Adsorption behavior of copper ions on graphene oxide–chitosan aerogel

合集下载

乙二胺四乙酸(EDTA)改性磁性壳聚糖对Cd^(2+)的吸附性能

乙二胺四乙酸(EDTA)改性磁性壳聚糖对Cd^(2+)的吸附性能

第42卷第2期青岛科技大学学报(自然科学版)2021年4月Journal of Qingdao University of Science and Tcchnology(Natural Science Edition)Vol..2N o. Apr.2021文章编号:1672-6987(2021)02-0058-08;DOI:10.16351/j.1672-6987.2021.02.008乙二胺四乙酸(EDTA)改性磁性壳聚糖对Cd2+的吸附性能于硕,吴占超*,匡少平*(青岛科技大学化学与分子工程学院,山东青岛266042)摘要:成功制备了乙二胺四乙酸(EDTA)改性的磁性壳聚糖,并通过红外光谱,X射线衍射,热重分析和扫描电镜对其结构和形貌进行了表征。

对吸附剂的吸附性能研究表明:在p H=5,T=298K,p0=200m g-L1t=30min的吸附条件下,吸附剂对Cd2的饱和吸附量为176.32mg・g1.吸附剂吸附行为符合二级动力学模型和Langmuir等温模型。

吸附剂再生5次仍有较好的吸附性能。

关键词:磁性壳聚糖;乙二胺四乙酸(EDTA);Cd2;吸附中图分类号:O646.8文献标志码:A引用格式:于硕,吴占超,匡少平.乙二胺四乙酸(EDTA)改性磁性壳聚糖对Cd2的吸附性能青岛科技大学学报(自然科学版),2021,42(2):5865.YU Shuo,WU Zhanchao,KUANG Shaoping.Adsorption properties of ethylenediamine tet­raacetic acid(EDTA)modified magnetic chitosan for Cd2[J].Journal of Qingdao Universi­ty of Science and Technology(Natural Science Edition),2021,42(2):5865.Adsorption Properties of Ethylenediamine Tetraacetic Acid(EDTA)Modified Magnetic Chitosan for Cd2+YU Shuo,WU Zhanchao,KUANG Shaoping(College of Chemistry and Molecular Engineering,Qingdao University of Science and Technology,Qingdao266042,China)Abstract:EDTA-modified magnetic chitosan was successfully prepared,and its structure andmorphologywerecharacterizedbyinfraredspectroscopy,X-raydi f raction,thermogravimet-ricanalysis,andscanningelectron microscopy.Thestudyontheadsorptionperformanceofthe adsorbent,showed that,the saturated adsorption capacity of the adsorbent,for Cd2was176.32mg・g1under the adsorption conditions of pH=5,T=298K,^0=200mg・L1and t=30min.The adsorption behavior of the adsorbent,complies with the second-order ki-neticmodelandtheLangmuirisothermalmodel.Theadsorbentsti l showedgoodadsorptionpropertyafterthefifthregenerationcycle.Key words:magnetic chitosan;ethylenediamine tet.raacet.ic acid(EDTA);C d2;adsorption现代工业领域产生的有毒金属离子对水体的污多的有毒金属中,Cd?被认为是最剧毒的一种。

个人简介刘转年,男,陕西富平人,博士(后),教授,博士

个人简介刘转年,男,陕西富平人,博士(后),教授,博士

※个人简介刘转年,男,陕西富平人,博士(后),教授,博士生导师。

本科毕业于南京理工大学环境工程专业,2004年博士毕业于西安建筑科技大学环境工程专业。

2006-2009年在西安建筑科技大学材料科学与工程博士后流动站从事博士后研究,2009年破格晋升教授。

2014年7月至12月美国Northern Arizona University 访问学者。

西安科技大学环境科学与工程一级学科硕士点召集人,环境工程二级学科硕士点带头人。

高等学校(矿业)“十二五”规划教材环境学科编审委员会委员。

国家自然科学基金项目同行评议专家、中国博士后科学基金项目评审专家、陕西省博士后基金项目评审专家,西安节能协会特聘专家。

※研究方向1、矿物环境功能材料及应用研究;2、矿井水处理及资源化利用新技术;3、矿业固体废物资源化利用。

※主要成果在国内外核心期刊发表论文60余篇,其中SCI和EI收录20余篇,出版专著和教材4部。

主持国家自然科学基金面上项目、陕西省工业攻关项目、中国博士后科学基金项目、西安市工业攻关项目、省教育厅产业化培育项目、榆林市产学研合作项目及西安市发改委科研课题等纵、横向项目近20项。

获省部级科学技术二等奖和三等奖各1项,个人排名第一。

2015年获中国化工学会和化工学报高被引论文奖。

授权国家发明专利12项。

代表性成果:[1]刘转年著.粉煤灰成型吸附剂的制备及应用[M].北京:化学工业出版社,2009.[2]刘转年等编著.环境污染治理材料[M].北京:化学工业出版社, 2013.[3]刘转年,范荣桂.环保设备基础[M].徐州:中国矿业大学出版社, 2013.[4]Liu Zhuannian, Zhang Yuanyuan, An Yangkang, Jing Xiuyan, Liu Yuan. Influence of coal fly ash particle size on structure and adsorption properties of forming adsorbents for Cr6+ [J].Journal Wuhan University of Technology, Materials Science Edition, 2016, 31(1):58-63. SCI检索.[5]Zhuannian Liu,Yuan Liu.Structure and properties of forming adsorbents prepared from different particle sizes of coal fly ash[J]. Chinese Journal of Chemical Engineering,2015,23(1):290-295. SCI检索.[6]Zhuannian Liu, Yongmei Liu, Long Chen, Huan Zhang. Performance study of heavy metal ion adsorption onto microwave- activated banana peel [J].Desalination and Water Treatment, 2014,52 (37-39):7117-7124. SCI检索.[7]Liu Zhuannian, Song Yejing, Han Xiaogang. Synthesis and characteristics of a novel heavy metal ions chelator[J].Journal Wuhan University of Technology, Materials Science Edition. 2012,27(4): 730-734. SCI检索.[8]Liu Zhuannian, Zhou Anning, Wang Guirong.Adsorption behavior of methyl orange onto modified ultrafine coal powder [J]. Chinese Journal of Chemical Engineering, 2009,17(6):942-948. SCI检索.[9]Liu Zhuannian, Wang Guirong. Removal of Cr (VI) from aqueous solution using ultrafine coal fly ash[J].Journal Wuhan University of Technology, Materials Science Edition, 2010, 25(2): 323-327. SCI检索.[10]Liu Zhuannian. Experimental research on oxidation of phenol by activated persulfate [J]. Journal of Coal Science & Engineering, 2013,19(4):560-565.[11]刘转年,张焕,王贵荣,程爱华,王艺.煤基重金属螯合吸附剂的制备及性能研究[J].煤炭学报,2015,40(1):172-178. EI检索.[12]刘转年,刘源.超细粉煤灰基成型吸附剂的制备及性能研究[J].煤炭学报,2009, 34(9):1263-1267. EI检索.[13]刘转年,杨志远.超细粉煤灰吸附Cr6+机理和动力学[J].中国矿业大学学报, 2008,37(4):478-482. EI检索.[14]刘转年.一种以乙二胺为原料的煤基复合螯合材料的制备方法.中国发明专利,ZL201410172439.2, 2016-01-05.[15]刘转年,王贵荣,王艺.一种聚合硫酸铁的制备方法.中国发明专利, ZL201310215351.X , 2015-04-22.[16]刘转年.一种煤基复合螯合剂的制备方法,中国发明专利, ZL201210593983.5, 2014-04-30.[17]刘转年.一种煤基螯合吸附剂的制备方法.中国发明专利, ZL201210594048.0,2014-07-23.[18]刘转年,刘永梅.一种纳米Fe0/多乙烯多胺复合螯合剂的制备方法.中国发明专利, ZL20131021376 9.7, 2015-10-14.[19]刘转年,陈龙.一种煤/聚乙烯亚胺交联复合螯合吸附剂的制备方法.中国发明专利, ZL201410039 800.4, 2015-12-02.[20]刘转年.一种重金属螯合吸附剂的制备方法.中国发明专利, ZL201310073432.0, 2015-12-02.[21]刘转年,刘永梅.一种纳米Fe0/聚乙烯亚胺复合螯合剂的制备方法.中国发明专利, ZL20131021376 7.8, 2015-12-09.在研科研项目:1、国家自然科学基金面上项目:煤/聚乙烯亚胺交联复合螯合吸附剂的制备及其对重金属离子的协同作用机制研究,项目编号:51278418。

Cu2+在醋酸盐离子液体中的电化学性能及电沉积

Cu2+在醋酸盐离子液体中的电化学性能及电沉积

第52卷第9期 辽 宁 化 工 Vol.52,No. 9 2023年9月 Liaoning Chemical Industry September,2023收稿日期: 2022-09-15Cu 2+在醋酸盐离子液体中的电化学性能及电沉积于开鑫1,刘艳辉1,*,宋继梅2,*,罗万胜1(1. 沈阳理工大学 材料科学与工程学院,辽宁 沈阳 110159;2. 潍坊科技学院 化工与环境学院,山东 潍坊 262700)摘 要:采用循环伏安法(CV)研究了二价铜离子在1-丁基-3-甲基咪唑醋酸盐[C 4C 1Im][OAc]离子液体中的氧化还原过程及电化学行为。

实验结果表明:[C 4C 1Im][OAc]离子液体的电化学窗口为3.3 V;铜离子在[C 4C 1Im][OAc]中的氧化还原为非可逆过程,铜离子还原过程受扩散传质控制,由Cu 2+→Cu +、Cu +→Cu 0的扩散系数分别为0.000 939 4,0.001 752 cm 2/s, SEM 及XRD 分析表明铜离子在醋酸盐离子液体中可以被沉积出来。

关 键 词:电化学窗口;离子液体;醋酸;传质机制;电沉积中图分类号:TQ153.14 文献标识码: A 文章编号: 1004-0935(2023)09-1306-04铜具有很好的导电、导热、延展性及机械加工性能,常运用于印刷电路板等电子工业领域[1-3]。

铜的电解冶炼具有悠久的发展历史,目前常用的电沉积铜体系主要包括水相硫酸盐体系、水相焦磷酸盐体系、氰化物体系以及无氰镀铜体系等[4],但这些体系存在着许多缺点,例如工艺过程复杂、能源使用效率低、环保压力大、沉积层的质量较难控制等[5]。

离子液体又叫做室温熔盐、有机离子液体(ILs),作为一种绿色、安全的溶剂,由于其具极低的蒸汽压、高热稳定性、宽电化学窗口和高导 率[6],越来越受到电化学家的欢迎。

自2013年,Liu 等[7]在1-乙基-3-甲基咪唑乙基硫酸盐离子液体中电沉积出具有纳米级别的微观结构的铜以来,铜的非水体系电化学性质已有大量的研究,目前已报道的电沉积铜及其合金的离子液体电解液体系主要有以下几种:氯化胆碱[8]、咪唑类四氟硼酸盐[9]、咪唑类三氟甲磺酸盐[10-11]、咪唑六氟磷酸盐等[5]。

