人教版必修1函数的概念教案(第一课时)
新教材人教A版必修第一册 3.2.1 第1课时 函数的单调性 课件(48张)

核心概念掌握
核心素养形成
随堂水平达标
课后课时精练
7.图象变换对单调性的影响 (1)上下平移不影响单调区间,即 y=f(x)和 y=f(x)+b 的单调区间相同. (2)左右平移影响单调区间.如 y=x2 的单调递减区间为(-∞,0];y=(x +1)2 的单调递减区间为(-∞,-1]. (3)y=k·f(x),当 k>0 时单调区间与 f(x)相同,当 k<0 时单调区间与 f(x)相 反.
随堂水平达标
课后课时精练
2.做一做(请把正确的答案写在横线上) (1)已知函数 f(x)=x 的图象如图 1 所示,从左至右图象是上升的还是下降 的:________. (2)已知函数 y=f(x)的图象如图 2 所示,则该函数的单调递增区间是 ________,单调递减区间是________.
核心概念掌握
核心概念掌握
核心素养形成
随堂水平达标
课后课时精练
答案
金版点睛 定义法证明单调性的步骤
判断函数的单调性常用定义法和图象法,而证明函数的单调性则应严格 按照单调性的定义操作.
利用定义法判断函数的单调性的步骤为:
核心概念掌握
核心素养形成
随堂水平达标
课后课时精练
注意:对单调递增的判断,当 x1<x2 时,都有 f(x1)<f(x2),也可以用一个 不等式来替代:
核心概念掌握
核心素养形成
随堂水平达标
课后课时精练
3.单调区间 (1)这个区间可以是整个定义域.如 y=x 在整个定义域(-∞,+∞)上单 调递增, y=-x 在整个定义域(-∞,+∞)上单调递减; (2)这个区间也可以是定义域的真子集.如 y=x2 在定义域(-∞,+∞) 上不具有单调性,但在(-∞,0]上单调递减,在[0,+∞)上单调递增. 4.函数在某个区间上单调递增(减),但是在整个定义域上不一定都是单 调递增(减).如函数 y=1x(x≠0)在区间(-∞,0)和(0,+∞)上都单调递减, 但是在整个定义域上不具有单调性.
高中必修第一册《3.1 函数的概念及其表示》优质课教案教学设计

3.1.1 函数的概念
本节课选自《普通高中课程标准数学教科书-必修一》(人教A版)第三章《函数的概念与性质》,本节课是第1课时。
函数的基本知识是高中数学的核心内容之一,函数的思想贯穿于整个初中和高中数学.
对于高一学生来说,函数不是一个陌生的概念。
但是,由于局限初中阶段学生的认知水平;学生又善未学习集合的概念,只是用运动变化的观点来定义函数,通过对正比例函数、反比例函数、一次和二次函数的学习来理解函数的意义,对于函数的概念理解并不深刻.
高一学生学习集合的概念之后,进一步运用集合与对应的观点来刻画函数,突出了函数是两个集合之间的对应关系,领会集合思想、对应思想和模型思想。
所以把第一课时的重点放在函数的概念理解,通过生活中的实际事例,引出函数的定义,懂得数学与人类生活的密切联系,通过对函数三要素剖析,进一步理解充实函数的内涵。
所以在教学过程中分别设计了不同问题来理解函数的定义域、对应法则、函数图象的特征、两个相同函数的条件等问题.
学生在初中阶段,已经知道函数的定义域是使函数解析式有意义、实际问题要符合实际意义的自变量的范围,所以在教学中进一步强调定义域的集合表示.
