芯片失效分析的意义
《电子元器件失效分析》

《电子元器件失效分析》1.失效分析的目的和意义电子元件失效分折的目的是借助各种测试分析技术和分析程序确认电子元器件的失效现象.分辨其失效模式和失效机理.确定其最终的失效原因,提出改进设计和制造工艺的建议。
防止失效的重复出现,提高元器件可靠性。
失效分折是产品可靠性工程的一个重要组成部分,失效分析广泛应用于确定研制生产过程中产生问题的原因,鉴别测试过程中与可靠性相关的失效,确认使用过程中的现场失效机理。
在电子元器件的研制阶段。
失效分折可纠正设计和研制中的错误,缩短研制周期;在电子器件的生产,测试和试用阶段,失效分析可找出电子元器件的失效原因和引起电子元件失效的责任方。
根据失效分析结果。
元器件生产厂改进器件的设计和生产工艺。
元器件使用方改进电路板设汁。
改进元器件和整机的测试,试验条件及程序,甚至以此更换不合格的元器件供货商。
因而,失效分析对加快电子元器件的研制速度.提高器件和整机的成品率和可靠性有重要意义。
失效分折对元器件的生产和使用都有重要的意义.如图所列。
元器件的失效可能发生在其生命周期的各个阶段.发生在产品研制阶段,生产阶段到使用阶段的各个环节,通过分析工艺废次品,早期失效,实验失效及现场失效的失效产品明确失效模式、分折失效机理,最终找出失效原因,因此元器件的使用方在元器件的选择、整机计划等方面,元器件生产方在产品的可靠性方案设计过程,都必须参考失效分折的结果。
通过失效分折,可鉴别失效模式,弄清失效机理,提出改进措施,并反馈到使用、生产中,将提高元器件和设备的可靠性。
2.失效分析的基本内容对电子元器件失效机理,原因的诊断过程叫失效分析。
进行失效分析往往需要进行电测量并采用先进的物理、冶金及化学的分析手段。
失效分析的任务是确定失效模式和失效机理.提出纠正措施,防止这种失效模式和失效机理的重复出现。
因此,失效分析的主要内容包括:明确分析对象。
确定失效模式,判断失效原因,研究失效机理,提出预防措施(包括设计改进)。
芯片验证与失效分析

芯片验证测试及失效分析1檀彦卓韩银和李晓维摘要本文对验证测试与失效分析技术进行了系统介绍,包括验证测试的一般流程、常用的分析方法以及基于验证测试的失效分析。
通过分析集成电路设计和制造工艺的发展给测试带来的影响,简要介绍了验证测试面临的挑战以及未来关注的若干问题。
1 芯片的验证测试在现代集成电路制造工艺中,芯片加工需要经历一系列化学、光学、冶金、热加工等工艺环节。
每道工艺都可能引入各种各样的缺陷。
与此同时由于特征尺寸的不断缩小,各类加工设施成本也急剧上升。
例如有人估计90nm器件的一套掩模成本可能超过130万美元。
因此器件缺陷造成的损失代价极为高昂。
在这种条件下,通过验证测试,分析失效原因,减少器件缺陷就成为集成电路制造中不可少的环节。
验证测试(Verification Test , Design Debug)是实现“从设计到测试无缝连接”的关键。
在0.18微米以下的制造工艺下,芯片验证测试变得更加至关重要。
它的主要任务是验证设计和测试程序(Test Programs)的正确性,确定芯片是否符合所有的设计规范([2], pp.21)。
它通过合理的失效分析(Failure Analysis)不仅为探求设计的关键参数所决定的特性空间奠定基础,还为设计人员改进设计及时反馈有效的数据依据,并为优化整体测试流程、减小测试开销以及优化后期的生产测试(Production Test)开拓了便利途径。
对芯片最显著的改进不仅仅在设计流程中产生,而且在芯片调试和验证流程中反复进行。
尤其是在高性能芯片研制过程中,随着芯片复杂度的提高,对验证测试的要求更加严格,与设计流程的交互更加频繁。
因此,从某种意义上说,“设计”与“验证测试”是一个非常密切的“交互过程”。
对于设计工程师而言,关于芯片功能和性能方面的综合数据是关键的信息。