水滑石复合水泥基材料氯离子吸附能力的研究进展

水滑石复合水泥基材料氯离子吸附能力的研究进展

第42卷第4期2023年4月硅㊀酸㊀盐㊀通㊀报BULLETIN OF THE CHINESE CERAMIC SOCIETYVol.42㊀No.4April,2023水滑石复合水泥基材料氯离子吸附能力的研究进展周丽娜1,2,蔡㊀颖1,马财龙1,罗㊀玲1,2(1.新疆大学建筑工程学院,乌鲁木齐㊀830017;2.新疆土木工程技术研究中心,乌鲁木齐㊀830017)摘要:以氯离子为诱导的钢筋锈蚀是造成混凝土耐久性问题的主要原因,其本质是氯离子通过材料基体的多孔结构在水泥基材料中扩散,并逐步迁移到钢筋表面,发生不利的物理化学反应㊂水滑石即层状双金属氢氧化物(LDHs)是一种新型延缓钢筋锈蚀的外掺材料,具有独特的层状结构和离子交换性质,可在特定的介质溶液中将客体阴离子与层间阳离子进行交换,达到吸附氯离子㊁延长混凝土结构服役寿命的目的㊂本文介绍了水滑石的结构性质㊁制备方法及氯离子吸附机理,总结了不同类型水滑石的氯离子吸附能力及相关研究成果㊂研究结果表明:水滑石复合水泥基材料的氯离子吸附性能受LDHs材料制备工艺㊁水泥基材料中孔隙液pH值及氯离子浓度影响,高温焙烧处理的水滑石对氯离子吸附效果更好;当LDHs掺量控制在1%~3%(质量分数)时,有利于改善水泥基材料的抗氯离子渗透性能㊂关键词:氯离子侵蚀;水滑石;水泥基材料;氯离子吸附;钢筋锈蚀;离子交换中图分类号:TU528㊀㊀文献标志码:A㊀㊀文章编号:1001-1625(2023)04-1137-11 Research Progress on Adsorption Capacity of Hydrotalcite forChloride Ions in Cement-Based MaterialsZHOU Lina1,2,CAI Ying1,MA Cailong1,LUO Ling1,2(1.School of Civil Engineering and Architecture,Xinjiang University,Urumqi830017,China;2.Xinjiang Civil Engineering Technology Research Center,Urumqi830017,China)Abstract:Chloride ions induced corrosion of reinforcing steel is a major cause of concrete durability problems.The essenceis that chloride ions diffuse through the porous structure of the material matrix in the cementitious material and gradually migrate to the surface of the reinforcing steel,where adverse physicochemical reactions occur.Hydrotalcite,known as layered double hydroxides(LDHs),is a new type of admixture to delay the corrosion of reinforcement.It has unique layered structure and ions exchange properties which ensures ion exchange between chloride ions and interlayer cations of LDHs and reaches the purpose of adsorption of chloride ions,thus extending the service life of concrete structures.This paper introduces the structural properties,modification method of hydrotalcite as well as its adsorption mechanisms on chloride ions,and summarizes the research results of recent years on the adsorption capacity of chloride ions through different modified hydrotalcite systems to improve the corrosion of steel reinforcement.The results indicate that the chloride ions adsorption capacity of hydrotalcite-based composite materials is mainly affected by LDHs preparation procedure,pH value of the pore solution and the chloride ions concentration.The chloride ions adsorption of calcined LDHs is more effective.When the addition of LDHs is1%~3%(mass fraction),the resistance to chloride ions permeability of cement-based materials will be obviously improved.Key words:chloride ions erosion;hydrotalcite;cement-based material;chloride ion adsorption;steel corrosion;ion exchange㊀收稿日期:2022-11-24;修订日期:2023-01-18基金项目:新疆维吾尔自治区高层次人才引进项目(TCBR202107);天山青年计划项目(2020Q071);新疆维吾尔自治区青年基金(2020D01C057)作者简介:周丽娜(1985 ),女,博士,讲师㊂主要从事混凝土材料耐久性损伤监测与评估的研究㊂E-mail:linazhou@通信作者:马财龙,博士,副教授㊂E-mail:macailong@1138㊀水泥混凝土硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷0㊀引㊀言混凝土是建筑工程中广泛应用的材料之一,其耐久性能备受国内外学者关注㊂因混凝土自身的孔隙结构,外界环境中的氯离子通过孔隙渗入到混凝土内部,当氯离子浓度在钢筋表面达到一定阈值,钝化膜将会发生破坏,诱发钢筋锈蚀[1],严重影响混凝土结构服役寿命[2-5]㊂为了延缓腐蚀的发生,国内外众多学者和工程师致力于钢筋防腐技术的研究,目前相对成熟的保护技术包括阴极保护㊁防腐涂层㊁镀锌钢筋㊁缓蚀剂等[6]㊂上述方法对于延缓钢筋锈蚀均能发挥一定作用,但存在成本高㊁有毒性㊁难降解等问题㊂因此,需要开发一种直接㊁高效且可持续发展的技术㊂近年来,水滑石(layered double hydroxides,LDHs)因其独特的层状结构和离子交换性质,已成为一种新型的外掺材料,应用于混凝土结构中延缓钢筋腐蚀[7-8]㊂2003年Tatematsu 等[9]最早提出类似钙铝类水滑石材料可作为盐类吸附剂用于水泥基材料中,Raki 等[10]进一步证明类水滑石相材料掺入混凝土可控制有机混合物的释放速率㊂基于此,国内外学者从改性的角度出发,探究LDHs 对水泥基材料氯离子吸附性能的影响㊂在钢筋防腐方面,Hong 等[11]和Chen 等[12]通过试验研究表明LDHs 在含氯化物的模拟混凝土孔隙液中表现出良好的耐腐蚀性能,前者设计的MgAl-LDHs 膜用于钢筋基体上,能有效抑制钢筋锈蚀,后者制备的Ca-Al-NO 3LDHs 改性胶凝涂层具有固结氯离子和释放缓释阴离子的双重能力㊂上述研究表明,LDHs 固化氯离子效果显著㊂本文从LDHs 的结构性质和形成机制出发,引入LDHs 的氯离子吸附机理,考虑了LDHs 类型㊁制备方法及水泥基材料孔隙溶液中的pH 值㊁氯离子浓度等主要影响因素,对国内外学者针对不同类型LDHs 复合水泥基材料吸附氯离子能力的研究成果进行归纳梳理,以期为LDHs 在延缓混凝土结构钢筋锈蚀的运用提供理论依据,为延长钢筋混凝土建筑物和构筑物服役寿命提供新思路㊂1㊀水滑石复合水泥基材料1.1㊀水滑石的结构和性质图1㊀LDHs 结构示意图[15]Fig.1㊀Structure schematic diagram of LDHs [15]LDHs 是具有典型层状结构的纳米材料,其化学通式为[M 2+1-x M 3+x (OH)2][A n -]x /n ㊃y H 2O,其中M 2+和M 3+分别表示层板结构中的二价和三价金属阳离子,常见的二价金属阳离子M 2+包括Mg 2+㊁Mn 2+㊁Fe 2+㊁Co 2+等,常见的三价金属阳离子M 3+包括Cr 3+㊁Fe 3+㊁Mn 3+㊁Ga 3+等,A n -为层间的n 价无机(有机)阴离子,如NO -3㊁CO 2-3㊁Cl -㊁OH -㊁SO 2-4等,x 是M 3+/(M 2++M 3+)的摩尔比,一般在0.20~0.33;y 是每个水滑石分子中结晶水的个数[13-14]㊂典型的LDHs 结构[15]如图1所示㊂LDHs 具有离子交换特性,因此也被称为阴离子黏土[16]㊂在钢筋防腐方面,层间阴离子可以与外部环境中存在的侵蚀阴离子置换㊂若预先制备插层阴离子具有缓蚀效果的LDHs,还可在捕捉水泥基材料中游离氯离子的同时,释放抑制腐蚀的阴离子,发挥LDHs 的 双重效应 [17-18]㊂在进行层间交换时,一般需遵循层间阴离子的亲和力顺序:CO 2-3>SO 2-4>OH ->F ->Cl ->Br ->NO -3[19]㊂基于热稳定性和记忆效应,焙烧改性处理后的LDHs 置于特定介质溶液中,可以完成结构重建[20]㊂1.2㊀水滑石的制备水泥熟料中铝酸三钙(C 3A)和铁铝酸四钙(C 4AF)可促进水化产物单硫型水化硫铝酸钙(AFm)的形成,进而完成对氯离子的化学吸附[21-22]㊂AFm 相类属水滑石家族,证实了LDHs 复合水泥基材料使用的可行性[23]㊂水泥中活性MgO 和Al 2O 3的相对含量是形成LDHs 的关键[24],除了天然存在形式,水泥基材料中的LDHs 还可通过外掺的方式获得,根据水泥基材料的性能要求选择合适的掺量㊂外掺LDHs 常用制备工艺包括四种方法:共沉淀法㊁离子交换法㊁水热法和焙烧还原法㊂第4期周丽娜等:水滑石复合水泥基材料氯离子吸附能力的研究进展1139㊀1)共沉淀法共沉淀法为最常用的制备方法,即在一定温度下,将两种金属盐的混合溶液加入碱性溶液中,发生共沉淀以制备LDHs [25-26]㊂朱清等[27]以沉淀剂和温度作为制备MgAl-LDHs 的变量,结果显示,采用NaOH 为沉淀剂㊁晶化温度为70ħ时制备出的MgAl-LDHs 结晶度较好,晶相单一,晶体结构一致㊂Cao 等[28]采用共沉淀法成功制备了CaAl-LDHs,结果表明不同含量的CaAl-LDHs 对硅酸三钙(C 3S)和铝酸四钙(C 4A)的水化速度影响不同,进而使得浆体早强性能不同㊂这一发现为LDHs 在水泥基材料中的实际应用提供理论支持㊂2)离子交换法离子交换法主要基于LDHs 层间离子交换 的特性,根据离子的亲和力大小,进行主客体交换,以得到特定的阴离子插层的LDHs [29]㊂值得注意的是,用于制备盐溶液中的阴离子(即目标阴离子)亲和力应大于原有层间阴离子㊂离子交换法的优点在于反应时间短,是合成非CO 2-3插层LDHs 的常用方法㊂图2为离子交换法示意图㊂图2㊀离子交换法示意图[15]Fig.2㊀Schematic diagram of ion exchange method [15]3)水热法水热法是一种湿化学方法,在密闭压力容器内完成,利用高压㊁高温的水溶液使不溶或难溶的物质通过溶解或反应生成该物质的溶解产物,使其呈过饱和态,进而使得结晶生长[30]㊂水热法的优点是,制备过程在封闭环境中进行,反应产物受到大气环境中CO 2影响较小,产物结晶度好[31]㊂Chen 等[32]和杨成梅等[33]通过水热法,分别合成以硝酸根(NO -3)为插层的LDHs 和Ca-Al-Cl LDHs㊂前者研究了不同LDHs 的氯离子吸附规律,后者研究发现,复配比例下改性的LDHs 结构紧密,提高了水泥注浆早强性能㊂4)焙烧还原法焙烧还原法是根据LDHs 的记忆效应建立的制备方法㊂其基本原理是,通过对LDHs 进行高温煅烧,得到焙烧改性水滑石(calcined layered double hydroxides,CLDHs),将CLDHs 置于特定的介质溶液中完成结构重建[34]㊂焙烧还原法的优点是,在煅烧过程中脱除CO 2-3,提高客体阴离子的插层率㊂图3为CLDHs 层状结构的重建过程㊂图3㊀CLDHs 的结构重建示意图[35]Fig.3㊀Schematic diagram of CLDHs structural reconstruction [35]1140㊀水泥混凝土硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷对比四种常用的水滑石制备方法可知,共沉淀法操作便捷,制得LDHs 结晶度好,其余方法均需要LDHs 作为前驱体进行制备㊂然而,对LDHs 进行改性通常采用焙烧还原法,这归因于其充分利用LDHs 的热稳定性和记忆效应等性质㊂1.3㊀水滑石复合水泥材料吸附机理图4㊀不同处理方法下Mg-Al-CO 3LDHs 的XRD 谱[37]Fig.4㊀XRD patterns of Mg-Al-CO 3LDHs under different treatment methods [37]LDHs 的层状结构和离子交换等特性,使其具有显著的离子吸附性能㊂其中,LDHs 的阴离子吸附能力较CLDHs 弱,可归因于焙烧处理后的LDHs 活性中心增加,对介质溶液中阴离子和水分的吸附能力增强[36],图4为Mg-Al-CO 3LDHs 在不同处理方法下的物相分析,可观察到原状LDHs(即O-LDHs)表现出良好的结晶状态,在经过600ħ的高温焙烧后,LDHs 层状结构发生改变,LDHs 衍射峰由MgO 所取代㊂而经过再水化过程的焙烧水滑石R-LDHs 的衍射峰型和角度与O-LDHs 基本一致[37]㊂离子交换平衡不仅受LDHs 的类型㊁摩尔比和制备方法等因素的影响,还受介质溶液浓度㊁温度和pH值的影响[38-39]㊂目前,众多学者采取吸附等温线确定平衡吸附量㊂最常用的平衡吸附模型分别为Langmiur 和Freundlich 模型,其中,Langmuir 等温线是均匀吸附表面的单分子吸附模型㊂Zuo 等[40]㊁Xu 等[41-42]㊁Chen 等[43]㊁Yoon 等[44]研究均表明Langmiur 吸附等温线模型与试验数据的拟合效果好,可归因于LDHs 的电中性,每个吸附位点只能固定一个氯离子,等温吸附发生在均匀表面㊂研究结果表明,插层为NO -3的LDHs 氯离子吸附量普遍大于插层为NO -2的LDHs 氯离子吸附量,这是由于NO -2插层的LDHs 基底间距小于NO -3插层的LDHs,这使得NO -2插层的LDHs 进行阴离子交换相对困难[41]㊂此外,在同一介质溶液中进行吸附时,共沉淀法吸附效率高于焙烧还原法和水热法㊂对于焙烧还原法,这可能是焙烧过程中温度对结构的破坏引起的㊂水热法吸附量低的原因在于交换过程受产物中的杂质和环境中CO 2的影响㊂当溶液中存在其他竞争性阴离子(如SO 2-4㊁CO 2-3),且浓度高于氯离子浓度时,竞争性阴离子会干扰氯离子吸附,对LDHs 的吸附氯离子性能产生不利影响[42-43]㊂不同类型LDHs 氯离子吸附量见表1㊂表1㊀不同类型LDHs 氯离子吸附量Table 1㊀Chloride ion adsorption capacity of different types of LDHsLDHs type Molar ratio of M 2+to M 3+Synthetic method Solution composition pH value Experimental condition Adsorption capacity /(mmol㊃g -1)Ref.MgAl-NO 21ʒ1Coprecipitation NaCl 7Room temperature 3.61[40]MgAl-NO 23ʒ1Calcination-rehydration NaCl 7Room temperature 1.6[40]MgAl-NO 21ʒ1Hydrothermal NaCl 7Room temperature 2.55[40]MgAl-NO 22ʒ1Ion exchange Ca(OH)2+NaCl 12.625ħN 2atmosphere 2.51[41]MgAl-NO 32ʒ1Coprecipitation Ca(OH)2+NaCl 12.625ħN 2atmosphere 3.61[41]MgAl-NO 32ʒ1Coprecipitation NaCl +NaOH 1325ħN 2atmosphere 2.74[42]MgAl-NO 32ʒ1Coprecipitation NaCl +NaOH +Na 2SO 41325ħN 2atmosphere 0.65[42]CaAl-NO 32ʒ1Coprecipitation NaCl 7Room temperature 25ħ 3.38[43]CaAl-NO 32ʒ1Coprecipitation Cement mortar 4.5[43]MgAl-pAB 1ʒ1Calcination-rehydration Cement paste Room temperature 20ħ 4.31[44]2㊀不同类型水滑石的氯离子吸附性能2.1㊀焙烧改性水滑石基于LDHs 的阴离子交换㊁记忆效应以及结构重建等特性,可以推断出,与LDHs 相比,经过高温焙烧后的CLDHs 的吸附氯离子性能更优㊂这归因于CLDHs 层间出现较多的活性中心,可吸附较多的氯离子,从而第4期周丽娜等:水滑石复合水泥基材料氯离子吸附能力的研究进展1141㊀完成层状结构的重建[44]㊂图5(a)和(b)分别为焙烧改性原状水滑石CLDHs 和在水泥基材料中完成结构重建的LDHs 的SEM 照片㊂从微观形貌上看,前者样品颗粒边缘尖锐锋利,而后者在水泥基质中完成离子交换后,具有明显的片状结构且层层堆叠在一起㊂图5㊀不同环境中水滑石在水泥基质中的SEM 照片[44]Fig.5㊀SEM images of LDHs in different environment conditions in cement paste[44]图6㊀钢筋在模拟孔隙液及CLDHs 处理前后的Nyquist 图[46]Fig.6㊀Nyquist plots for rebar in simulated pore solution with /without CLDHs [46]混凝土中掺入的CLDHs 吸附氯离子,可提高钢筋表面的氯离子阈值,从而延缓钢筋锈蚀开始的时间㊂图6为钢筋在模拟孔隙液(simulated pore solution,SPS)及CLDHs 处理前后的Nyquist 图,唐聿明等[45]和牛乐[46]发现经CLDHs 处理的孔隙液,电容弧直径下降明显,这表明处理后的孔隙液对钢筋的侵蚀作用减小㊂水滑石在水泥基材料体系与模拟孔溶液中发挥的固氯作用存在不一致的结论㊂CLDHs 对氯离子的吸附是利用其结构记忆效应的化学吸附,胡静等[47]和张琳[48]针对MgAl-CO 3CLDHs,在模拟孔隙液中通过吸附热力学对其吸附氯离子机理进行基础研究㊂在此基础上,张琳进一步探究了CLDHs 在水泥净浆中的固氯能力和机理,结果表明,与对照组相比,掺CLDHs 的试验组固氯能力更好,值得关注的是,CLDHs 固氯能力随养护龄期的增长呈增长趋势,且固氯能力与氯离子浓度呈正相关㊂混凝土中的氯离子可分为结合氯离子和自由氯离子,一般认为自由氯离子会破坏钢筋界面的钝化膜[49]㊂王佩[50]研究表明,掺入的CLDHs 填充水泥基材料的孔隙,其密实度提升,抗冻能力增强,固氯能力随LDHs 掺量的增加而提高㊂基于LDHs 的离子交换功能,段平等[51]㊁Ma 等[52]和Shui 等[37]评估了不同处理方式得到图7㊀掺LDHs 混凝土氯离子扩散系数[58-60]Fig.7㊀Chloride diffusion coefficient of concrete mixed with LDHs [58-60]的CLDHs 混凝土的抗碳化性能㊂上述研究结果表明,CLDHs 的吸附氯离子性能优于LDHs㊂Liu 等[53]验证了这一结论㊂作为替代水泥的外掺材料,LDHs 的掺量须结合水泥基材料拌合物的工作性能进行调节和控制㊂冯跃等[54]㊁Wang 等[55]和宋学锋等[56]分别针对水滑石复合水泥基材料的氯离子侵蚀和碳化问题进行了相应研究㊂在不影响砂浆整体强度的条件下,CLDHs 的最佳掺量控制在胶凝材料质量的1%~3%㊂过量掺入LDHs 会影响水泥水化进程,对水泥基材料的孔隙结构和强度造成不利影响,从而影响水泥基材料抗氯离子渗透的能力[57]㊂图7为学者们采用快速氯离子迁移1142㊀水泥混凝土硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷法表征不同LDHs 掺量下的水泥基材料的氯离子吸附能力[58-60]㊂由图7可知,混凝土中氯离子迁移系数D RCM 随LDHs 的掺量的增加呈先减小后增大的趋势㊂氯离子迁移系数减小的原因在于LDHs 的掺入降低混凝土基体孔隙率,提高其抗氯离子渗透能力,而LDHs 比表面积较大,拌和时吸附水泥基体中的水分,过量掺入使水化反应不充分,Ca(OH)2的生成量减少,对混凝土的孔隙结构产生不利影响,进而导致抗氯离子渗透能力降低㊂图8为段平[36]㊁马军涛[58]㊁Ma 等[61]㊁Wang 等[62]采用NT-Build 443法测定氯盐环境下不同LDHs 掺量混凝土氯离子浓度分布情况㊂由图8可知,复掺LDHs 混凝土内部不同深度氯离子浓度均呈递减趋势,且较对照组浓度低㊂呈这种变化趋势的原因:一方面是LDHs 的掺入会减少混凝土内部的毛细孔数量,改善混凝土的微观结构,阻碍氯离子通过孔隙向混凝土内部扩散的进程;另一方面是LDHs 会吸附部分氯离子,延缓了氯离子向内部渗透的进程㊂图8㊀氯盐环境下掺LDHs 试块的氯离子分布曲线[36,58,61-62]Fig.8㊀Chloride ion distribution curves of specimens mixed with LDHs in chloride salt environment [36,58,61-62]2.2㊀阻锈阴离子插层水滑石阻锈阴离子吸附效能取决于其自身同外界氯离子之间的亲和力顺序[63-64],即LDHs 层间阴离子亲和力越低,越容易被外界氯离子所代替,其固氯能力就越强,对钢筋防腐性能和混凝土耐久性能提升效果就越显著㊂因此,国内外学者通过不同方法合成具有阻锈能力或缓蚀能力的LDHs,探讨其吸附氯离子的能力㊂其中,可发现插层多为NO -3或NO -2㊂从XRD 的角度对插层分别为NO -3和NO -2的LDHs 的氯离子吸附能力进行研究,如图9所示㊂由图可知,二者在氯离子吸附前后,均存在明显的LDHs 衍射特征峰,这表明样品结晶良好㊂从图9(a)可以看出,在氯离子吸附前后,LDHs-NO -3基底间距从0.8717nm 降低至0.7890nm,这是由于氯离子直径小于NO -3的直径;从图9(b)可以看出,在氯离子吸附前后,LDHs-NO -2基底间距从0.7702nm 略升至0.7771nm,这是由于氯离子与NO -2在直径上较相近㊂因此,在进行离子交换时,LDHs-NO -3较LDHs-NO -2相对容易,且前者的氯离子吸附量大于后者㊂Yang 等[60]㊁Cao 等[65]㊁Chen 等[66]和Yang 等[67]制备了插层阴离子具有缓蚀效果的LDHs,均可在钢筋混凝土中发挥双重效应,捕捉水泥基材料中的游离氯离子,同时向水泥基材料中释放阻锈阴离子,有效控制混凝土中钢筋的锈蚀,但是须考虑LDHs 的掺量,Yang 等[67]指出过量使用LDHs 会增加混凝土的孔隙率,为氯离子的传输提供途径㊂ZnAl-NO 2LDHs 缓蚀性能优异,其对钢筋的缓蚀效率受pH 值的影响较显著㊂Gomes 等[68]认为孔隙液在中性pH 值条件下,ZnAl-NO 