A.通过丰富的买例进一步体会函数是描述变量之间的依赖关系的重要数学模型;
B.用集合与对应的思想理解函数的概念;
C.理解函数的三要素及函数符号的深刻含义;
D.会求函数的定义域。
1.教学重点:函数的概念,函数的三要素;
2.教学难点:函数的概念及符号()y f x 的理解。
多媒体。
函数的概念和函数的表示法教案-人教版数学高一上必修1第一章1.2.1-1.2.2

第一章集合与函数概念1.2 函数及其表示1.2.1 函数的概念和函数的表示法1 教学目标1.1 知识与技能:[1]理解函数的概念,了解构成函数的三要素.[2]会判断给出的两个函数是否是同一函数.[3]能正确使用区间表示数集.[4]函数的三种表示方法,并会求简单函数的定义域和值域.[5]通过实例体会分段函数的概念.[6]了解映射的概念及表示方法,并会判断一个对应关系是否是映射.1.2过程与方法:[1]通过具体实例,体会函数的概念和函数三要素,会求简单函数的定义域和值域。
[2]通过观察、画图等具体动手,体会分段函数的概念。
[3]通过具体习题,了解映射的概念,并会判断一个对应关系是否是映射.1.3 情感态度与价值观:[1]通过学习函数的概念及其表示法以及相关练习,培养学生逻辑思维。
[2]通过细致作图,培养学生的动手能力和识图能力。
2 教学重点/难点/易考点2.1 教学重点[1]函数的三种表示方法。
[2]分段函数的概念。
2.2 教学难点[1]根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.[2]会求函数的定义域和值域。
3 专家建议此节为高中数学函数的第一节内容,一定要让学生充分理解函数的概念,结合具体习题提升学生的逻辑思维和数学素养。
4 教学方法实例探究——归纳总结,提炼概念——补充讲解——练习提高5 教学用具多媒体,教学用直尺、三角板。
6 教学过程6.1 引入新课【师】同学们好。
初中的时候我们就接触过函数,并掌握了一次函数,二次函数和反比例函数。
这节课我们来继续进一步学习和函数有关的内容。
【板书】第一章集合与函数概念 1.2 函数及其表示6.2 新知介绍[1]函数的概念【师】下面请同学们看三个实例,看有什么不同点和相同点。
【板演/PPT】PPT演示三个实例。
【师】那我们现在可以发现不同点是三个实例分别用解析式,图像和表格刻画变量之间的对应关系。
相同点是都有两个非空数集,并且两个数集之间都有一种确定的对应关系。
人教A版数学必修一《函数的概念》教案【精品教案】.docx

福建省光泽第一中学高中数学人教版必修一《函数的概念》教案【教材内-容分析】通过学生的回顾,再现初中变量观点描述函数的概念,为后面用集合和对应的观点来定义函数奠定基础。
通过对实例的探究,让学生感受、体验对应关系在刻画函数概念中的作用,使学生对数学的高度抽象性、严密的逻辑性和广泛的应用性有进一步认识,提高抽象概括、分析总结、数学表达交流等基本数学思维能力;培养学生分析问题、解决问题的能力。
【学情分析】通过实例使学生进一步认识生活中充满变量间的依赖关系;激发学生学习数学的兴趣,提高发散思维能力【教学目标】知识目标:(1)会用集合与对应的语言刻画函数;(2)理解函数三要素(3)会求一些简单函数的定义域和值域,并初步■掌握换元法的简单应用情感目标:通过师生、生生互动的教学活动过程,让学生体会成功的愉悦,培养学生热爱数学的态度,提高数学学习的兴趣,树立学好数学的信心.【重点、难点】重点是函数概念的理解,难点是对函数符号y=f (x)的理解。
