾2:幂的运算
1、同底数幂相乘: am·an=am+n
2、幂的乘方: (am)n=amn
3、积的乘方: (ab)m=ambm
f g
自主学习
1、分式的乘方法则?用式子怎样表示?
分式的乘方是把分子、分母各自乘方.
(f ) n fn
g
的运算过程对吗?然后请你给他提出恰当的建议!
4
2 4x
x2
(
x
3)

x x
2 3
(2
2 x)2
(x
3) •
x x
2 3
2 x2
拓展提升
1、已知 x 4 (y 5)2 0,试求
( y x)2 •
xy
y x x2 4xy 4y2
( x y )2 x 2y
的值.
1
9
2.先化简 a2 4 ( a 1)2 a2 1 ,然后选取一个
;
(2)不成立,改正: -23ab
2
9b2 ; 4a2
3
2y 3x
3
8y3 9x3
;
(3)不成立,改正: 23yx
3
8y3 27x3

4
3x xb
2
x29x2b2(. 4)不成立,改正:
3x xb
2
9x2
x -b2
.
核对答案:P12练习T1
二、知识点二:分式乘除乘方的混合运算。
例2.P10例4(1)(2)
变(1)xy 2
y
2
x
(2) yx
2

y x2
3
y x
4
核对答案:P12练习T2. 练习:P12习题T2.
1.运算顺序. 2.符号的确定.
课堂小结
(1)分式的乘方;
(2)分式的乘除乘方混合运算的运算,顺序是怎样 的?
议一议
马小虎学习了分式的混合运算后,做了一道下面
的家庭作业,李老师想请你帮他批改一下.请问下面
a2 a a 2 a2 2a
你喜欢的数作为a的值代入计算.
(a 2)(a 2) a 12 a(a 2) 解:原式 a(a 1) a 22 (a 1)(a 1)
a2. a 1
当a=2时,原式=0.
思考:a可以取任何实数吗?
a不可以取0,±1,-2.
3.计算:
2
(3)(
x
2
x2
2x 1
1)2
(x2 x
x )2. 1
4 2x2 18
4 4x x2
(x
3) •
x2
3x 6x
9
y4 x3
2x x y
1 x2
2x2 12x18 x2 4x4
相关文档
最新文档