几种数值积分算法的误差分析

合集下载

常微分方程数值解法的误差分析汇总

常微分方程数值解法的误差分析汇总

淮北师范大学2013届学士学位论文常微分方程数值解法的误差分析学院、专业数学科学学院数学与应用数学研究方向计算数学学生姓名李娜学号 20091101070指导教师姓名陈昊指导教师职称讲师年月日常微分方程数值解法的误差分析李娜(淮北师范大学数学科学学院,淮北,235000)摘要自然界与工程技术中的很多现象,往往归结为常微分方程定解问题。

许多偏微分方程问题也可以化为常微分方程问题来近似求解。

因此,研究常微分方程的数值解法是有实际应用意义的。

数值解法是一种离散化的数学方法,可以求出函数的精确解在自变量一系列离散点处的近似值。

随着计算机计算能力的增强以及数值计算方法的发展,常微分方程的数值求解方法越来越多,比较成熟的有Euler 法、后退Euler法、梯形方法、Runge—Kutta方法、投影法和多步法,等等.本文将对这些解的误差进行分析,以求能够得到求解常微分数值解的精度更好的方法。

关键词:常微分方程, 数值解法, 单步法, 线性多步法, 局部截断误差Error Analysis of Numerical Method for Solving theOrdinary Differential EquationLi Na(School of Mathematical Science, Huaibei Normal University, Huaibei, 235000)AbstractIn nature and engineering have many phenomena , definite solution of the problem often boils down to ordinary differential equations. So study the numerical solution of ordinary differential equations is practical significance. The numerical method is a discrete mathematical methods, and exact solution of the function can be obtained in the approximation of a series of discrete points of the argument.With the enhanced computing power and the development of numerical methods,ordinary differential equations have more and more numerical solution,there are some mature methods. Such as Euler method, backward Euler method, trapezoidal method, Runge-Kutta method, projection method and multi-step method and so on.Therefore, numerical solution of differential equation is of great practical significance. Through this paper, error of these solutions will be analyzed in order to get a the accuracy better way to solve the numerical solution of ordinary differential.Keywords:Ordinary differential equations, numerical solution methods, s ingle ste p methods, l inear multi-step methods, local truncation error目录引言 (1)一、常微分方程 (1)1、定义 (1)2、常微分方程初值问题描述 (2)3、数值解法的基本思想与途径 (2)4、数值解的分类 (3)5、问题(1)解的存在惟一性定理 (4)二、几种常用的数值解法及其误差分析 (4)1、单步法 (4)(一)、欧拉法 (5)(二)、向后EuIer方法 (6)(三)、- 法 (7)(四)、改进欧拉法 (7)(五)Runge—Kutta方法 (9)2、线性多步法 (14)总结 (16)参考文献: (17)引 言自然界中很多事物的运动规律可用微分方程来刻画。