教具准备:教学手段:多媒体辅助教学,增强直观性,增大课容量,提高效率【课时安排】一课时【教学方法】学.案教学法,通过不同实例的探究,让学生积极参与教学活动【教学过程和步骤】二、函数的概念 设集合A 是一个非空的数集,对A 内任意数 x,按照确定的法则f,都有唯一确定的数值y 与它对应,则这种对应关系叫做集合A 上 的一个函数,记作y=f(x),xeA, 其中x 叫做自变量,自变量的取值范围(数 集A)叫做这个函数的凫义域。
如果自变量取值a,则由法则f 确定的值y 称为函数在a 处的函数值,记作y=f (a),所 总结出 有函数宿将成的集合{y I y=f (x), xEA }叫 函数关系 做这个函数的值域。
进一步理解函数概念定实质 义域、对应法则、值域三者关系深刻理解 f(x)中的f 与x 的关系 3、怎样判断两个函数是否是同一个函数? 例1:判断下列函数,是否是同一函数 例广例3 y=x 2, xER;s=t 2, t£R 第一问均 y=x 2,xeR;s=2t 2, teR 让学生疝 y=x 2, x e Z; s=t 2, t e R 立进行 f(x)= x2,xeR ;g(x-2) = (x-2)2, xeR ; 然后师生 例2:求下列函数定义域 交流分享 f(x)=2x, 例 3 第 2 f(x)= 问及例4 f(x)= 交流后教 f (x) = (2.X-3) 际讲解板例3:求函数f (x)= ,乂,在乂=0、1、2处的 书 函数值和值域 例4: 1)已知函数f(x)= x2,求f(x-l)2)已知函数 f(x-l)= X ,,求 f(x)请同学们把下面集合用数轴表示出来 学生实物 设a 、b£R, a<b 投影展示 1、 {x | aWxWb, xWR }2、 {x I a<x<b, xER 教学环节课题引入教学内容 师生活动 概念形成回顾、实例引入1)复习初中的常量、变量 与函数的概念在一个变化过程中,有两个变 量x 和y ,如果给定了一个x 值,相应地就确 定唯一的一个y 值,那么我们称y 是x 的函 数,其中.x 是自变量,y 是因变量。
新教材人教版高中数学必修第一册 5.2.1 三角函数的概念(1) 教学课件

1
r
即
|
y0
|
|
y r
|
第十一页,共二十二页。
因为 y0与 y 同号,所以
y0
y r
即 sin y
r
同理可得 cos y
r
tan y
x
只要知道角 终边上任意一点P的坐标,就可以求得角 的各个三角函数
值,并且这些函数值不会随点P位置的改变而改变。
第十二页,共二十二页。
1.根据三角函数的定义,确定它们的定义域
横坐标等于0, tan y 无意义,此时 k (k z).
x
2
(3)由于角的集合与实数集之间可以建立一一对应关系,
三角函数可以看成是自变量为实数的函数.
第八页,共二十二页。
探究:在初中我们学了锐角三角函数,知道它们都是以锐角为自变量。以比
x 值为函数值的函数,设 x (0, ),把按锐角三角函数定义求得的锐角 的 2
新教材人教版高中数学必修第一册 5.2.1 三角函数的概念(1) 教学课件
科 目:数学 适用版本:新教材人教版 适用范围:【教师教学】
第五章 三角函数
5.2.1 三角函数的概念
第一页,共二十二页。
复习
1.1弧度的角: 等于半径长的圆弧所对的圆心角
2.角度制与弧度制的换算 180 弧度
1弧度 (180
证明:如图,设角 的终边与单位圆交于点 P0 (x0, y0 ),
分别过点 P, P0
作 x 轴的垂线
PM
,
P0
M
,垂足分别
0
为
M , M 0 ,则 | P0M0 || y0 |,| PM || y |,| OM0 || x0 |,| OM || x |,
人教版A高中数学必修第一册5.2.1 三角函数的概念 教学设计(1)

5.2.1 三角函数的概念本节课选自《普通高中课程标准数学教科书-必修第一册》(人教A版)第五章《三角函数》,本节课是第3课时,这是节关于任意角的三角函数的概念课.三角函数是高中范围内继指数函数、对数函数和幂函数之后学习的函数,是函数的一个下位概念,与指对数函数、幂函数属于同一抽象( 概括)层次。