2LDHs 具有良好的氯捕集能力,但随着pH 值的增加,氯捕集能力降低,这是由于孔隙液中的OH -会占据LDHs 结构中的结合位点㊂Cao 等[69]认为孔隙液在碱性pH 值条件下,插层离子的释放不仅受OH -对LDHs 的亲和力的影响,也受LDHs 部分溶解的影响,但目前,关于LDHs 在碱性溶液中发生部分溶解对缓蚀率的影响还未开展系统研究㊂此外,田玉琬等[70]认为可根据孔隙液中氯离子浓度智能释放NO -2,高碱环境下的释放效果主要受氯离子控制㊂第4期周丽娜等:水滑石复合水泥基材料氯离子吸附能力的研究进展1143㊀图9㊀氯离子吸附前后LDHs 的XRD 谱[41]Fig.9㊀XRD patterns of LDHs before and after chloride adsorption [41]2.3㊀复合防御体系水滑石LDHs 在水泥基材料中的形成机制包括两种:受掺合料中镁铝氧化物相对含量影响的MgAl-LDHs 和具有水化产物AFm 相结构的CaAl-LDHs [71]㊂Kayali 等[72]通过快速氯离子渗透法㊁XRD 等测试方法对掺有矿渣的混凝土试样进行研究,发现LDHs 作为一种重要的水化产物在矿渣混凝土中生成,并显示出优越的固氯能力,以延缓混凝土结构中的钢筋锈蚀㊂LDHs 吸附侵蚀阴离子,复合掺入矿物掺合料,发挥二者的叠加效应,使胶凝材料的颗粒级配更为合理,在微集料效应作用下,完善混凝土内部微观结构,显著提升混凝土综合性能㊂部分学者通过矿物掺合料与LDHs 复掺提高混凝土的抗氯离子侵蚀能力及耐久性,并取得了一定的成果㊂图10㊀复合体系在氯盐环境下的氯离子分布曲线[58,73]Fig.10㊀Chloride ion distribution curves of composite system in chloride salt environment [58,73]混凝土抗氯离子侵蚀性能测试可按照NTBuild-443非稳态自然扩散法进行,马军涛[58]和陈宇轩等[73]采用此法研究了LDHs 与偏高岭土(metakaolin,MK)为主的矿物掺合料复合使用,对混凝土抗氯离子渗透性能的改善情况,并得出氯离子扩散浓度同扩散距离二者之间的规律㊂图10为二者采用NTBuild-443的数据对比,由图可见,相较于对照组,复合体系下的LDHs提升了混凝土抗氯离子侵蚀的能力㊂LDHs 材料主要通过煅烧处理后的结构重建过程和离子交换实现对氯离子的吸附,掺加改性剂的混凝土可进一步改善其抗氯离子渗透性,提高混凝土的抗氯离子侵蚀能力㊂陈国玮等[74]发现LDHs 材料可有效吸附外界侵入的SO 2-4,而MK 在混凝土中的火山灰特性可促进水泥的水化过程,改善混凝土内部的显微结构㊂3㊀结语与展望本文从LDHs 结构特性角度出发,综述了不同类型LDHs 体系对氯离子吸附能力的研究现状,对于探明复掺LDHs 水泥基材料体系的固氯能力和延缓钢筋锈蚀的机理提供了理论基础,得到的主要结论如下:1)LDHs 的氯离子吸附能力受制备工艺的影响,通过吸附等温模型评估了不同制备方法所得的LDHs 氯离子吸附量㊂其中,Langmiur 模型对试验数据的拟合效果最好,且共沉淀法制备的LDHs 氯离子吸附量优于水热法和焙烧还原法㊂2)水泥基材料孔隙液的pH 值和氯离子浓度对LDHs 的氯离子吸附性能有一定的影响㊂当孔隙液在高碱环境下或存在其他竞争性离子,且浓度高于氯离子浓度时,竞争性离子会率先占据水滑石层间的结合位1144㊀水泥混凝土硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷点,影响LDHs对孔隙液中氯离子的捕捉㊂3)LDHs的氯离子吸附能力主要取决于其独特的层状结构和离子交换性质㊂CLDHs利用记忆效应,在结构重建的过程中完成对水泥基材料孔隙液中氯离子吸附,阻锈阴离子插层LDHs利用层间离子交换功能,在捕捉氯离子的同时,释放具有缓蚀效果的阴离子,高温焙烧处理的水滑石对氯离子吸附效果更好;复合防御体系LDHs发挥叠加效应,在LDHs吸附机理基础上,从改善孔隙结构的角度改善氯离子侵蚀㊂然而,由于实际试验的局限,对不同种类的LDHs的吸附效果难以进行精确的量化分析㊂目前,关于LDHs在碱性孔隙液中发生部分溶解对缓蚀离子的释放速率影响,以及不同矿物掺合料与LDHs复合对水泥基材料的氯离子吸附效应和机理还需进一步系统研究㊂参考文献[1]㊀杨长辉,晏㊀宇,欧忠文.偏高岭土水泥净浆结合氯离子性能的研究[J].混凝土,2010(10):1-3+7.YANG C H,YAN Y,OU Z W.Capability of cement paste binding chloride ions with metakaolin as admixture[J].Concrete,2010(10):1-3+ 7(in Chinese).[2]㊀TANG S W,YAO Y,ANDRADE C,et al.Recent durability studies on concrete structure[J].Cement and Concrete Research,2015,78:143-154.[3]㊀OTIENO M,BEUSHAUSEN H,ALEXANDER M.Chloride-induced corrosion of steel in cracked concrete-part I:experimental studies underaccelerated and natural marine environments[J].Cement and Concrete Research,2016,79:373-385.[4]㊀XIONG C S,LI W H,JIN Z Q,et al.Preparation of phytic acid conversion coating and corrosion protection performances for steel in chlorinatedsimulated concrete pore solution[J].Corrosion Science,2018,139:275-288.[5]㊀JIN Z Q,CHANG H L,DU F Y,et al.Influence of SAP on the chloride penetration and corrosion behavior of steel bar in concrete[J].Corrosion Science,2020,171:108714.[6]㊀CHEN C,JIANG L H,GUO M Z,et al.Effect of sulfate ions on corrosion of reinforced steel treated by DNA corrosion inhibitor in simulatedconcrete pore solution[J].Construction and Building Materials,2019,228:116752.[7]㊀GOMES C,MIR Z M,BASTOS A C,et al.Effect of layered double hydroxides on the performance and service life of reinforced concrete[C]//Conference on Durable Concrete for Infrastructure under Severe Conditions-Smart Admixtures,Self-Responsiveness and Nanoadditions,Ghent, Belgium,September,2019,10-11.[8]㊀MIR Z M,BASTOS A,HÖCHE D,et al.Recent advances on the application of layered double hydroxides in concrete-a review[J].Materials(Basel,Switzerland),2020,13(6):1426.[9]㊀TATEMATSU H,SASAKI T.Repair materials system for chloride-induced corrosion of reinforcing bars[J].Cement and Concrete Composites,2003,25(1):123-129.[10]㊀RAKI L,BEAUDOIN J J,MITCHELL yered double hydroxide-like materials:nanocomposites for use in concrete[J].Cement and ConcreteResearch,2004,34(9):1717-1724.[11]㊀HONG S X,QIN S F,LIU Z M,et al.Enhanced corrosion resistance and applicability of Mg/Al-CO2-3layered double hydroxide film on Q235steel substrate[J].Construction and Building Materials,2021,276:122259.[12]㊀CHEN M Z,WEI Y N,ZHENG H B,et al.Ca-LDH-modified cementitious coating to enhance corrosion resistance of steel bars[J].Journal ofBuilding Engineering,2022,51:104301.[13]㊀OESTREICHER V,JOBBÁGY M,REGAZZONI A E.Halide exchange on Mg(II)-Al(III)layered double hydroxides:exploring affinities andelectrostatic predictive models[J].Langmuir:the ACS Journal of Surfaces and Colloids,2014,30(28):8408-8415.[14]㊀SJÅSTAD A O,ANDERSEN N H,VAJEESTON P,et al.On the thermal stability and structures of layered double hydroxidesMg1-x Al x(OH)2(NO3)x㊃m H2O(0.18ɤxɤ0.38)[J].European Journal of Inorganic Chemistry,2015,2015(10):1775-1788. [15]㊀YANG Z X,FISCHER H,CEREZO J,et al.Aminobenzoate modified MgAl hydrotalcites as a novel smart additive of reinforced concrete foranticorrosion applications[J].Construction and Building Materials,2013,47:1436-1443.[16]㊀孙㊀远.不同形貌水滑石及其焙烧产物的离子吸附性能研究[D].哈尔滨:哈尔滨工业大学,2019.SUN Y.Research on ion adsorption properties of hydrotalcite with different morphologies and its calcined products[D].Harbin:Harbin Institute of Technology,2019(in Chinese).[17]㊀BALONIS M,GLASSER F P.Calcium nitrite corrosion inhibitor in Portland cement:influence of nitrite on chloride binding and mineralogy[J].Journal of the American Ceramic Society,2011,94(7):2230-2241.[18]㊀YE H L.Autogenous formation and smart behaviors of nitrite-and nitrate-intercalated layered double hydroxides(LDHs)in Portland cement-metakaolin-dolomite blends[J].Cement and Concrete Research,2021,139:106267.[19]㊀COSTA D G,ROCHA A B,SOUZA W F,et parative structural,thermodynamic and electronic analyses of Zn-Al-A n-hydrotalcite-like㊀第4期周丽娜等:水滑石复合水泥基材料氯离子吸附能力的研究进展1145 compounds(A n-=Cl-,F-,Br-,OH-,CO2-3or NO-3):an ab initio study[J].Applied Clay Science,2012,56:16-22.[20]㊀NEVILLE A.Chloride attack of reinforced concrete:an overview[J].Materials and Structures,1995,28(2):63-70.[21]㊀JUSTNE H.A review of chloride binding in cementitious systems[J].Nordic Concrete Research,1998,21:48-63.[22]㊀PROVIS J L,BERNAL S A.Geopolymers and related alkali-activated materials[J].Annual Review of Materials Research,2014,44:299-327.[23]㊀BERNAL S A,SAN NICOLAS R,MYERS R J,et al.MgO content of slag controls phase evolution and structural changes induced by acceleratedcarbonation in alkali-activated binders[J].Cement and Concrete Research,2014,57:33-43.[24]㊀许㊀闯,张祖华,陈慕翀,等.层状双金属氢氧化物在水泥混凝土中的形成㊁作用机制及应用[J].材料导报,2022,36(11):99-105.XU C,ZHANG Z H,CHEN M C,et al.Formation,interaction mechanisms and application of layered double hydroxides in cement concrete[J].Materials Reports,2022,36(11):99-105(in Chinese).[25]㊀VACCARI yered double hydroxides:present and future[J].Applied Clay Science,2002,22(1/2):75-76.[26]㊀DUAN X,EVANS D yered double hydroxides:application of layered double hydroxides[J].Structure and Bonding,2006,119:193-223.[27]㊀朱㊀清,李成胜,周建成.镁铝水滑石的共沉淀法制备及表征[J].化工时刊,2017,31(4):1-3+17.ZHU Q,LI C S,ZHOU J C.The Co-precipitation preparation and properties of inorganic hydrotalcite[J].Chemical Industry Times,2017,31(4):1-3+17(in Chinese).[28]㊀CAO L,GUO J T,TIAN J H,et al.Preparation of Ca/Al-layered double hydroxide and the influence of their structure on early strength ofcement[J].Construction and Building Materials,2018,184:203-214.[29]㊀LIU Z P,MA R Z,OSADA M,et al.Synthesis,anion exchange,and delamination of Co-Al layered double hydroxide:assembly of the exfoliatednanosheet/polyanion composite films and magneto-optical studies[J].Journal of the American Chemical Society,2006,128(14):4872-4880.[30]㊀张骄佼,田森林,周㊀键.镁铝水滑石的合成与应用研究进展[J].材料导报,2013,27(7):144-148.ZHANG J J,TIAN S L,ZHOU J.Study on synthesis and application of Mg-Al hydrotalcite[J].Materials Review,2013,27(7):144-148(in Chinese).[31]㊀吴㊀波.阻锈阴离子插层改性水滑石的制备及其在水泥砂浆中的应用[D].深圳:深圳大学,2019.WU B.Preparation of inhibitor ions intercalation modified hydrotalcite and its application in cement mortar[D].Shenzhen:Shenzhen University, 2019(in Chinese).[32]㊀CHEN M Z,WU F,YU L W,et al.Chloride binding capacity of LDHs with various divalent cations and divalent to trivalent cation ratios indifferent solutions[J].CrystEngComm,2019,21(44):6790-6800.[33]㊀杨成梅,谢㊀竺.水滑石/粉煤灰对注浆早强性能的影响研究[J].化学与粘合,2021,43(1):48-51.YANG C M,XIE Z.Research on the effect of hydrotalcite/fly ash on the early strength of cement grouting[J].Chemistry and Adhesion,2021, 43(1):48-51(in Chinese).[34]㊀VON HOESSLE F,PLANK J,LEROUX F.Intercalation of sulfonated melamine formaldehyde polycondensates into a hydrocalumite LDHstructure[J].Journal of Physics and Chemistry of Solids,2015,80:112-117.[35]㊀YANG Z,FISCHER H,CEREZO J,et al.Modified hydrotalcites for improved corrosion protection of reinforcing steel in concrete-preparation,characterization,and assessment in alkaline chloride solution[J].Materials and Corrosion,2016,67(7):721-738.[36]㊀段㊀平.层状双氢氧化物改善混凝土耐久性能的机理及其应用研究[D].武汉:武汉理工大学,2014.DUAN P.Research on modification mechanism and the application of layered double hydroxides for durability of concrete[D].Wuhan:Wuhan University of Technology,2014(in Chinese).[37]㊀SHUI Z H,YU R,CHEN Y X,et al.Improvement of concrete carbonation resistance based on a structure modified layered double hydroxides(LDHs):experiments and mechanism analysis[J].Construction and Building Materials,2018,176:228-240.[38]㊀HANG T T X,TRUC T A,DUONG N T,et yered double hydroxides as containers of inhibitors in organic coatings for corrosion protectionof carbon steel[J].Progress in Organic Coatings,2012,74(2):343-348.[39]㊀NAKAYAMA H,WADA N,TSUHAKO M.Intercalation of amino acids and peptides into Mg-Al layered double hydroxide by reconstructionmethod[J].International Journal of Pharmaceutics,2004,269(2):469-478.[40]㊀ZUO J D,WU B,LUO C Y,et al.Preparation of MgAl layered double hydroxides intercalated with nitrite ions and corrosion protection of steelbars in simulated carbonated concrete pore solution[J].Corrosion Science,2019,152:120-129.[41]㊀XU J X,SONG Y B,ZHAO Y H,et al.Chloride removal and corrosion inhibitions of nitrate,nitrite-intercalated MgAl layered double hydroxideson steel in saturated calcium hydroxide solution[J].Applied Clay Science,2018,163:129-136.[42]㊀XU J X,TAN Q P,MEI Y J.Corrosion protection of steel by Mg-Al layered double hydroxides in simulated concrete pore solution:effect ofSO2-4[J].Corrosion Science,2020,163:108223.[43]㊀CHEN Y X,SHUI Z H,CHEN W,et al.Chloride binding of synthetic Ca-Al-NO3LDHs in hardened cement paste[J].Construction andBuilding Materials,2015,93:1051-1058.[44]㊀YOON S,MOON J,BAE S,et al.Chloride adsorption by calcined layered double hydroxides in hardened Portland cement paste[J].MaterialsChemistry and Physics,2014,145(3):376-386.。