几种常用数值积分方法的比较

几种常用数值积分方法的比较

几种常用数值积分方法的比较数值积分是一种计算数学中定积分的方法。

常用的数值积分方法有梯形法、辛普森法和复合梯形法。

这些方法在实际计算中具有不同的优点和适用范围。

梯形法是最简单的数值积分方法之一、它基于求取定积分的梯形面积近似值。

梯形法将积分区间等分为若干个小区间,然后计算每个小区间的梯形面积,并将这些梯形面积相加得到最终的近似值。

梯形法的优点是简单易懂,计算速度较快。

然而,它的精度相对较低,特别是在非平滑函数的情况下。

辛普森法是一种更精确的数值积分方法,它基于使用二次多项式逼近函数曲线。

辛普森法将积分区间等分为若干个小区间,然后对每个小区间内的函数曲线进行三次插值,计算出每个小区间的积分值,并将这些积分值相加得到最终的近似值。

辛普森法的优点是比梯形法更精确,对于平滑函数的近似效果较好。

然而,在处理非平滑函数时,辛普森法的效果可能不如预期。

复合梯形法是对梯形法的改进和扩展。

它将积分区间分为若干个小区间,并在每个小区间内使用梯形法进行积分计算。

然后将这些小区间的积分值相加得到最终的近似值。

复合梯形法的优点是可以通过增加小区间的数量来提高精度。

它在实际计算中被广泛使用,特别是对于非平滑函数的积分计算。

在比较这些常用的数值积分方法时,有几个关键的因素需要考虑。

首先是计算精度,即方法的近似值与实际值的误差大小。

其次是计算复杂度,即使用方法计算积分所需的计算量和时间。

另外,还要考虑方法的适用范围,如对于平滑函数和非平滑函数的效果。

此外,与其他数值方法相比,这些方法的优点和局限性也需要考虑。

综合来看,梯形法是最简单且计算速度较快的数值积分方法,但精度相对较低。

辛普森法在平滑函数的近似计算中效果较好,但对非平滑函数的处理可能不理想。

复合梯形法是一种在实际计算中广泛使用的方法,可以通过增加小区间的数量来提高精度。

根据具体的计算要求和函数特性,可以选择适合的数值积分方法。

同时,还可以根据实际需要结合其他数值方法进行计算,以提高精度和效率。

几种常用数值积分方法的比较汇总

几种常用数值积分方法的比较汇总

几种常用数值积分方法的比较汇总
一、高斯求积分法(Gauss Integral)
高斯求积分法是指求解开放空间或有界空间中函数两端点之间定积分
问题,它是一种基于特殊积分点来计算定积分值的方法,它可以更快捷的
计算数值积分。

高斯求积分法比较重要的地方就在于能够把复杂的问题转
化为可以用简单的数学工具来解决的简单问题。

优点:
1.高斯求积分法的计算精度可以达到非常高的水平;
2.具有高计算效率;
3.数值精度和积分精度可以根据具体问题的复杂性来进行控制;
4.高斯求积分法可以有效地解决复杂的定积分问题。

缺点:
1.在求解特殊函数时存在计算误差;
2.对于复杂的非线性函数,高斯求积分法的精度受到影响;
3.对于曲面积分,存在计算量大的问题。

二、拉格朗日积分法(Lagrange Integral)
拉格朗日积分法(Lagrange Integral)是指用拉格朗日插值的思想,把定积分问题转化为离散化之后更容易求解的多项式求值问题,从而求解
定积分问题的一种数值积分法。

优点:
1.拉格朗日插值可以得到准确的原函数,准确性较高;
2.具有一定的计算效率,计算速度快;
3.在求解特定函数的定积分过程中,拉格朗日积分法可以提高精度。

缺点:。

几种数值积分算法的误差分析

几种数值积分算法的误差分析

(1)梯形公式的截断误差 (2)辛普森公式截断误差 (3)柯特斯公式截断误差
RT
f ( ) (b a)3, 12
(a,b)
RS
(b a)5 2880
f
(4) ( ), (a,b)
RC
2(b a) 945
(b
a)6 4
f
(6) ( ),
(a,b)
小结:Simpson公式的插值节点只比梯形公式多一个,但其
代数精确度却比梯形公式高2,它们都是最为常用的数值积分公
式,尤其是Simpson公式逻辑结构简单,且精度又比较高.
2、复化求积公式的误差分析
(1)复化梯形公式的截断误差
RTn
(
f
)
Hale Waihona Puke ba 12h2
f
(
)
(2)复化辛普森公式的截断误差
RSn
(
f
)
h 180
(h)4 2
f
(4)
( ),
(a,b)
(3)复化Cotes公式的截断误差
一、几种数值积分的算法
1、Newton-Cotes求积公式
(1)梯形公式(n=1)
b f (x)dx T b af (a) f (b)
a
2
(2)Simpson(辛普森)公式(n=2)
b
f (x)dx S
a
b
6
a
f
(a)
4
f
(a
2
b)
f
(b)
(3)Cotes公式(n=4)
b
f (x)dx C
学生:于欣蕊 指导教师:任文秀
课程设计的基本思路
本课程设计通过总结与比较各类数值积分方法及 列出具体算例,通过余项、代数精度等比较各种方法 的异同。在我们解题时,用一些方法只能解决很狭隘 的一部分积分,在它的范围外通常采用各种近似计算 的方法。在近似计算过程中,肯定会产生误差,我们 必须想办法使得产生的误差尽可能的小。因此,一个 好的数值求积公式应该满足:计算简单、误差小、代 数精度高并且稳定。为了提高运算速度和准确性,我 们要重视误差分析、收敛性及稳定性的基本理论识, 从而使运算速度更快、更准。