他们通常根据设计规范预先假设出关于芯片各项性能大致的参数范围,提交给验证测试人员,通过验证测试分析后,得出比较真实的性能参数范围或者特定值。
芯片封装中的失效机理与故障分析研究

芯片封装中的失效机理与故障分析研究芯片封装是集成电路制造过程中至关重要的一步,它将芯片保护起来,并与外部环境进行连接。
然而,封装过程中可能会出现各种失效和故障,这对芯片的性能和可靠性产生了负面影响。
为了提高芯片的可靠性和稳定性,科学家和工程师们一直在研究芯片封装中的失效机理和故障分析方法。
芯片封装失效机理主要包括三个方面:热失效、机械失效和化学失效。
其中,热失效是最常见的问题之一。
当芯片工作时,产生的热量会使芯片封装材料膨胀和收缩,这可能导致封装材料与芯片之间的粘合层剪切、脱离或者开裂。
此外,温度变化也会导致封装材料的劣化,使其电绝缘性能下降,从而引发故障。
机械失效主要是由于外部力导致封装材料的物理损坏。
芯片封装材料通常是脆性材料,如塑料、陶瓷等,容易在受力下发生裂纹和断裂。
例如,当芯片受到机械冲击或振动时,封装材料可能会剪切、断裂或者产生疲劳裂纹,从而导致芯片失效。
化学失效是由于封装材料与外部环境中的化学物质发生反应而导致的。
化学物质可以是氧气、湿气、有机物等。
当芯片封装材料与这些化学物质接触时,可能会发生氧化、腐蚀、电化学反应等,进而引发芯片故障。
为了解决封装失效问题,故障分析是至关重要的环节。
故障分析旨在确定芯片失效的原因,从而采取相应措施进行修复或预防。
故障分析通常包括以下几个步骤:首先,需要收集失效芯片的相关信息。
这包括失效芯片的型号、使用条件、失效模式等。
通过分析这些信息,可以初步确定芯片失效的可能原因。
其次,进行物理分析。
物理分析是指通过观察芯片失效的外观、形态和结构,来确定失效的机理。
例如,通过显微镜观察失效芯片的微观形貌,可以确定是否存在裂纹、剥离等现象。
此外,还可以使用X射线、电子束等技术进行进一步的材料分析,以确定材料的性质和存在的异常问题。
接下来,进行电学分析。
电学分析是指通过测量失效芯片的电性能参数,来判断芯片的电路结构是否正常。
例如,使用万用表、示波器等设备对芯片进行电流、电压、功率等参数的测量,以了解失效芯片的电路状态。
芯片设计中的可靠性与失效分析技术研究

芯片设计中的可靠性与失效分析技术研究近年来,随着电子设备的普及和需求的增加,芯片设计的可靠性和失效分析技术变得尤为重要。
芯片是电子产品板块中最核心的部分之一,需要经过严格的设计和测试,以确保其工作正常、稳定,并能在长期使用过程中实现高可靠性。
本文将针对芯片设计中的可靠性及失效分析技术进行研究和探讨。
一、可靠性分析技术:在芯片设计过程中,可靠性是至关重要的指标。
因为芯片一旦出现故障或失效,将会导致整个电子设备无法正常工作。
因此,为了提高芯片的可靠性,以下是一些常见的可靠性分析技术:1.1 温度分析:温度是影响芯片可靠性的重要因素之一。
过高的温度可能导致芯片内部元件的损坏和材料热膨胀,从而引发失效。
因此,在芯片设计过程中,需要进行温度分析,确定芯片的热耗散能力,以保证芯片在正常工作温度范围内运行。
1.2 电子迁移分析:电子迁移是指电子在芯片中的物理运动。
长期以来,电子迁移一直被认为是芯片可靠性的主要因素之一。
电子迁移可能导致芯片元件发生短路、断路等失效问题。
因此,在芯片设计过程中,需要进行电子迁移分析,确定电子迁移的程度,以保证芯片的可靠性。
1.3 应力分析:芯片在工作时会受到各种应力,例如热应力、机械应力等。
这些应力的存在可能导致芯片元件的损坏和失效。
因此,需要进行应力分析,确定芯片在不同应力下的可靠性。
通过合理的设计和优化,可以降低芯片在应力条件下的失效风险。
二、失效分析技术:失效分析是研究芯片设计的重要组成部分,通过对芯片失效的分析,可以找出失效原因,进一步提高芯片的可靠性。