dft计算在燃料电池中的应用

dft计算在燃料电池中的应用

dft计算在燃料电池中的应用英文回答:DFT (Density Functional Theory) is a powerful computational method used in various fields of science and engineering, including the study of fuel cells. Fuel cells are electrochemical devices that convert the chemical energy of a fuel, such as hydrogen, into electrical energy. Understanding the behavior of fuel cell materials at the atomic level is crucial for improving their efficiency and performance.One of the key applications of DFT in fuel cell research is the prediction and optimization of catalyst materials. Catalysts play a critical role in fuel cell reactions by facilitating the electrochemical reactionsthat occur at the electrodes. DFT calculations can be used to investigate the electronic structure and reactivity of different catalyst materials, providing insights into their catalytic activity and selectivity. By analyzing the energyprofiles of the reaction pathways, researchers can identify the most promising catalysts for specific fuel cell reactions.Another important application of DFT in fuel cell research is the study of fuel cell membranes. Membranes are essential components of fuel cells as they separate thefuel and oxidant streams while allowing the transport ofions necessary for the electrochemical reactions. DFT calculations can be used to understand the transport properties of different membrane materials, such as proton conductivity and oxygen permeability. This information can guide the development of new membrane materials with improved performance and durability.Furthermore, DFT can also be used to investigate the interactions between fuel cell materials and impurities or contaminants. For example, DFT calculations can be employed to study the adsorption of carbon monoxide (CO) on the catalyst surface, a common impurity in fuel cell feedstocks. By understanding the adsorption behavior of CO, researchers can design catalyst materials that are more resistant topoisoning and improve the overall stability and longevity of the fuel cell system.In summary, DFT calculations have a wide range of applications in fuel cell research, including catalyst design, membrane optimization, and understanding material interactions. By providing atomic-level insights into the properties and behavior of fuel cell materials, DFT can contribute to the development of more efficient and durable fuel cell systems.中文回答:DFT(密度泛函理论)是一种在科学和工程的各个领域中广泛应用的强大计算方法,包括燃料电池的研究。

胶体对砷的吸附作用及其影响因素研究现状与进展-黄臣臣

胶体对砷的吸附作用及其影响因素研究现状与进展-黄臣臣

胶体对砷的吸附作用及其影响因素研究现状与进展(黄臣臣2016021377)摘要:砷因其具有极强的毒性和致癌作用引起全世界的关注。

土壤胶体由于其独特的性质,是土壤环境中重要的污染物吸附和运输载体,对砷的分配和运移起到关键的作用。

因此,本文主要从土壤胶体的基本性质;不同形态As的吸附;影响As吸附的因素,如pH、Eh、土壤有机碳,重点分析共存离子对As的吸附作用;As吸附研究中应用的技术和模型,如傅里叶红外光谱、表面络合模型等几个方面,对共存离子对砷在土壤胶体上吸附的影响进行论述。