实验报告7—数值积分

实验报告7—数值积分

标题:积分方程的数值积分计算1.实验描述:数值积分最突出的优点是它可以计算无法解析求解的积分问题。

根据节点的选择方法可将数值积分分为常见的:组合梯形公式法、组合辛普生公式法、龙贝格积分法、自适应积分法、高斯—勒让德积分法。

本实验利用5种方法计算同一积分,通过误差分析比较各种方法的优缺点。

2.实验内容:计算320sin(4)x x e dx -⎰,并进行误差分析。

具体内容如下: 1.用组合梯形公式10M =计算。

2.用组合辛普生公式5M =计算。

3.用龙贝格积分计算,本次实验中采用4阶公式(4,4)R 计算。

4.用自适应积分方法计算,本次实验中起始容差:0=0.00001ζ。

5.用5点高斯—勒让德积分计算。

通过误差分析比较各种方法的优缺点。

3.实验原理及分析:数值积分的目的是:通过在有限采样点上计算()f x 在区间[,]a b 上的定积分。

设01...M a x x x b =<<<=,若有:()[][]ba f x dx Q f E f =+⎰,其中[]Q f 形如:0[]()Mk k k Q f w f x ==∑,则称[]Q f 为面积公式,[]E f 为截断误差,0{}M k k x =为面积节点,0{}M k k w =为权。

根据节点{}k x 的选择方法可将积分方法分为:组合梯形公式法、组合辛普生公式法、龙贝格积分法、自适应积分法、高斯—勒让德积分法。

下面着重介绍5种方法的原理:①组合梯形公式法及误差分析:设等距节点k x a kh =+,0,1,...,k M =将区间划分为宽度为b a h M-=的M 个子区间,M 个子区间的组合梯形积分公式有3种等价表示方法: 11(,)(()())2Mk k k h T f h f x f x -==+∑011(,)=(2...2)2M M h T f h f f f f -++++ 11(,)(()())()2M k k h T f h f a f b h f x -==++∑ ②组合辛普生公式法误差分析:设等距节点k x a kh =+,0,1,...,2k M =将区间分为2M 个宽度为2b a h M-=的子区间,2M 个子区间的组合辛普生积分公式也有3种等价表示方法:222121(,)(()4()())3Mk k k k h S f h f x f x f x --==++∑ 012322212(,)(424...24)3M M M h S f h f f f f f f f --=+++++++ 12211124 (,)(()())()()333M Mk k k k h h h S f h f a f b f x f x --===+++∑∑ ③龙贝格积分法及误差分析:龙贝格积分法是利用理查森外推法来提高精度的,下面给出一般公式:4(,1)(1,1)(,)41K K R J K R J K R J K ----=- 其中J K ≥ (,0)()R J T J =,为梯形公式;(,1)()R J S J =,为辛普生公式;(,2)()R J B J =,为布尔公式。

数值分析中的复化梯形法误差分析

数值分析中的复化梯形法误差分析

数值分析中的复化梯形法误差分析数值分析中的复化梯形法误差分析在数值分析中,复化梯形法是一种常用的数值积分方法。

它使用梯形规则进行近似求解定积分,通过将定积分区间分割成若干个小区间,并在每个小区间上使用梯形规则进行求解,最后将各个小区间上的积分结果相加得到整个定积分的近似值。