以下是一些常见的失效分析技术:2.1 故障模式与影响分析(FMEA):故障模式与影响分析是一种系统性的方法,用于识别和评估芯片设计中可能存在的故障模式及其潜在影响。
通过分析芯片不同组成部分的故障模式和可能的影响,可以预防潜在的失效,并优化设计,提高芯片的可靠性。
2.2 故障树分析(FTA):故障树分析是一种定量分析方法,用于推断失效事件的概率。
电脑芯片分析中的故障模式与失效分析技术

电脑芯片分析中的故障模式与失效分析技术在现代科技领域中,电脑芯片被广泛应用于各种电子设备中,扮演着重要的角色。
然而,由于使用环境的不可预知性以及制造过程中的一些潜在问题,电脑芯片偶尔会出现故障。
因此,对电脑芯片的故障模式进行分析以及失效分析技术的应用变得至关重要。
一、故障模式分析故障模式分析是对电脑芯片中可能出现的各种故障情况进行详细检查和分类的过程。
通过对故障模式的准确理解,可以帮助工程师找出问题所在,并为进一步的失效分析提供基础。
1. 硬件故障模式硬件故障模式是指由于电路设计、材料缺陷或制造过程中的错误等原因,导致电脑芯片无法正常工作或功能降低的情况。
常见的硬件故障模式包括短路、断路、电压漂移等。
2. 软件故障模式软件故障模式是指由于软件编程错误、算法问题或操作系统故障等原因,导致电脑芯片在执行任务时发生错误的情况。
常见的软件故障模式包括死循环、内存溢出等。
3. 环境故障模式环境故障模式是指电脑芯片由于使用环境的不可预测因素导致的故障。
例如,温度过高或过低、湿度过大或过小等。
环境故障模式需要特殊的测试设备和环境来模拟。
二、失效分析技术失效分析技术是为了找出电脑芯片故障的根本原因而进行的一系列操作和方法。
通过失效分析,可以确定故障模式的形成机制,以便采取相应的修复措施。
1. 故障模式与效应分析(Failure Mode and Effects Analysis,FMEA)FMEA是一种系统性的分析方法,用于识别并评估电脑芯片可能出现的故障模式及其对系统性能的影响。
通过FMEA,工程师可以评估故障的重要性并制定相应的修复策略。
2. 故障树分析(Fault Tree Analysis,FTA)FTA是一种通过构建逻辑门的树形结构来分析系统故障根本原因的方法。
通过FTA,可以确定电脑芯片故障的所有可能原因,并确定导致故障的关键因素。
3. 电镜分析(Electron Microscopy Analysis)电镜分析是利用电镜观察电脑芯片中微观结构的方法,以查找可能存在的故障点。
集成电路失效分析技术研究

集成电路失效分析技术研究集成电路(Integrated Circuit, IC)是指将多个电子器件、连接及电路功能集成在一个单一的芯片上的技术。
随着集成电路技术的不断发展,我们逐渐进入了大规模集成电路(LSI)、超大规模集成电路(VLSI)和超大规模门阵列(ULSI)的时代。
然而,由于各种因素的影响,集成电路的失效仍然是一个重要的问题。
因此,研究集成电路失效分析技术对于确保电子设备的可靠性和稳定性非常重要。
首先,集成电路失效分析技术需要考虑电路设计的问题。
设计错误可能导致电路功能失效或性能下降。
因此,分析失效的电路,并找出设计错误是非常重要的。
这可以通过对电路进行系统级分析、信号跟踪和仿真等方法来实现。
其次,集成电路制造缺陷也是一个导致失效的重要原因。
微细加工工艺容易引入缺陷,例如杂质、金属线断裂等。
因此,失效分析技术需要考虑到制造缺陷的检测和定位。
这可以通过扫描电镜、原位测试等方法来实现。
环境应力是另一个导致集成电路失效的重要因素。
在不同的工作环境中,集成电路会受到温度、湿度、电压等应力的影响,从而导致电路性能的下降或失效。
因此,失效分析技术需要结合环境条件来分析失效原因,例如通过温度和湿度测试来检测电路的性能变化。
物理破坏也是一个导致集成电路失效的常见因素。
物理破坏可能由于不正常的操作、震动、冲击等引起,例如芯片内部的金属线断裂、器件损坏等。
失效分析技术需要使用显微镜、剖析设备等来观察和分析物理破坏。