它是一种重要的基本初等函数,是解决实际问题的重要工具,也是学习数学中其他知识内容的基础。
在初中,学生已学过锐角三角函数,知道直角三角形中锐角三角函数等于相应边长的比值。
在此基础上,随着角的概念的推广,引入弧度制,相应地将锐角三角函数推广为任意角的三角函数,此时它与三角形已经没有什么关系了。
任意角的三角函数是研究一个实数集( 角的弧度数构成的集合)到另一个实数集( 角的终边与单位圆交点的坐标或其比值构成的集合)的对应关系。
认识它需要借助单位圆、角的终边以及两者的交点这些几何图形的直观帮助,这里体现了数形结合的思想,由锐角三角函数到坐标表示的锐角三角函数,再到单位圆上的点的坐标表示的锐角三角函数,直至得到任意角的三角函数的定义,体现了合情推理的思想方法。
本节课将围绕任意角三角函数的概念展开,任意角三角函数的概念是本节课的重点,能够利用单位圆认识这个概念是解决教学重点的关键。
A.借助单位圆理解任意角三角函数的定义;B.根据定义认识函数值的符号,理解诱导公式一;C.能初步运用定义分析和解决与三角函数值有关的一些简单问题;D.体验三角函数概念的产生、发展过程,领悟直角坐标系的工具功能,丰富数形结1.教学重点:任意角的三角函数(正弦函数、余弦函数、正切函数)的定义;2.教学难点:任意角的三角函数概念的建构过程。
多媒体一、复习回顾,温故知新 1. 1弧度角的定义【答案】等于半径长的圆弧所对的圆心角 2. 角度制与弧度制的换算:【答案】︒︒︒≈==30.571801180)(弧度,ππ3. 关于扇形的公式【答案】.21)3(;21)2(;12lR S R S R l ===αα)( 4.在初中我们是如何定义锐角三角函数的? 【答案】.tan ,cos ,sin abc a c b ===ααα二、探索新知探究一.角α的始边在x 轴非负半轴,终边与单位圆交于点P 。
第三章函数的概念与性质 小结与复习(第1课时) 教案-高一上学期数学人教A版必修第一册

第三章函数的概念与性质小结与复习教案第1课时一、内容和内容解析1.内容函数的概念、表示和函数单调性的复习课2. 内容解析这是在学生已经学习完本章内容的基础上进行的复习课,复习课一共两节课,这是第一节复习课.在这一章中,学生从用变量之间依赖关系描述函数上升到用集合语言和对应关系刻画函数,建立了完整的函数概念,并体会集合语言和对应关系在刻画函数概念中的作用.这是一个难点,因此在复习的过程中还要巩固.除此之外,还要了解构成函数的要素,能求简单函数的定义域,能根据实际的情况用不同的函数表示方法表示函数,了解简单的分段函数,并能简单应用.同样地,在研究函数单调性的过程中,能够使用符号化的语言来描述,这是学生学习这部分内容时的一个难点. 这样一种从形象直观到定性刻画再到定量刻画的研究过程,以及通过引入数学符号、借助代数语言精确刻画刻画定量变化规律的方法,体现了数学抽象的一般过程,对于培养学生的数学抽象能力具有重要意义.基于以上分析,确定教学重点:复习建立在集合与对应关系的函数概念以及函数单调性的符号语言刻画和单调性的应用.二、目标和目标解析1.目标(1)理解函数的概念和表示方法,并能应用函数的概念解决一些问题;(2)掌握函数单调性的概念,会用符号语言表达单调性、最值,理解它们的作用和实际意义;(3)能用定义证明简单函数的单调性;(4)能运用所学的知识解决一些数学问题和实际问题.2.目标解析达成上述目标的标志是:(1)能用集合间的对应关系的观点定义函数,能根据实际的问题表示函数;(2)知道用符号语言刻画函数单调性时,“任意”“都有”等关键词的含义;能够从函数图象,或通过代数推理,得出函数的单调递增、单调递减区间;知道函数的单调性反映了现实世界中事物在量的增加或减小上的变化趋势.