由于实验控制条件的差异,各个因素对砷在胶体上的吸附影响研究结果不同,大部分学者认为磷酸根、硅酸根、硝酸根等共存离子会与磷酸产生竞争作用而降低其吸附量,但仍有研究表明,共存离子对胶体结合态砷没有影响,由此可见,要清楚其中缘由,还需要结合室内室外、微观及宏观实验进一步深入研究。

关键词:土壤胶体砷共存离子竞争吸附红外光谱Abstract:As is of concern byall over the world due to its highly toxic and carcinogenic . Soil colloids is an important pollutants adsorption and carrier in soil environmentbecause of its unique characteristics, which play a key role in the arsenic distribution and migration. Therefore, this article mainly discuss the basic properties of soil colloid, adsorption of different forms of As. The factors that influence the adsorption of As, such as pH, Eh, soil organic carbon, mainly focuses on the analysis of coexisting ions on As adsorption. Moreover, topics for technology and model application in the study of arsenic adsorption are also given, such as Fourier transform infrared spectroscopy and surface complexation. The essay tries to expound the effects of concomitant ions on the As adsorption process in soils colloid from the above-mentioned several aspects. Due to the differences of the experimental conditions, the influence of various factors on the adsorption of arsenic on colloids is different. Most scholars believe that the phosphate, silicate, nitrate and phosphate coexistions will have competitive effects and reduce its adsorption capacity, but coexisting ions have been found to be limited or insignificant. Thus, it is necessary to do some further research combine indoor and outdoor, micro and macro experiments tounderstand the reasons.Keywords: soil colloids, arsenic, coexisting ions, competitive adsorption, infrared spectroscopy1.引言砷具有极强的毒性和致癌作用,无机As(Ⅲ)和As(Ⅴ)被认为是一级致癌物质。

木质材料对铜离子吸附的研究进展

木质材料对铜离子吸附的研究进展

第49卷第2期2021年1月广㊀州㊀化㊀工Guangzhou Chemical IndustryVol.49No.2Jan.2021木质材料对铜离子吸附的研究进展∗周㊀彤,梁建军,王㊀磊,刘义章,汪蓓蓓(滁州职业技术学院,安徽㊀滁州㊀239000)摘㊀要:木质材料主要成分为木质素㊁纤维素等物质,其表面含有大量的羟基㊁羰基等活性基团,这些活性基团含有可以与Cu 2+空轨道配位的孤对电子对㊂通过制备活性炭和化学改性的方式能增加木质材料的比表面积和吸附位点,因而可显著提高吸附剂对Cu 2+的吸附性能㊂同时这些木质材料凭借来源广泛㊁价格低廉㊁可再生㊁无污染等优势成为吸附法的最佳原材料㊂本文综述了国内天然木质材料㊁改性木质材料在去除Cu 2+方面的研究进展,为木质材料的应用研究提供参考㊂关键词:吸附;锯末;铜离子;改性㊀中图分类号:X703.1㊀㊀㊀㊀㊀文献标志码:A㊀㊀㊀㊀文章编号:1001-9677(2021)02-0021-03㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀∗基金项目:滁州职业技术学院2019年校级科研一般项目(YJY -2019-11);滁州职业技术学院2020年校级科研重点项目(YJZ -2020-03)㊂第一作者:周彤(1990-),女,硕士研究生,助教,从事环境水污染处理研究㊂Research Progress on Adsorption of Cu 2+by Wood Materials ∗ZHOU Tong ,LIANG Jian -jun ,WANG Lei ,LIU Yi -zhang ,WANG Bei -bei (Chuzhou Vocational and Technical College,Anhui Chuzhou 239000,China)Abstract :The main components of wood materials are lignin,cellulose and other substances,and its surface contains a large number of active groups such as hydroxyl and carbonyl groups.These active groups contain lone pairs of electrons that can coordinate with the empty Cu 2+orbitals.The preparation of activated carbon and chemical modification can increase the specific surface area and adsorption sites of wood materials,thus it can significantly improve the adsorption performance of the adsorbent for Cu 2+.At the same time,these wooden materials have become the best raw materials for the adsorption by virtue of their wide -ranging sources,low price,renewable,and pollution -free advantages.The research progress on application of natural wood materials,and its modification materials on absorption of Cu 2+were summarized,in order to provide references for the application research of wood materials.Key words :absorption;sawdust;copper ions;modified正所谓,水是生命的源泉㊂人类的一切生产活动都离开水㊂我国是一个人口大国,同时也是个淡水资源匮乏的国家㊂在淡水资源匮乏的同时,我国的水污染情况也不容乐观㊂水污染不仅造成了数额巨大的经济损失,更是直接危害了人们的饮用水安全[1]㊂水俣病和痛痛病让人类第一次认识到重金属污染的危害,也让学者将注意力吸引到重金属污染的处理上㊂重金属是指密度大于5kg /m 3以上的金属[2],大约有45种㊂我们通常所说的重金属是从环境污染角度分类的,指的是具有生物毒性的金属如汞㊁镉㊁铅㊁铬㊁类金属砷等[3]㊂当少量含Cu 2+的污水进入水体,由于水体有一定的自净能力,对水体中生物影响不大㊂但当能产生重金属Cu 2+的行业如采矿业㊁电镀㊁造纸㊁电池㊁化肥㊁皮革㊁农药等将大量的含Cu 2+废水排入自然界中,就可能造成水体污染㊂重金属离子具有生物不可降解性,并能在生物体内蓄积,因而危害生物健康㊂目前,水体中Cu 2+的除去方法主要有化学沉淀法㊁离子交换法㊁电化学法㊁吸附法[4]等㊂化学沉淀法和电化学法在使用时,需要较高浓度的Cu 2+,同时产生的化学污泥还可能存在二次污染等问题㊂吸附法因对污染物的浓度要求不高,方法简单㊁容易操作等特点,在重金属去除方面越来越受到重视㊂同时,还可以利用化学改性的方法,将特定的官能团引入吸附剂,来提高吸附性能或者选择性地去除某一类污染物㊂林业生产为人类社会提供优质木材的同时也产生了大量木材剩余物如锯末㊁木屑㊁枝条㊁树皮等㊂据报道木材的利用率仅有10%㊂如何利用好剩余的90%是全人类需要解决的难题㊂这些废弃物可于生产工业酒精㊁活性炭,制备燃烧棒,提取化肥等㊂此外,这些废弃物凭借来源广泛㊁价格低廉㊁无污染等优势,还可用做吸附法的原材料㊂锯末和木屑是典型的林业生产的废弃物,其主要成分为木质素㊁纤维素等物质,故其表面含有大量的羟基㊁羰基等活性基团,是一种应用前景广泛的重金属吸附剂附[5-7]㊂这些木质材料既可直接用作吸附剂原料也可通过化学改性㊁制备活性炭等方式来提高它的吸附性能㊂研究木质材料吸附机理有利于科研工作者掌握其吸附的本质,在改性时针对目标污染物有目的性地增加木质材料的表面特征官能团,进而提高吸附性能㊂天然木质材料其表面含有大量的羟基㊁羰基等活性基团,这些基团可以与重金属Cu 2+配22㊀广㊀州㊀化㊀工2021年1月位㊂如果在配位的过程中有其他离子析出时,那么天然木质材料的吸附机理除配位作用外,还存在离子交换㊂木质材料活性炭相比木质材料表面更粗糙㊁孔径大㊁比表面积大,故木质材料活性炭吸附Cu2+的机理主要为物理吸附,此时的吸附作用力主要为范德华力㊂化学改性木质材料的吸附机理因改性方法的不同而不同㊂氨基改性木质材料的吸附机理主要是化学吸附,即氨基上N原子和Cu2+的配位作用㊂酸改性天然木质材料可以增加其表面羟基的含量,利用配位作用增加吸附性能㊂碱改性天然木质材料经过碱处理后经过一系列物理化学变化后,木质材料结构疏松㊁孔径变大,同时碱可以提供㊃OH,故在物理吸附和化学吸附的双重作用下,对Cu2+吸附性能增加显著㊂无论是哪种改性方法,其吸附机理都不是单一的,只是改性方法的不同使得某一种机理为主导㊂这也从另一方面说明天然木质材料的吸附较某种单一组分的吸附剂吸附过程更加复杂㊂1㊀利用天然木质材料特定组成去除水体中的Cu2+㊀㊀锯末的骨架结构成分主要有纤维素㊁木质素㊁半纤维素等,内部表面富含羟基㊁羰基㊁甲氧基㊁羧基等基团[8]㊂木屑中含有大量的官能团如羟基㊁羧基㊁氨基酸和木质酚,它们都能吸附部分阳离子[9]㊂这些木质材料因木材的种类不同,其主要成分及其含量有所差异,对Cu2+的吸附性能也有所不同㊂天然的木质对Cu2+有一定的吸附能力主要是材料表面含有羟基㊁羰基等活性基团,这些基团含有可以与Cu2+空轨道配位的孤对电子㊂刘晓凤等[10]利用海南椰子树木屑为原料制备出粒径大小不同的木屑粉末并研究了其对铅㊁铜㊁镉三种重金属离子的吸附行为,结果表明木屑吸附铜离子的吸附量比较小,饱和吸附量都没超过5mg/g㊂郜洪文[11]利用成材较快的竹子作为原材料来除去废水中的污染物Cu2+,研究表明竹锯末对Cu2+的吸附速度很快,吸附机制主要为离子交换,该研究为竹锯末综合利用提供新途径㊂孙杰等[12]用原松树锯末和柠檬酸钠改性锯末对重金属离子Cu2+的吸附行为进行研究,结果表明在最佳条件下原松树锯末㊁柠檬酸钠改性锯末对Cu2+的最大吸附量分别为3.31mg/g㊁5.75mg/g㊂由上可知,天然木质材料对Cu2+的吸附量较低,吸附量也就几个毫克每克,这在一定程度上限制了天然木质材料的相关研究应用㊂但是作为一种低廉㊁易得㊁可再生的农林废弃物,木然木质材料仍是一种潜在的吸附剂材料㊂2㊀利用比表面或空隙作用来去除水体中的Cu2+活性炭因比表面积大㊁多孔而具有良好的吸附性能,是目前商业应用最为广泛的吸附剂㊂木质活性炭是木质材料经过相关化学处理后,利用高温将其碳化,碳化后的木质材料表面粗糙㊁内部多孔㊁比表面积变大㊂根据活性炭制备过程中所使用原料的不同,可将其分为生物质活性炭㊁木质活性炭㊁合成材料活性炭以及煤质活性炭[13]㊂木屑㊁锯末因价格低廉㊁来源广泛㊁可再生㊁无污染是制作木质活性炭的绝佳原材料㊂限氧升温碳化法㊁热解法是制备木质材料活性炭的主要方法㊂黄宏霞等[14]以木屑为原料㊁磷酸为活化剂㊁硼酸为催化剂制备出化学改性木屑活性炭,并将此活性炭用于Cu2+溶液的吸附研究,活性炭的理论最大吸附量高达14225mg/kg㊂周丹丹等[15]利用松木屑为原料采用限氧升温碳化法,分别在200㊁300㊁400㊁500ħ四个温度进行碳化制备出4种生物炭,并将4种生物炭用于Cu2+的吸附研究㊂研究表明松木生物炭在热解温度为200ħ时对Cu2+的吸附性能最好㊂生物质热解是指在惰性气体保护的氛围下,对生物质进行加热,当达到生物质热解温度时,生物质分解得到气态挥发分和固态炭[16],通过冷凝的方式可以将气态挥发物变成焦油㊂目前在生物质热解主要采用直接热解和化学物质浸泡后再热解两种方式㊂毛明翠等[17]利用苹果树枝和梧桐木锯末为原料,采用450ħ热裂解法制备出生物炭,并用于铜离子的吸附研究㊂NaOH是最常用的化学物质浸泡液之一㊂蔡静[18]采用热解+ NaOH的方法对松木屑进行改性并探求了改性热解炭对Cu2+的吸附,结果表明改性热解炭在吸附时间和吸附性能都优于原木屑和直接热解炭㊂3㊀利用化学改性方法提高木质材料特定组成来除去水体中的Cu2+3.1㊀氨基改性木质材料将氨基引入木质材料的表面,即把对重金属离子能产生强配位作用的N原子引入木质材料的表面,可以利用N原子和Cu2+之间的强配位作用来提高木质材料的吸附性能㊂此外,在酸性条件下,氨基对一些阴离子染料也有很好的吸附性能㊂目前使用较多的氨基改性材料有二乙烯三胺㊁聚乙烯亚胺㊁乙二胺等㊂学者多利用环氧氯丙烷交联或直接反应等方式将氨基引入木质材料㊂刘梦珠等[19]对杨木屑用NaClO预处理并用二乙烯三胺进行氨基化改性制备出改性木屑,并研究了其对水中Cu(Ⅱ)/Cr(Ⅵ)的连续吸附研究㊂结果表明改性木屑对Cu(Ⅱ)的饱和吸附容量能达到195.70mg/g且吸附过程符合Langmuir模型,较原木屑吸附容量提高显著㊂王平等[20]直接利用木屑与三乙胺的反应来制备改性木屑,同时研究了其对废水中铜㊁镉等重金属离子的吸附情况㊂研究结果表明:吸附条件为温度为30ħ㊁pH为8㊁铜离子浓度小于等于400mg/kg时,改性木屑对铜离子去除率基本保持在99.99%㊂夏璐等[21]使用乙二胺改性的木屑黄原酸盐对水溶液中的Cu(II)㊁Ni(II)离子进行吸附研究,这里采用环氧氯丙烷交联的方式将氨基引入木屑中㊂该吸附过程为单层吸附且吸附过程可以用Langmuir模型和准二级动力学模型进行描述,计算得到吸附过程的活化能59.12kJ/mol,这些参数都表明该吸附过程为化学吸附㊂由上可知氨基改性木质材料较原木质材料对Cu2+的吸附性能提高显著,且吸附机理主要为化学吸附㊂这也与N原子和Cu2+之间的强配位作用相一致㊂3.2㊀酸改性木质材料酸改性木质材料主要是利用硫酸㊁磷酸㊁硝酸㊁醋酸等常见酸,采用浸泡㊁搅拌等方式来改变木质材料表面物质组成,进而提高木质材料的吸附性能㊂同时酸改性木质材料具有可燃性好的优势,也有利于采用热法回收木质材料上吸附的重金属[22]㊂杜玉辉等[23]在40ħ时将锯末与已知浓度的硝酸进行反应制备出酸改性锯末,并研究了锯末用量㊁Cu2+浓度㊁溶液pH㊁吸附时间等因素对吸附过程的影响㊂3.3㊀碱改性木质材料木质材料的主要成分纤维素可以与碱金属氢氧化物溶液发第49卷第2期周彤,等:木质材料对铜离子吸附的研究进展23㊀生一系列的物理化学变化,使得纤维素的润胀[24],比表面积增加显著㊂王卓然等[25]利用KOH溶液对松木屑进行碱改性制备出改性木屑,改性木屑对Cu2+的吸附效率较未改性前由72%提高到97%,吸附性能提高明显㊂阳康[26]用NaOH㊁异丙醇组合剂浸泡锯末制备出碱改性锯末,与天然锯末相比碱改性锯末受投量变化的影响较小㊂4㊀结㊀语天然木质材料成分主要有纤维素㊁木质素㊁半纤维素等,其表面和内部含有活性官能团羟基㊁羧基等,对水体中污染物Cu2+有一定的去除能力㊂学者通过制备木质材料活性炭来增大木质材料的比表面积,或通过化学改性的方式来增加木质材料表面的活性官能团进而增加吸附位点㊂木质活性炭制备主要介绍了限氧升温碳化法和热解法两种,其中木质材料热解后用化学物质浸泡吸附性能更好㊂酸改性㊁碱改性以及氨基改性是目前木质材料化学改性采用的主要方法㊂我国是一个农业大国,研究以天然木质材料或改性木质材料对水体中污染物的吸附行为,对我国农林废弃物的处理及循环利用具有积极的意义㊂农林废弃物对水体中污染物吸附性能的探讨是目前多个实验室共同研究的课题,但如何将此研究进行工业化大生产并保持一致的吸附性能仍是每个学者的研究方向和目标㊂水体中重金属污染物往往是多种重金属共存的场景,如何在提高木质材料对其的去除能力和增加选择性地回收某种金属离子方面仍有较大的研究空间㊂参考文献[1]㊀姚诚.水污染现状及其治理措施[J].污染防治技术,2009(2):87-90,96.[2]㊀武文会.腐殖酸对活性污泥吸附铜离子的影响研究[D].重庆:重庆大学,2015.[3]㊀林雪原,荆延德,巩晨,等.生物炭吸附重金属的研究进展[J].环境污染与防治,2014(5):83-87.[4]㊀王月月,李娟英,鲁玉渭,等.响应面优化玉米芯对Cu2+的吸附[J].上海海洋大学学报,2020(3):355-363.[5]㊀常兴涛,岳建芝,贾洋洋,等.锯末颗粒吸附去除低质量浓度氨氮废水的研究[J].河南农业大学学报,2018(4):582-586. [6]㊀宋勇,吕俊文,张园园,等.改性锯末对铀的吸附机理研究[J].安全与环境工程,2018(3):86-92,129.[7]㊀蔡静,丁文明,王艳敏.改性木屑对铜离子的吸附性能[J].环境工程学报,2016(12):7109-7113.[8]㊀常新强,刘德稳,朱德滨,等.锯末在水处理中的应用研究进展[J].水处理技术,2016(12):8-11.[9]㊀丁培菲,陈云嫩,张兴华,等.改性后木屑的结构特性及其对氨氮的吸附性能[J].应用化工,2017(8):1526-1529,1535. [10]刘晓凤,徐鑫,陈瑞锋,等.木屑吸附溶液中重金属离子的试验研究[J].太原理工大学学报,2019(4):492-497.[11]赵雪涛,郜洪文.锯末对Cu2+的吸附特性研究[J].环境科学,2010(1):217-222.[12]孙杰,田奇峰,黄浸.松树锯末对Cu2+的吸附研究[J].环境科学与技术,2011(11):88-90,146.[13]高银东.棉纤维基自粘结成型活性炭的制备及性能研究[D].太原:太原理工大学,2019.[14]黄宏霞,胡平,陈小敏.木屑活性炭吸附去除水中重金属离子的研究[J].江苏农业科学,2014(3):306-308.[15]周丹丹,吴文卫,赵婧,等.花生壳和松木屑制备的生物炭对Cu2+的吸附研究[J].生态环境学报,2016(3):523-530. [16]谭洪,张磊,韩玉阁.不同种类生物质热解炭的特性实验研究[J].生物质化学工程,2009(5):31-34.[17]毛明翠,刘畅,曹静,等.两种木材生物炭对铜离子的吸附特性及其机制[J].环境与发展,2019(1):103-105.[18]蔡静.改性木屑的制备及其对铜离子的吸附研究[D].北京:北京化工大学,2016.[19]刘梦珠,郝林林,李桂菊.氨基改性木屑对水中Cu(Ⅱ)/Cr(Ⅵ)的连续吸附研究[J].环境污染与防治,2020(4):461-466. [20]王平,史文辉,潘池钦,等.三乙胺改性木屑处理含铜㊁镉重金属离子废水的研究[J].安徽农学通报(下半月刊),2012(2):61-62, 107.[21]夏璐,胡伊旭,张博涵.乙二胺改性木屑黄原酸盐对水溶液中Cu(Ⅱ)和Ni(Ⅱ)离子吸附平衡及动力学[J].Transactions of Nonferrous Metals Society of China,2014(3):868-875. [22]梁鸿霞,张正,黎梅,等.酸改性木屑处理含Cr6+废水[J].攀枝花学院学报,2019(5):7-11.[23]杜玉辉,吕松,袁斌,等.改性锯末对水中Cr(Ⅵ)和Cu(Ⅱ)的吸附性能实验研究[J].河南化工,2010(4):27-29.[24]吕少一,邵自强,王飞俊,等.不同碱金属氢氧化物对纤维素羧甲基化的影响[J].应用化工,2008(8):921-923,929. [25]王卓然,赵晓光,周文富,等.改性松木屑对铜离子的吸附性能[J/OL].应用化工:1-7[2020-08-22].https:///10.16581/ ki.issn1671-3206.20200724.036.[26]阳康.农林废弃物优选及其吸附地表水中Cu(Ⅱ)㊁硝基苯的特性研究[D].哈尔滨:哈尔滨工业大学,2015.。