静电放电也是一个非常常见的导致集成电路失效的因素。
静电放电可以破坏电路内部的晶体管、电容器等关键器件,导致电路的性能下降或失效。
因此,失效分析技术需要通过静电放电测试来分析电路的稳定性和可靠性。
在集成电路失效分析技术的研究中,还需要结合统计分析方法来进行数据处理和结果评估。
通过大规模数据的统计分析,可以发现失效的概率分布、共性故障等规律,为电路的改进和优化提供参考。
总之,集成电路失效分析技术研究是确保电子设备可靠性和稳定性的重要内容。
芯片失效分析的原因(解决方案-常见分析手段)

芯片失效分析的原因(解决方案/常见分析手段)一般来说,芯片在研发、生产过程中出现错误是不可避免的,就如房缺补漏一样,哪里出了问题你不仅要解决问题,还要思考为什么会出现问题。
随着人们对产品质量和可靠性要求的不断提高,失效分析工作也显得越来越重要,社会的发展就是一个发现问题解决问题的过程,出现问题不可怕,但频繁出现同一类问题是非常可怕的。
本文主要探讨的就是如何进行有效的芯片失效分析的解决方案以及常见的分析手段。
失效分析失效分析是一门发展中的新兴学科,近年开始从军工向普通企业普及。
它一般根据失效模式和现象,通过分析和验证,模拟重现失效的现象,找出失效的原因,挖掘出失效的机理的活动。
失效分析是确定芯片失效机理的必要手段。
失效分析为有效的故障诊断提供了必要的信息。
失效分析为设计工程师不断改进或者修复芯片的设计,使之与设计规范更加吻合提供必要的反馈信息。
失效分析可以评估不同测试向量的有效性,为生产测试提供必要的补充,为验证测试流程优化提供必要的信息基础。
失效分析基本概念1.进行失效分析往往需要进行电测量并采用先进的物理、冶金及化学的分析手段。
2.失效分析的目的是确定失效模式和失效机理,提出纠正措施,防止这种失效模式和失效机理的重复出现。
3.失效模式是指观察到的失效现象、失效形式,如开路、短路、参数漂移、功能失效等。
4.失效机理是指失效的物理化学过程,如疲劳、腐蚀和过应力等。
失效分析的意义1.失效分析是确定芯片失效机理的必要手段。
2.失效分析为有效的故障诊断提供了必要的信息。
3.失效分析为设计工程师不断改进或者修复芯片的设计,使之与设计规范更加吻合提供必要的反馈信息。
4.失效分析可以评估不同测试向量的有效性,为生产测试提供必要的补充,为验证测试流程优化提供必要的信息基础。
失效分析主要步骤和内容芯片开封:。
电子元器件的失效分析

电子元器件的失效分析随着人们对电子产品质量可靠性的要求不断增加,电子元器件的可靠性不断引起人们的关注,如何提高可靠性成为电子元器件制造的热点问题。
例如在卫星、飞机、舰船和计算机等所用电子元器件质量可靠性是卫星、飞机、舰船和计算机质量可靠性的基础。
这些都成为电子元器件可靠性又来和发展的动力,而电子元器件的实效分析成为其中很重要的部分。
一、失效分析的定义及意义可靠性工作的目的不仅是为了了解、评价电子元器件的可靠性水平,更重要的是要改进、提高电子元器件的可靠性。
所以,在从使用现场或可靠性试验中获得失效器件后,必须对它进行各种测试、分析,寻找、确定失效的原因,将分析结果反馈给设计、制造、管理等有关部门,采取针对性强的有效纠正措施,以改进、提高器件的可靠性。
这种测试分析,寻找失效原因或机理的过程,就是失效分析。
失效分析室对电子元器件失效机理、原因的诊断过程,是提高电子元器件可靠性的必由之路。
元器件由设计到生产到应用等各个环节,都有可能失效,从而失效分析贯穿于电子元器件的整个寿命周期。
因此,需要找出其失效产生原因,确定失效模式,并提出纠正措施,防止相同失效模式和失效机理在每个元器件上重复出现,提高元器件的可靠性。
归纳起来,失效分析的意义有以下5点:(1)通过失效分析得到改进设计、工艺或应用的理论和思想。
(2)通过了解引起失效的物理现象得到预测可靠性模型公式。
(3)为可靠性试验条件提供理论依据和实际分析手段。