(3)会用函数单调性的定义,按一定的步骤证明函数的单调性;(4)会用函数最大值、最小值的定义,按一定的步骤求函数的最大(小)值.三、教学问题诊断分析学生已经学习了相关的知识,在这节复习课上,要巩固前面学习的相关内容,让学生进一步体会用数学的语言和符号化的方式表达数学概念,表达函数的概念、函数的性质等.作为复习课,在教学的过程中也要充分利用信息技术展示函数的对应关系、函数的单调变化规律、函数的最值等,也可以用表格形式加强自变量从小到大时函数值的大小变化趋势等,数形结合地提出问题,给学生设置一条从定性到定量、从粗糙到精确的归纳过程,引导学生逐步抽象出函数单调性的定义,再通过辨析、练习帮助学生理解定义.另外,在教学的过程中,还要有一定的习题,让学生通过习题,自己体会函数的概念和函数的性质等,通过习题,体会这些概念和性质的应用,并体会一些内容的综合运用.根据以上分析,确定教学难点是:符号化的语言表述,对量词的使用和运用函数的单调性解决问题.四、教学支持条件分析为使学生更好地理解形式化定义,降低归纳定义过程中的难度,可利用计算工具,采用动态方式展现函数图象、展示变化规律等.五、教学过程设计(一)引入问题1:初中函数概念和高中函数概念的区别是什么?(1)请说出初中函数的定义;(2)请说出高中函数的定义;(3)辨析这两者有什么不同.师生活动:教师提出问题,前2个问题学生自主回答,第3个问题由学生之间讨论、分析并总结.设计意图:让学生复习函数的概念,并通过对比初中和高中的概念区别,进一步体会函数是建立在集合间的对应关系.(二)函数的概念和表示法的巩固师生活动:学生先独立思考,计算,黑板板书(或者利用信息技术将学生的书写过程展示).设计意图:让学生体会在一个熟知的二次函数中,利用单调性解决数学问题.(四)课堂小结问题11:回答下列问题(1)在解决有关函数概念的问题,以及利用函数的概念解决其他问题的时候,有什么需要特别注意的问题吗?(2)在处理函数单调性的问题时,有什么需要注意的吗?师生活动:学生先独立思考,然后讨论,发表观点,教师进行归纳.设计意图:让学生进一步体会和注意,处理有关函数问题的时候,需要注意的问题.六、目标检测设计设计意图:本题通过绘制函数图象,能够观察出(也可以严格的证明)它是一个增函数,因此将f(2-a2)>f(a)转化为1-a2>a,解二次不等式得到结果. 这道题目将分段函数,函数的图象,函数的单调性充分综合,是检测学生综合运用本章知识分析和解决问题的能力.。
人教版必修1对数函数课件

五、教学过程设计
【尝试探索、建立新知】
(1)对数函数的定义:一般地,函数 y=logax(a>0且a≠1)叫对数函数,其中x是自变 量,定义域是(0,+∞)。
(2)启发学生探究a的取值范围与定义域的取值
范围。
(3)引导学生利用互为反函数的图象关于直线 y=x对称的性质,由y=2x与y=0.5x的图象画出 y=log2x与y=log0.5x的图象。
二、教材ห้องสมุดไป่ตู้析
2.教学重点、难点、关键
因为函数图象是研究函数性质的直观工具,利用图 象便于学生记忆函数的性质和变化规律,而函数的性 质又是应用函数解决问题的基本知识,所以确定教学 重点为:对数函数的图象及性质;因为在学习对数函 数y=logax中,对于a>1与0<a<1时函数值变化的不同情 况,学生往往容易混淆,所以教学难点是:区分a>1 与0<a<1时,函数值变化的不同情况;突破重点、难 点的关键是:抓住对数函数是指数函数的反函数这一 要领。
C. y
log (
a
2
1)
x
(a∈R)
D.y=logax(a∈R)
例2 求下列函数的定义域: (1)y=logax2;(2)y=loga(4-x);(3)y=loga(9-x2).