英文文献原文及对应翻译

英文文献原文及对应翻译

Adsorption char acter istics of copper , lead, zinc and cadmium ions by tourmaline(环境科学学报英文版) 电气石对铜、铅、锌、镉离子的吸附特性JIANG Kan1,*, SUN Tie-heng1,2 , SUN Li-na2, LI Hai-bo2(1. School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China. jiangkan522@; 2. Key Laboratory of Environmental Engineering of Shenyang University, Shenyang 110041, China)摘要:本文研究了电气石对Cu2+、Pb2+、Zn2+和Cd2+的吸附特性,建立了吸附平衡方程。

研究四种金属离子的吸附等温线以及朗缪尔方程。

结果表明电气石能有效地去除水溶液中的重金属且具有选择性:Pb2+> Cu2+> Cd2+> Zn2+。

电气石对金属离子吸附量随着介质中金属离子的初始浓度的增加而增加。

电气石也可以增加金属溶液的pH值;发现电气石对Cu2+、Pb2+、Zn2+和Cd2+的最大吸附量为78.86、154.08、67.25和66.67mg/g;温度在25-55℃对电气石的吸附量影响很小。

此外研究了Cu2+、Pb2+、Zn2+和Cd2+的竞争吸附。

同时观察到电气石对单一金属离子的吸附能力为Pb>Cu>Zn>Cd,在两种金属系统中抑制支配地位是Pb>Cu,Pb>Zn,Pb>Cd,Cu>Zn,Cu>Cd,和Cd>Zn。