本文将对复化梯形法进行误差分析。

1. 复化梯形法原理复化梯形法的原理是将定积分区间[a, b]等分为n个小区间,令h=(b-a)/n为小区间长度,梯形法的近似结果T可以表示为:T = h/2 * (f(a) + 2*f(x1) + 2*f(x2) + ... + 2*f(x(n-1)) + f(b))其中,f(x)为被积函数在x点处的取值。

2. 复化梯形法误差分析复化梯形法的误差主要包括局部误差和全局误差。

2.1 局部误差在每个小区间上,我们使用梯形规则进行积分计算,其误差可以通过泰勒展开进行推导。

设f(x)在[a, b]区间上具有充分高阶连续导数,则对于每个小区间[xk, x(k+1)],我们有如下局部误差公式:E_local = - (h^3/12) * f''(ξ)其中,ξ为[xk, x(k+1)]上的某点,f''(ξ)为f(x)的二阶导数在ξ点的取值。

2.2 全局误差全局误差是指整个区间[a, b]上的积分近似与真实积分之差。

复化梯形法的全局误差可以通过对各个小区间上的局部误差进行累加得到。

假设积分的真实值为I,则全局误差E_global可以表示为:E_global = (b-a) * (h^2/12) * f''(ξ)其中,ξ为[a, b]区间上的某点,f''(ξ)为f(x)的二阶导数在ξ点的取值。