五、教学过程设计
【例题示范、学会应用】
• 例 3. 若 图 象 C1 , C2 , C3 , C4 对 应 y=logax,y=logbx,y=logcx,y=logdx,则( )
小结 作业
五、教学过程设计
五、教学过程设计
例1 已知|a|=5,|b|=4,a与b的夹角 为=1200,求a·b。 例2 在三角形ABC中,已知且,试判断这 个三角形的形状。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2.1 函数的概念
第一课时
一,教材的地位与作用
函数是描述客观世界变化规律的重要数学模型。
高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言来刻画函数,函数的思想方法将贯穿于高中数学课程的始终。
函数的概念是抽象概括出的概念,通过大量的实例,培养学生从“特殊到一般”的综合归纳的能力,培养学生分析问题的能力,引导学生如何发现事物的本质,如何找到问题的突破口来解决问题。
二,教学目标
1,知识与技能:
(1)理解函数的概念及其符号表示,能够辨别函数的例证和反例
(2)会求简单函数的定义域与值域
(3)掌握构成函数的三要素,学会判别两个函数是否相等,理解函数的整体性
2,过程与方法:
(1)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)通过函数概念学习的过程,培养学生从“特殊到一般”的分析问题能力以及抽象概括能力
3,情感态度与价值观
让学生体会现实世界充满变化,感受数学的抽象概括之美。
三,教学重点与难点
1,教学重点:函数的概念,构成函数的三要素
2,教学难点:函数符号y=f(x)的理解
四,教学方法分析
1,教法分析:
遵循建构主义观点的教学方式,即通过大量实例,按照从“特殊到一般”的认识规律,提出问题,大胆猜想,确定方向分组研究尝试验证,归纳总结,通过搭建新概念与学生原有认识结构间的桥梁,使学生在心理上得到认同,建立新的认识结构。
2,学法分析:
倡议学生主动观察,积极思考,提出问题,大胆猜测,从而自主归纳小结。
在学习中培养自我的从“特殊到一般”的分析问题能力,感受数学的抽象概括之美。
五、教学过程
1,复习回顾
回顾初中所学函数(如一次函数y=ax+b a≠0等)及函数的概念:(传统定义:设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说y是x的函数,x叫做自变量);指出用函数可以描述变量之间的依赖关系;强调函数是
描述客观世界变化规律的重要数学模型。
2, 创设情境
(1)一枚炮弹发射后,经过26s 落到地面击中目标. 炮弹的射高为845m ,且炮弹距地面的高度h (单位:m )随时间t (单位:s )变化的规律是:
h=130t -5t2. (﹡)
1> 提问:你能得出炮弹飞行5秒、10秒、20秒时距地面多高吗?其中,时间t 的变化范围是什么?炮弹距离地面高度h 的变化范围是什么?
炮弹飞行时间t 的变化范围是数集}260{≤≤=t t A ,炮弹距地面的高度h 的变化范围是数集}8450{≤≤=h h B
2> (可以用几何画板展示)从问题的实际意义可知,对于数集A 中的任意一个时间t ,按照对应关系(﹡),在数集B 中都有唯一确定的高度h 和它对应.
(2)近几十年来,大气层中的臭氧迅速减少,因而出现了臭氧层空洞问题.图1中的曲线显示了南极上空臭氧层空洞的面积从1979~2001年的变化情况.
1> 提问: 观察分析图中曲线,时间t 的变化范围是多少?臭氧层空洞面积s 的变化范围是多少?尝试用集合与对应的语言描述变量之间的依赖关系.
根据图中曲线可知,时间t 的变化范围是数集}20011979{≤≤=t t A ,臭氧层空洞面积s 的变化范围是数集}260{≤≤=S S B .