关键字:吸附;重金属含量;朗缪尔等温线;电气石介绍重金属是来自不同行业排出的废水,如电镀,金属表面处理,纺织,蓄电池,矿山,陶瓷,玻璃。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Adsorption behavior of copper ions on graphene oxide–chitosan aerogelBaowei Yu a,Jing Xu a,Jia-Hui Liu b,c,Sheng-Tao Yang a,*,Jianbin Luo a,Qinghan Zhou a,Jing Wan a,Rong Liao a,Haifang Wang b,**,Yuanfang Liu b,ca College of Chemistry and Environment Protection Engineering,Southwest University for Nationalities,Chengdu610041,Chinab Institute of Nanochemistry and Nanobiology,Shanghai University,Shanghai200444,Chinac Beijing National Laboratory for Molecular Sciences,College of Chemistry and Molecular Engineering,Peking University,Beijing100871,ChinaIntroductionGraphene adsorbents have attracted great research interestrecently due to the fantastic properties and potential in watertreatment[1,2].For the applications in water purification,graphene and its derivatives possess remarkable inherent advan-tages.Graphene is of single-layer structure,enabling that all atomsare surface atoms.Thus,the available surface area of graphene iseven higher than that of carbon nanotubes(CNTs).The adsorptionkinetics on graphene is generally faster than on the traditionaladsorbents.The producing cost of graphene adsorbents is lowerthan other high-performance adsorbents,such as CNTs and resins,while the adsorption capacities are comparable.In addition,graphene adsorbents can treat multiple pollutants at same time.Graphene shows high adsorption capacity for dyes,organicpollutants,heavy metals,and so on[3–6].In recent years,theadsorption capacity and behaviors of graphene adsorbents havebeen investigated on different pollutant models[1–8].Among the graphene adsorbents,graphene oxide(GO)showsthe highest performance in treating heavy metal ions and cationicdyes[9–12].However,the separation of GO after adsorbingpollutants is very difficult.GO disperses very well in water,thatrequires high speed centrifugation to precipitate.Obviously,thehigh speed centrifugation is unpractical for water treatment,dueto the large quantity of waste water.A possible solution is theattachment of magnetic nanoparticles to GO,and the separationcould be achieved by magnetic separation[13–15].But suchmethod will increase the producing cost and reduce the adsorptioncapacity significantly.Thus,we need to explore new technology tofacilitate the separation of GO after adsorption while keepingsimultaneously the high adsorption capacity.Another drawback of GO adsorbents is that GO might loss thesurface area during the drying.The reduced surface area leads tothe decrease of adsorption capacity.Many studies have shown thatthe over stacking of graphene sheets inhibited the adsorption ofpollutants on GO adsorbents[16–18].To avoid the excess stacking,new formulations of GO adsorbents are in need of development.The most promising formulations are aerogel and sponge[19–22].Herein,we reported the fabrication of GO–chitosan(CS)aerogelby lyophilization for the removal of Cu2+,where the solid GO–CSaerogel could be easily separated from environment afteradsorbing pollutants.GO was aggregated by CS to facilitate theseparation,and the composite was formulated as aerogel to avoidover stacking of GO sheets.GO–CS aerogel was found to be a goodadsorbent of Cu2+with a maximum adsorption capacity of2.54Â101mg/g.The adsorption kinetics was slow and could bewell described by the pseudo-second-order model.The adsorptioncapacity of GO–CS was larger at higher pH,lower ionic strengthJournal of Environmental Chemical Engineering1(2013)1044–1050A R T I C L E I N F OArticle history:Received29June2013Received in revised form6August2013Accepted12August2013Keywords:Graphene oxideChitosanAerogelAdsorptionHeavy metalA B S T R A C TGraphene oxide(GO)–chitosan(CS)composite was lyophilized to prepare GO–CS aerogel for Cu2+removal,then the separation of adsorbents after adsorption was easily achieved byfiltration or lowspeed centrifugation.GO–CS was a good adsorbent of Cu2+with a large adsorption capacity of2.54Â101mg/g according to the Langmuir model.The adsorption kinetics was well described by thepseudo-second-order model with a k2of4.14Â10À3minÀ1.The intraparticle diffusion model wasadopted to reveal the diffusion mechanism.Higher pH,lower ionic strength and higher temperaturebenefited the adsorption.The thermodynamics parameters at303K were calculated as D G ofÀ3.89kJ/mol,D H of3.46kJ/mol and D S of2.42Â101J/mol/K.The adsorption identity was physisorption andapparently driven by the increase of randomness.The implications to the application of grapheneadsorbents in the decontamination of heavy metals are discussed.ß2013Elsevier Ltd.All rights reserved.*Corresponding author.Tel.:+862885522269.**Corresponding author.Tel.:+862166138026.E-mail addresses:yangst@(S.-T.Yang),hwang@(H.Wang).Contents lists available at ScienceDirectJournal of Environmental Chemical Engineeringj ou r n a l h o me p a g e:w w w.e l se v i e r.co m/l oc a t e/j e c e2213-3437/$–see front matterß2013Elsevier Ltd.All rights reserved./10.1016/j.jece.2013.08.017and higher temperature.The thermodynamics study indicated that the adsorption was endothermic and apparently driven by the increase of randomness.The implications to the application of graphene adsorbents in the decontamination of heavy metals are discussed.Materials and methodsMaterialsGraphite,CS and CuSO4Á5H2O were purchased from Sinopharm Chemical Reagent Co.,Ltd.,China.Other chemicals were of analytical grade.GO(Fig.S1)was prepared following the modified Hummers method[23–25].To prepare GO–CS aerogel,GO was dispersed in deionized water(0.5mg/mL,pH6.0,200mL).Then,CS (1.0mg/mL,pH2.0,10mL)was added dropwise under vigorous stirring.The precipitation of brown composite was observed and the mixture was further stirred for another1h.The composite was washed with deionized water for three times and then lyophilized for3d(LGJ-10C,Xiangyi Co.,China).Separately,we also prepared the GO–CS*(higher CS content)sample by increasing the CS volume to20mL.The GO aerogel was obtained by direct lyophilization of GO suspension.GO–CS aerogel was characterized by transmission electron microscopy(TEM,JEM-200CX,JEOL,Japan),X-ray photoelectron spectroscopy(XPS,Kratos,UK)and infrared spectrometer(IR, Magna-IR750,Nicolet,USA).The surface area of GO–CS was determined by methylene blue method.Isothermal adsorptionTo investigate the isothermal adsorption,the solid aerogel was shaken in pollutant solution,which was widely used for graphene sponge,aerogel and hydrogel[16,18,22].We adopted24h to ensure the equilibrium,because the kinetics studies showed that 8h was enough to reach the equilibrium.Typically,8mL of Cu2+ (pH 6.0, 1.92–32.0mg/L)was added to5mg of solid GO–CS aerogel.The mixture was shaken(100rpm)at303K for24h on a thermostat shaker(CHA-S,Jintan Hankang Electronic Co.,China). The GO–CS aerogel stayed solid during the adsorption.And then the supernatants were collected after the centrifugation at 3000rpm for2min(TDZ4-WS,Pingfan Instrument and Menter Co.,China).The Cu2+concentration in the supernatant was determined by acetaldehyde-bis(cyclohexanone)oxaldihydrazone (BCO)method on a UV-Vis spectrometer(V1800,Mapada Instrument Co.,China).The details of BCO method were described in our previous report[17].Data were presented as mean Æstandard deviation(meanÆSD).Except mentioned specifically, the following adsorption experiments were performed following the same protocol.The equilibrium concentration(C e)was calculated referring to the calibration curve of Cu2+(Fig.S2).The equilibrium adsorption capacity(q e)was calculated by(C0ÀC e)/C GO–CS,where C0was the initial concentration of Cu2+and C GO–CS was the concentration of GO–CS.The adsorption data werefitted to both the Langmuir model(Eq.(1))and the Freundlich model(Eq.(2)).The maximum adsorption capacity(q m)was obtained from the Langmuir model.1 q e ¼1q mþ1bq m C e(1)ln q e¼ln K Fþ1ln C e(2)To compare the GO–CS with GO suspension,GO aerogel and GO–CS*aerogel(higher CS content),we performed the adsorptionexperiment at Cu2+concentration of19.2mg/L following the sameprotocol.The adsorption capacity of GO–CS,GO–CS*,GO suspen-sion and GO aerogel were evaluated.For GO suspension,thecentrifugation was performed at12,000rpm.Adsorption kineticsA mixture of GO–CS(5mg)and8mL of Cu2+(19.2mg/L,pH6.0)was incubated at303K for different time intervals(30–720min)and then centrifuged.The concentration of Cu2+(C t)at differenttime point was taken for calculating the adsorption capacity(q t)by(C0ÀC t)/C GO.The adsorption data werefitted by the pseudo-first-order model(Eq.(3)),the pseudo-second-order model(Eq.(4))andthe intraparticle diffusion model(Eq.(5)).lnðq eÀq tÞ¼ln q eÀk1t(3)tq t¼1k2q2eþtq e(4)q t¼k i t1=2þC(5)Influence of pH and ionic strengthTo investigate the influence of pH on the absorption,the initialpH of Cu2+was adjusted to2–7using NaOH or HCl aqueoussolutions.We did not evaluated the adsorption under pH higherthan7,because Cu2+precipitates at a basic medium.At each initialpH,GO–CS(5mg)was mixed with8mL of Cu2+(19.2mg/L)for thecalculation of q e.To investigate the influence of ionic strength on the adsorption,GO–CS(5mg)was pre-mixed with NaCl solution(0–3.2mL,pH6.0,250mM),then3.07mL of Cu2+(pH6.0,50mg/L)was added,and the total volume was adjusted to8.0mL by adding water.Themixture was treated as described above for the calculation of q e.Adsorption thermodynamicsA mixture of GO–CS(5mg)and8mL of Cu2+(19.2mg/L,pH6.0)was incubated at different temperature(273–323K)for24h andthen centrifuged.The concentration of Cu2+(C e)in supernatant atdifferent temperature was taken for calculating the adsorptioncapacity(q e)by(C0ÀC e)/C GO.The adsorption data werefitted byEq.(6).The distribution coefficient K d was calculated as q e/C e.TheGibbs free energy(D G)was calculated accordingly.ln K d¼D HRTþD SR(6)Results and discussionCharacterization of GO–CS aerogelAs we discussed previously,GO–CS was formed by the non-covalent interaction between GO and CS[7].The fabrication of GOsheets with CS obviously resulted in a loosely packed structure ofGO–CS.During the lyophilization,the water molecules weresublimated to form the GO–CS aerogel.Lyophilization kept theporous structure of graphene,thus,produced aerogel[16,22].Thesurface area of GO–CS was345m2/g.The porous GO–CS aerogelwas not dispersible in water,thus could be separated byfiltrationB.Yu et al./Journal of Environmental Chemical Engineering1(2013)1044–10501045easily.The GO–CS sample could be removed from environment by filtration or low speed centrifugation.This would enable the facile applications of GO–CS in water treatment.It should be noted that the easy separation was a nature of solids,rather than the unique characteristics of GO–CS aerogel.To investigate the structure,we grinded GO–CS aerogel and then sonicated it in water for 1h.The small particulates were characterized under TEM.As shown inFig.1a,serious folding and stacking occurred in GO–CS.In contrast,free GO sheets only showed small wrinkles,and were generally flat (Figs.1c and S1).The majority of GO–CS were oxygen (32.0wt%)and carbon (61.4wt%)according to XPS.The nitrogen content of GO–CS was 0.379wt%,corresponding to about 5.1wt%of CS in GO–CS aerogel (see Supplementary data).In the IR spectrum,the carboxyl andFig.1.TEM images of GO–CS (a)and (b)and free GO (c);IR spectrum of GO–CS (d).Fig.2.Adsorption of Cu 2+on GO–CS at 303K.(a)Adsorption isotherm;(b)Langmuir model;(c)Freundlich model;and (d)adsorption of Cu 2+on different graphene adsorbents at 303K.B.Yu et al./Journal of Environmental Chemical Engineering 1(2013)1044–10501046hydroxyl groups were evidenced.The–COOH/–OH groups were indicated by the peak at3410cmÀ1(Fig.1b).The presence of C55O was indicated by the peak at1731cmÀ1.However,the typical glucopyranose rings peaks at1151cmÀ1and897cmÀ1were not observed in GO–CS,which might be due to the low CS content[7].Adsorption isothermThe adsorption isotherm of Cu2+on GO–CS aerogel was shown in Fig.2a.When the C e values reached at9mg/L,the adsorption capacities(q e)increased to peak,and then the q e values became constant from9to1.5Â101mg/L.At C e of1.48Â101mg/L,the q e value was2.39Â101mg/g.The adsorption data of Cu2+on GO–CS were wellfitted by the Langmuir model with a correlation coefficient R of0.993(Fig.2b). The maximum adsorption capacity(q m)was2.54Â101mg/g,close to the experimental number.The b value was0.273,indicating that the adsorption strength was not very strong.We alsofitted the data with the Freundlich model(R=0.989).The K F value was4.90mg/g (L/mg)1/n and n value was1.49.The small n value indicated the weak adsorption strength,consistent with the small b value of the Langmuir model.The1/n value was6.724Â10À1,indicating the surface was not very homogenous.We also compared the adsorption capacity of GO–CS aerogel with GO suspension,GO aerogel and GO–CS*(CS content was higher,namely6.1wt%)directly.As shown in Fig.2d,at initial concentration of 1.92Â101mg/L,GO suspension showed the highest adsorption capacity of4.07Â101mg/g.The adsorption capacity of GO suspension was consistent with our previous report [17],but higher than other studies[16,26].We attributed the difference to the different samples(although all were claimed as GO)[27].Nevertheless,CS occupied some adsorption cites of GO and also the GO sheets stacked more or less during the lyophilization.Thus,a decrease was observed when GO was converted into GO–CS aerogel(2.16Â101mg/g).Increasing the CS content led to the decrease of adsorption capacity,as GO–CS*had the lowest adsorption capacity of1.42Â101mg/g.Although twice of CS solution was used during the preparation of GO–CS*,most excess CS was washed out according to the XPS analyses.We were surprised that the tiny increase of CS content in GO–CS*led to such big decrease of adsorption capacity.A possible explanation might be that the higher CS concentration during the preparation induced more serious folding of GO sheets,which blocked more adsorption cites.Once the folding was accomplished,the remaining CS was capable to keep the conformation of the folding sheets.Interest-ingly,GO–CS aerogel showed higher adsorption capacity than GO aerogel(1.49Â101mg/g).This might be attributed to the porous structure of GO–CS,where CS behaved as the support to avoid overFig.3.Kinetics analyses of the adsorption of Cu2+on GO–CS at303K.