3. 误差分析实例为了更好地理解复化梯形法的误差特点,我们以一个具体的例子进行分析。

考虑定积分∫(0, 1)sin(x)dx的近似求解,将积分区间等分为4个小区间进行计算。

数学中的数值分析近似计算与误差分析的数学方法

数学中的数值分析近似计算与误差分析的数学方法

数学中的数值分析近似计算与误差分析的数学方法近似计算和误差分析是数值分析中的重要部分,它们在解决实际问题和验证数学理论的过程中起着关键的作用。

本文将介绍数值分析中常用的近似计算方法和误差分析方法。

一、近似计算方法近似计算方法是数值分析中常用的技术,用于求解无法直接得到精确解的数学问题。

下面将介绍几种常见的近似计算方法。

1.1 泰勒级数展开法泰勒级数展开法是一种常用的近似计算方法,它基于泰勒公式,通过对函数进行级数展开来逼近函数的近似值。

泰勒级数展开法在数学物理问题中得到广泛应用,尤其在求解微分方程和积分问题时表现出很好的效果。

1.2 插值法插值法是一种通过已知数据点建立一个函数,使得该函数通过这些数据点,从而在未知数据点处获得近似值的方法。

常见的插值方法有拉格朗日插值和牛顿插值,它们在数值逼近和函数逼近的问题中起着重要作用。

1.3 数值积分法数值积分法是一种近似计算定积分的方法,通过将积分区间划分成若干小区间,然后采用数值求和的方法来近似计算积分结果。

数值积分法有梯形法则、辛普森法则等多种形式,可以用于求解一维和多维积分问题。

二、误差分析方法误差分析是数值分析中的重要内容,用于分析近似计算所引入的误差以及影响问题解的因素。

下面将介绍几种常用的误差分析方法。

2.1 绝对误差和相对误差绝对误差和相对误差是常用的误差表示方法。

绝对误差是近似值与精确值之间的差值,而相对误差则是绝对误差与精确值之间的比值。

这两种误差表示方法能够客观地评估近似计算的准确性。

2.2 截断误差和舍入误差截断误差和舍入误差是数值计算中常见的误差类型。

截断误差来源于近似计算公式中的截断项,而舍入误差是由计算机对浮点数进行舍入所引入的误差。

对于复杂的数值计算问题,需要综合考虑截断误差和舍入误差的影响。

2.3 稳定性和条件数稳定性和条件数是评估数值算法性能的重要指标。

稳定性评估算法对输入数据扰动的敏感性,而条件数则是评估问题本身对输入扰动的敏感性。

数值计算方法与误差分析精要

数值计算方法与误差分析精要

数值计算方法与误差分析精要数值计算方法是一种利用计算机进行数值计算的技术,可以代替传统的手工计算,大大提高计算效率和准确性。

在科学计算和工程实践中,数值计算方法被广泛应用于求解代数方程组、数值积分、微分方程数值解、数据插值和拟合等问题。

然而,由于计算机的运算精度和舍入误差等因素的存在,数值计算结果往往存在着一定的误差。

因此,在进行数值计算时,对误差进行分析和控制是十分重要的。

1. 数值计算方法简介数值计算方法是将数学问题转化为计算机可以处理的离散形式,通过一系列算法和步骤进行数值计算的过程。

常用的数值计算方法包括迭代法、插值法、数值积分和微分方程数值解等。

迭代法是在给定初始值的基础上,通过逐步迭代求解逼近问题的解。

其中,牛顿迭代法和二分法是常用的迭代法。

迭代法的优点是简单易懂,但收敛速度较慢。

插值法是通过已知的离散数据点,构造一个插值多项式来逼近原函数。

常见的插值法有拉格朗日插值法和牛顿插值法。

插值法的优点是逼近精度高,但插值节点的选取对结果有较大影响。

数值积分是通过将定积分转化为求和的形式进行计算。

常用的数值积分方法有梯形法则和辛普森法则。

数值积分的优点是精度较高,但计算量大。

微分方程数值解是通过离散化微分方程的解空间,通过一定的数值算法求解微分方程的近似解。

常用的数值解法有欧拉法和龙格-库塔法。

微分方程数值解的优点是快速高效,但对微分方程的离散化有一定的要求。

2. 误差分析的重要性在数值计算过程中,由于计算机的舍入误差、截断误差以及方法本身的误差等因素的存在,数值计算结果会产生一定的误差。

误差的存在可能会导致计算结果与真实结果的偏差较大,甚至无法满足精度要求。

因此,对误差进行分析和控制是进行数值计算的关键。

误差分析可以帮助我们了解数值计算方法的可靠性和稳定性,指导我们选择合适的数值计算方法,并为结果的有效性提供保证。

通过误差分析,可以估计计算结果的误差范围,从而判断结果的可信度。

例如,在迭代法中,误差分析可以帮助我们确定迭代过程何时收敛,以及收敛速度如何。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几种数值积分方法的误差理论总结及讨论
学生:于欣蕊 指导教师:任文秀
课程设计的基本思路