2> 对于数集A 中的任意一个时间t ,按照图中曲线,在数集B 中都有唯一确定的臭氧层空洞面积S 和它对应.
(3)国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高. 表1中恩格尔系数随时间(年)变化的情况表明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化.
表1-1 “八五”计划以来我国城镇居民恩格尔系数变化情况
20 25 5 10 15 30 图1
26 25 t
S O
1979 1981 1983
1985 1987
1989
1991
1993 1995 1997
1999 2001
1> 提问:恩格尔系数与时间之间的关系是否和前两个实例中的两个变量之间的关系相似?如何用集合与对应的语言来描述这个关系?请仿照(1)(2)描述表中恩格尔系数和时间(年)的关系.
2> 根据上表,可知时间t 的变化范围是数集},20011991{*∈≤≤=N t t t A ,恩格尔系数y 的变化范围是数集}8.539.37{≤≤=y y B 。
并且,对于数集A 中的任意一个时间t ,根据表1,在数集B 中都有唯一确定的恩格尔系数y 和它对应.
3, 探究新知
(1)(小组讨论)P16 思考:分析、归纳以上三个实例,变量之间的关系有什么不同点和共同点?
归纳以上三个实例,可看出其不同点是:实例(1)是用解析式刻画变量之间的对应关系,实例(2)是用图像刻画变量之间的对应关系,实例(3)是用表格刻画变量之间的对应关系.
其共同点是:①都有两个非空数集A ,B ;②两个数集之间都有一种确定的对应关系;③对于数集A 中的每一个x ,按照某种对应关系f ,在数集B 中都有唯一确定的y 值和它对应. 记作.:B A f →
(2)函数的概念(让学生用集合与对应的语言刻画函数,抽象概括出函数的概念)
一般地,设A ,B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称B A f →:为从集合A 到集合B 的一个函数,记作.),(A x x f y ∈=
其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合})({A x x f ∈叫做函数的值域.
显然,值域是集合B 的子集.(B A x x f ⊆∈}|)({)
(3) 解剖分析:
1> 函数是两个数集之间建立的对应 2> “任意”、“唯一”
对于每个x ,按照某种确定的对应关系f ,都有唯一的y 值与它对应,这种对应应为数与 数之间的一一对应或者多一对应 3> 认真理解)(x f y =的含义:
)(x f y =是一个整体,)(x f 并不表示f 与x 的乘积,
它是一种符号,它可以是解析式,
如实例(1);也可以是图像,如实例(2);也可以是表格,如实例(3);)(x f y =如同一个加工厂,把把输入的数x ,按照某种加工过程如解析式,图像,表格,加工称另外一个数值y 。
(4)研究函数时,常会用到区间的概念。
学生要明确以下几点: 1> 区间的左端点必小于右端点
2> 以“∞+”或“∞-”为区间一端时,这一端必须是小括号
(5)学生独自完成下列表格(可以用区间表示)
4, 巩固反思
例1 判断下列对应是否为函数
(1) 1=y (x ∈R) (2) )0(≥±=x x y (3) R x x x
x ∈≠→,0,2
(4)
(5)
例2 教材P17 例1
例3 教材P19 1、2 (以下备用)
1> 下列图像中不能作为函数y = f (x )图像的是( )
2> 求下列函数的定义域
① 12)(+=x x f ② 53)(2
-+-=x x x f ③1)(+=
x x f +
x -21
④x
x f 111)(+
=
⑤ 131)(-++-=x x x f
5,小结作业
(1)小结:函数的概念;函数的三要素;如何判断两个函数是否相等
(2)作业:
1> 必做题:教材P24 1 2(只需求定义域) 2> 选做题:
已知的值;
)求的值;()求())2((2)2(),2(1,2)(,11
)(2g f g f x x g x
x f +=+=
的解析式求))(()3(x g f
x
y O
x
y O
x
y
O
A
B C D
x
y
O。