(4)在处理工程遇到的元器件问题时,为是否要整批不用提供决策依据。
(5)通过实施失效分析的纠正措施可以提高成品率和可靠性,减小系统试验和运行工作时的故障,得到明显的经济效益。
二、失效的分类在实际使用中,可以根据需要对失效做适当的分类。
按失效模式,可以分为开路、短路、无功能、特性退化(劣化)、重测合格;按失效原因,可以分成误用失效、本质失效、早期失效、偶然失效、耗损失效、自然失效;按失效程度,可分为完全失效、部分(局部)失效;按失效时间特性程度及时间特性的组合,可以分成突然失效、渐变失效、间隙失效、稳定失效、突变失效、退化失效、可恢复性失效;按失效后果的严重性,可以分为致命失效、严重失效、轻度失效;按失效的关联性和独立性,可以分为关联失效、非关联失效、独立失效、从属失效;按失效的场合,可分为试验失效、现场失效(现场失效可以再分为调试失效、运行失效);按失效的外部表现,可以分为明显失效、隐蔽失效。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
芯片失效分析的意义、主要步骤和内容
2011-8-7 19:13|发布者: |查看: 151|评论: 0
摘要: 通过芯片失效分析,可以帮助集成电路设计人员找到设计上的缺陷、工艺参数的不匹配或设计与操作中的不当等问题。
芯片失效分析的意义、主要步骤和内容
一般来说,集成电路在研制、生产和使用过程中失效不可避免,随着人们对产品质量和可靠性要求的不断提高,失效分析工作也显得越来越重要,通过芯片失效分析,可以帮助集成电路设计人员找到设计上的缺陷、工艺参数的不匹配或设计与操作中的不当等问题。
失效分析的意义主要表现
具体来说,失效分析的意义主要表现在以下几个方面:
失效分析是确定芯片失效机理的必要手段。
失效分析为有效的故障诊断提供了必要的信息。
失效分析为设计工程师不断改进或者修复芯片的设计,使之与设计规范更加吻合提供必要的反馈信息。
失效分析可以评估不同测试向量的有效性,为生产测试提供必要的补充,为验证测试流程优化提供必要的信息基础。
失效分析主要步骤和内容
芯片开封:去除IC封胶,同时保持芯片功能的完整无损,保持 die,bond pads,bond wires乃至lead-frame不受损伤,为下一步芯片失效分析实验做准备。
SEM 扫描电镜/EDX成分分析:包括材料结构分析/缺陷观察、元素组成常规微区分析、精确测量元器件尺寸等等。
探针测试:以微探针快捷方便地获取IC内部电信号。
镭射切割:以微激光束切断线路或芯片上层特定区域。
EMMI侦测:EMMI微光显微镜是一种效率极高的失效分错析工具,提供高灵敏度非破坏性的故障定位方式,可侦测和定位非常微弱的发光(可见光及近红外光),由此捕捉各种元件缺陷或异常所产生的漏电流可见光。
OBIRCH应用(镭射光束诱发阻抗值变化测试):OBIRCH常用于芯片内部高阻抗及低阻抗分析,线路漏电路径分析。
利用OBIRCH方法,可以有效地对电路中缺陷定位,如线条中的空洞、通孔下的空洞。
通孔底部高阻区等,也能有效的检测短路或漏电,是发光显微技术的有力补充。
LG液晶热点侦测:利用液晶感测到IC漏电处分子排列重组,在显微镜下呈现出不同于其它区域的斑状影像,找寻在实际分析中困扰设计人员的漏电区域(超过10mA之故障点)。
定点/非定点芯片研磨:移除植于液晶驱动芯片 Pad上的金凸块,保持Pad完好无损,以利后续分析或rebonding。
X-Ray 无损侦测:检测IC封装中的各种缺陷如层剥离、爆裂、空洞以及打线的完整性,PCB制程中可能存在的缺陷如对齐不良或桥接,开路、短路或不正常连接的缺陷,封装中的锡球完整性。
SAM (SAT)超声波探伤可对IC封装内部结构进行非破坏性检测, 有效检出因水气或热能所造成的各种破坏如:o晶元面脱层,o锡球、晶元或填胶中的裂缝,o 封装材料内部的气孔,o各种孔洞如晶元接合面、锡球、填胶等处的孔洞。