本课程设计通过总结与比较各类数值积分方法及 列出具体算例,通过余项、代数精度等比较各种方法 的异同。在我们解题时,用一些方法只能解决很狭隘 的一部分积分,在它的范围外通常采用各种近似计算 的方法。在近似计算过程中,肯定会产生误差,我们 必须想办法使得产生的误差尽可能的小。因此,一个 好的数值求积公式应该满足:计算简单、误差小、代 数精度高并且稳定。为了提高运算速度和准确性,我 们要重视误差分析、收敛性及稳定性的基本理论识, 从而使运算速度更快、更准。
Romberg积分法高速有效,易于编程,适合于计算机计算.但它 有一个主要的缺点是,每当把区间对分后,就要对被积f (函x)数
新分点处的值,而这些计函算数它值在的个数是成倍的增加的.
4、高斯求积公式的误差分析
高斯求积公式可分为带权求积公式和不带权求积公式两大类.由
( n 1)
R[
f
]
b
a
(
x)
f (n
e x2 f (x)dx
n
Ak f (xk )
k 0
二、数值积分方法的误差比较及算例
1、Newton-Cotes求积公式的误差分析
(1)梯形公式的截断误差 (2)辛普森公式截断误差 (3)柯特斯公式截断误差
RT
f ( ) (b a)3, 12
(a,b)
RS
(b a)5 2880
一、几种数值积分的算法
1、Newton-Cotes求积公式
(1)梯形公式(n=1) b f (x)dx T b a f (a) f (b)
a
2
(2)Simpson(辛普森)公式(n=2)
b
f (x)dx S
a
b
6
a
f
(a)
4
f
(a
2
b)
f
(b)
(3)Cotes公式(n=4)
b
(1))!n1
(
x插)d值x 知余插项值型求积公式的代数精度
n
不可能低于n
,另一方面,若取
f
(x)
2 n1
(
x)
(x
xi
)2
则有R[ f ] 0
i0
说明插值型求积公式的代数精度不可能达到 2n 2 ,高斯型求积公式
是具有最高阶代数精度的求积公式. 高斯型求积公式代数精度比牛顿柯特斯代数精度高,当 n 8
2、在使用函数值个数相等的情况下, T8、S 4、C2 精度逐渐升高.
3、龙贝格求积公式的误差分析
龙贝格求积公式是具有8阶精度的算法,收敛且稳定,比 Tn、Sn、Cn
收敛的快.
余项为:
b
Rm,k ( f ) a f (x)dx Tm,k
B2m2
(b a)2m3 f (2m2) ( )
2 ! (m1)(m2k ).2m
RTn
(
f
)
ba 12
h
2
f
(
)
(2)复化辛普森公式的截断误差
RSn
(
f
)
h 180
(h)4 2
f
(4)
( ),
(a,b)
(3)复化Cotes公式的截断误差
RCn
(
f
)
2(b a) 945
(h)6 4
f
(6)
( ),
(a,b)
小结 :1、 Tn、Sn、Cn 收敛速度一个比一个快,一个比一个准确.
4、高斯求积公式
(1)高斯-勒让德求积公式 (2)高斯-切比雪夫求积公式
(3)高斯-拉盖尔求积公式 (4)高斯-埃尔米特求积公式
1
n
f (x,)dx
1
Ak f (xk )
k 0
1 1
f (x) 1 x2
dx
n
Ak
k 0
f (xk )
ex f (x)dx
0
n
Ak f (xk )
k 0
时牛顿-柯特斯求积公式出现不稳定现象而高斯型求积公式总是稳定 的.高斯求积公式的代数精度高达8,是具有最高代数精度的插值型求
积公式.
总结
通过理论分析和比较可以得出以下结论: 一般来说, Newton- Cotes方法的代数精度越 高,数值积分的效果越好;当积分区间较大时 候,可以采用复化积分方法可以得到较好的效 果;Romberg 积方法可以更好得到的积分序列 得到更为精确的数值结果,是一个较好的数值 积分方法.
f (x)dx C
a
b a 90
7
f
(
x0
)
32
f
(
x1
)
12
f
(
x2
)
32
f
(
x3
)
7
f
(
x4
)
2、复化求积公式
(1)复化梯形求积公式
Tn
h 2
f
(a)
n1
2
k 1
f
(xk
)
f
(b)
(2)复化Simpton求积公式
Sn
h 6
f
n1
(a) 2
k 1
f
n
(xk ) 4
k 1
f
(
x k
f
(4) ( ), (a,b)
RC
2(b a) 945
(b
a)6 4
f
(6) ( ),
(a,b)
小结:Simpson公式的插值节点只比梯形公式多一个,但其
代数精确度却比梯形公式高2,它们都是最为常用的数值积分公
式,尤其是Simpson公式逻辑结构简单,且精度又比较高.
积公式的误差分析
(1)复化梯形公式的截断误差
1
)
2
f
(b)
(3)复化Cotes求积公式
h
n1
3
n1
n1
Cn
90
7
f
(a) 32( (
k 0
f
(
x k
1
)
4
f
(xk
4
))
12
k
0
(Hale Waihona Puke x k1 2)
14
k
1
f
(xi ) 7
f
(b)
3、龙贝格求积公式
Tm,k
4 T m m1,k 1
Tm1,k
4m 1
, m 1,2,
i, k
im
相关文档
最新文档