(a)Adsorption as a function of contact time;(b)the pseudo-first-order model;(c)the pseudo-second-order model;and(d)intraparticle diffusion model.Table1Maximum adsorption capacity(q m)of various adsorbents for Cu2+.Adsorbent q m(mg/g)Ref.Waste beer yeast 1.45[26]Active carbon 5.08[27]Activated sludge19.06[28]Lignin22.88[29]CNTs28.5[30]GO aerogel19.65[16]GO46.6[17]GO–CS aerogel25.4This studyB.Yu et al./Journal of Environmental Chemical Engineering1(2013)1044–10501047stacking of GO sheets during the lyophilization.GO suspension could hardly be used in practical applications.Aerogel or sponge should be the promising form of graphene in treating contami-nants.To this regard,the fabrication of GO–CS composite in the aerogel or sponge form was necessary in order to enlarge the adsorption capacity.In addition,GO–CS aerogel was very stable in water,whilst GO aerogel dissolved partially upon vigorous stirring.We also compared the q m of GO–CS with other adsorbents reported in the literature.The comparison was listed in Table 1.GO–CS aerogel could be ranked among the very effective adsorbents of Cu 2+,comparable to activated sludge,lignin,CNTs and other graphene adsorbents [16,17,28–32].Adsorption kineticsThe adsorption kinetics of Cu 2+onto GO–CS was shown in Fig.3a.The adsorption capacities increased fast in the first 5h,and then became slower.Pseudo-first-order and pseudo-second-order models were adopted to analyze the kinetics data (Fig.3b).The q e calculated from the pseudo-first-order model was 3.51mg/g,much lower than the experimental q e (2.16Â101mg/g).The R value was 0.948.The low q e,cal and small R suggested that the pseudo-first-order model was not ideal for describing the adsorption process of Cu 2+on GO–CS.This was consistent with the results in the literature,where pseudo-first-order model wasFig.4.Influence of pH (a)and ionic strength (b)on the adsorption of Cu 2+on GO–CS.Table 2Coefficients of the pseudo-first and second-order adsorption kinetic models and the intraparticle diffusion model.Pseudo-first-order model q e,exp (mg/g)k 1(min )q e,cal (mg/g)R2.16Â101 1.86Â10À33.510.948Pseudo-second-order modelq e,exp (mg/g)k 2(min À1)q e,cal (mg/g)R2.16Â1014.14Â10À3 2.08Â1010.9998Intraparticle diffusion model (stage 1)k i (mg/g min À0.5)C (mg/g)R5.69Â10À2 1.79Â1010.983Intraparticle diffusion model (stage 2)k i (mg/g min À0.5)C (mg/g)R3.00Â10À1 1.48Â1010.997Intraparticle diffusion model (stage 3)k i (mg/g min À0.5)C (mg/g)R4.28Â10À21.93Â1010.963Fig.5.Influence of temperature on the adsorption of Cu 2+on GO–CS.(a)Adsorption capacity at different temperature and (b)thermodynamics analysis.B.Yu et al./Journal of Environmental Chemical Engineering 1(2013)1044–10501048not applicable in describing the adsorption kinetics of pollutants on graphene adsorbents.In contrast,the pseudo-second-order model was much better(R=0.9998,Fig.3c).The experimental (2.16Â101mg/g)and calculated(2.08Â101mg/g)q e values showed very good consistence.The small rate constant of adsorption(k2) 4.14Â10À3minÀ1was compatible with the relatively slow adsorption process.The parameters of both models were listed in Table2.The intraparticle diffusion model was adopted to reveal the diffusion mechanism(Fig.3d).The data werefitted with linear regression(R varied in0.963–0.997).The lines in the plot did not pass through the origin,so the adsorption involved both the intraparticle diffusion and surface diffusion.According to Table2,clearly,there were three stages in the adsorption.In thefirst stage,the C value was1.79Â101mg/g, indicating the presence of the boundary layer diffusion effect.The C value decreased to1.48Â101mg/g in the second stage,which indicated the diffusion was easier and resulted in slightly faster adsorption.Finally,the C value increased again to1.93Â101mg/g. The capacity of GO–CS was exhausted and the uptake rate was more controlled mainly by the rate at which Cu2+was transported from the exterior to the interior sites of GO–CS.Correspondingly, the adsorption was slowed down.The existence of multiple diffusion stages has been reported in graphene adsorbents[33]. However,it was not observed in GO suspension,because the kinetics was so fast that we failed to analyze the kinetics in our previous studies[11,17].The multiple stages of GO–CS indicated that the diffusion of Cu2+toward GO–CS changed during the adsorption.The adsorption kinetics of Cu2+on GO–CS was much slower than that on GO.This was reasonable that additional diffusion was required for Cu2+to reach the surface of graphene sheets in GO–CS, since GO–CS was not dispersible in water.In contrast,free GO suspension was single layered(Fig.S1).Thus,the diffusion of Cu2+ toward GO proceeded immediately.Therefore,the adsorption of Cu2+on GO reached the equilibrium within20min[17].The formation of GO3D structure(aerogel or hydrogel)also slowed the adsorption kinetics,as reported by other groups[16,22].Anyhow, the adsorption kinetics of Cu2+on GO–CS was still quick enough for practical application[34].Influence of pH and ionic strengthThe pH regulated the ionization of carboxyl groups.It therefore had significant influence on the adsorption performance of GO–CS. GO–CS adsorbed more Cu2+at higher pH values(Fig.4a).At Cu2+ concentration of1.92Â101mg/L,the adsorption capacity increased from2.30Â101mg/g at pH6.0to2.65Â101mg/g at pH7.We could not increase the pH to basic range,because Cu2+would precipitate. The value decreased to2.01Â101mg/g at pH2.The pH regulated adsorption was similar to that of GO,where higher adsorption capacity for methylene blue was observed at higher pH[11].Positively charged ions might adsorb on GO competitively, resulting in the decrease of adsorption capacity[11].In addition,the high ionic strength might inhibit the ionization of GO,which also led to the decrease of adsorption capacity.In this study,we found that the increase of ionic strength inhibited the adsorption capacity of GO–CS(Fig.4b).At Cu2+concentration of 1.92Â101mg/L,the adsorption decreased to1.34Â101mg/g at100mM Na+.Adsorption thermodynamicsThe influence of temperature was also concerned.As shown in Fig.5,the adsorption was promoted at higher temperature.This implied that the adsorption was endothermic.The adsorption thermodynamics parameters were calculated.At303K,the D G value wasÀ3.89kJ/mol.The negative D G suggested that the adsorption was spontaneous.The higher temperature makes the lower D G,implying that the adsorption became more favorable at higher temperature.Further,the D G was very small,manifesting the weak adsorption strength,that was consistent with the small b value in Langmuir model and small n value in Freundlich model.The D H value was 3.46kJ/mol, indicating that the adsorption was endothermic.The positive D S value(2.42Â101J/mol/K)suggested the adsorption increased the randomness at the solid/solution interface.ConclusionsGO–CS aerogel was prepared by lyophilization for Cu2+removal, and the separation of adsorbents after adsorption was easily achieved.GO–CS was good adsorbent of Cu2+with a large adsorption capacity of2.54Â101mg/g and relative weak binding strength.The adsorption kinetics was slower than that of GO and could be described by the pseudo-second-order model.Higher pH, lower ionic strength and higher temperature benefited the adsorption of Cu2+on GO–CS.The physisorption of Cu2+on GO–CS was endothermic and mainly driven by the increase of randomness.Hopefully,our results would benefit the ongoing research of graphene adsorbent.AcknowledgmentsWe thank Prof.Y.-P.Sun at Clemson University for his kind help. We acknowledgefinancial support from the China Ministry of Science and Technology(973Project No.2011CB933402),the China Natural Science Foundation(No.21071094),the Fundamen-tal Research Funds for the Central Universities,Southwest University for Nationalities(No.13NZYQN14),National Training Programs of Innovation and Entrepreneurship for Undergraduates (No.201310656006)and State Administration of Foreign Experts Affairs(No.2013-24).Appendix A.Supplementary dataSupplementary material related to this article can be found,in the online version,at doi:10.1016/j.jece.2013.08.017.References[1]G.Zhao,T.Wen,C.Chen,X.Wang,Synthesis of graphene-based nanomaterialsand their application in energy-related and environmental-related areas,RSC Adv.2(2012)9286–9303.[2]L.Xiao,Y.L.Wang,S.L.Yu,Y.L.Tang,Graphene-containing composite materials forwater treatment,Prog.Chem.25(2013)419–430.[3]J.Zhu,S.Wei,H.Gu,S.B.Rapole,Q.Wang,Z.Luo,N.Haldolaarachchige,D.P.Young,Z.Guo,One-pot synthesis of magnetic graphene nanocomposites decorated with core@double-shell nanoparticles for fast chromium removal,Environ.Sci.Tech-nol.46(2011)977–985.[4]T.Wu,X.Cai,S.Tan,H.Li,J.Liu,W.Yang,Adsorption characteristics of acryloni-trile,p-toluenesulfonic acid,1-naphthalenesulfonic acid and methyl blue on graphene in aqueous solutions,Chem.Eng.J.173(2011)144–149.[5]G.Zhao,L.Jiang,Y.He,J.Li,H.Dong,X.Wang,W.Hu,Sulfonated graphene forpersistent aromatic pollutant management,Adv.Mater.23(2011)3959–3963.[6]Y.Sun,C.Chen,D.Shao,J.Li,X.Tan,G.Zhao,S.Yang,X.Wang,Enhancedadsorption of ionizable aromatic compounds on humic acid-coated carbonaceous adsorbents,RSC Adv.2(2012)10359–10364.[7]S.-T.Yang,J.Luo,J.Liu,Q.Zhou,J.Wan,C.Ma,R.Liao,H.Wang,Y.Liu,Grapheneoxide/chitosan composite for methylene blue adsorption,Nanosci.Nanotechnol.Lett.5(2013)372–376.[8]Y.Zhao,C.Hu,Y.Hu,H.Cheng,G.Shi,L.Qu,A versatile,ultralight,nitrogen-dopedgraphene framework,Angew.Chem.Int.Ed.124(2012)11533–11537.[9]Y.Xia,L.Xia,Comparative study of methylene blue dye adsorption onto activatedcarbon,graphene oxide,and carbon nanotubes,Chem.Eng.Res.Des.91(2013) 361–368.[10]W.Zhang,C.Zhou,W.Zhou,A.Lei,Q.Zhang,Q.Wan,B.Zou,Fast and considerableadsorption of methylene blue dye onto graphene oxide,Bull.Environ.Contam.Toxicol.87(2011)86–90.B.Yu et al./Journal of Environmental Chemical Engineering1(2013)1044–10501049[11]S.-T.Yang,S.Chen,Y.Chang,A.Cao,Y.Liu,H.Wang,Removal of methylene blue fromaqueous solution by graphene oxide,J.Colloid Interface Sci.359(2011)24–29. [12]G.Ramesha,A.V.Kumara,H.Muralidhara,S.Sampath,Graphene and grapheneoxide as effective adsorbents toward anionic and cationic dyes,J.Colloid Interface Sci.361(2011)270–277.[13]L.Fan,C.Luo,X.Li,F.Lu,H.Qiu,M.Sun,Fabrication of novel magnetic chitosangrafted with graphene oxide to enhance adsorption properties for methyl blue,J.Hazard.Mater.215–216(2012)272–279.[14]Z.Geng,Y.Lin,X.Yu,Q.Shen,L.Ma,Z.Li,N.Pan,X.Wang,Highly efficient dyeadsorption and removal:a functional hybrid of reduced graphene oxide-Fe3O4 nanoparticles as an easily regenerative adsorbent,J.Mater.Chem.22(2012) 3527–3535.[15]F.He,J.Fan,D.Ma,L.Zhang,C.Leung,H.L.Chan,The attachment of Fe3O4nanoparticles to graphene oxide by covalent bonding,Carbon48(2010)3139–3144.[16]X.Mi,G.Huang,W.Xie,W.Wang,Y.Liu,J.Gao,Preparation of graphene oxideaerogel and its adsorption for Cu2+ions,Carbon50(2012)4856–4864.[17]S.-T.Yang,Y.Chang,H.Wang,G.Liu,S.Chen,Y.Wang,Y.Liu,A.Cao,Folding/aggregation of graphene oxide and its application in Cu2+removal,J.Colloid Interface Sci.351(2010)122–127.[18]F.Liu,S.Chung,G.Oh,T.S.Seo,Three-dimensional graphene oxide nanostructurefor fast and efficient water-soluble dye removal,ACS Appl.Mater.Interfaces4 (2011)922–927.[19]H.Bi,X.Xie,K.Yin,Y.Zhou,S.Wan,L.He,F.Xu,F.Banhart,L.Sun,R.S.Ruoff,Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents,Adv.Funct.Mater.22(2012)4421–4425.[20]J.Zhao,W.Ren,H.Cheng,Green synthesis of carbon nanotube-graphene hybridaerogels and their use as versatile agents for water purification,J.Mater.Chem.22 (2012)20197–20202.[21]Z.Sui,Q.Meng,X.Zhang,R.Ma,B.Cao,J.Mater.Chem.22(2012)8767–8771.[22]Y.Chen,L.Chen,H.Bai,L.Li,Graphene oxide–chitosan composite hydrogels asbroad-spectrum adsorbents for water purification,J.Mater.Chem.A1(2013) 1992–2001.[23]W.S.Hummers Jr.,R.E.Offerman,Preparation of graphitic oxide,J.Am.Chem.Soc.80(1958)1339.[24]N.I.Kovtyukhova,P.J.Ollivier,B.R.Martin,T.E.Mallouk,S.A.Chizhik,E.V.Buza-neva,A.D.Gorchinskiy,Layer-by-layer assembly of ultrathin compositefilms from micron-sized graphite oxide sheets and polycations,Chem.Mater.11(1999) 771–778.[25]A.Cao,Z.Liu,S.Chu,M.Wu,Z.Ye,Z.Cai,Y.Chang,S.Wang,Q.Gong,Y.Liu,A facileone-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials,Adv.Mater.22(2010)103–106.[26]X.Ren,J.Li,X.Tan,X.Wang,Comparative study of graphene oxide,activatedcarbon and carbon nanotubes as adsorbents for copper decontamination,Dalton Trans.42(2013)5266–5274.[27]J.Xu,H.Lv,S.-T.Yang,J.Luo,Preparation of graphene adsorbents and theirapplications in water purification,Rev.Inorg.Chem.2–3(2013)139–160. [28]R.Han,H.Li,Y.Li,J.Zhang,H.Xiao,J.Shi,Biosorption of copper and lead ions bywaste beer yeast,J.Hazard.Mater.137(2006)1569–1576.[29]H.K.An,B.Y.Park,D.S.Kim,Crab shell for the removal of heavy metals fromaqueous solution,Water Res.35(2001)3551–3556.[30]A.Hammaini,F.Gonzalez,A.Ballester,M.L.Blazquez,J.A.Munoz,Biosorption ofheavy metals by activated sludge and their desorption characteristics,J.Environ.Manage.84(2007)419–426.[31]Y.Guo,Z.Zhang,X.Shan,Adsorption of metal ions on lignin,J.Hazard.Mater.151(2008)134–142.[32]Y.Li,Z.Luan,X.Xiao,X.Zhou,C.Xu,D.Wu,B.Wei,Removal of Cu2+ions fromaqueous solutions by carbon nanotubes,Adsorp.Sci.Technol.21(2003)475–485.[33]S.M.Maliyekkal,T.S.Sreeprasad,D.Krishnan,S.Kouser,A.K.Mishra,U.V.Wagh-mare,T.Pradeep,Graphene:a reusable substrate for unprecedented adsorption of pesticides,Small9(2013)273–283.[34]B.H.Hameed,A.T.M.Din,A.L.Ahmad,Adsorption of methylene blue onto bam-boo-based activated carbon:kinetics and equilibrium studies,J.Hazard.Mater.141(2007)819–825.B.Yu et al./Journal of Environmental Chemical Engineering1(2013)1044–1050 1050。

相关文档
最新文档