人教版2020中考数学试题分类汇编 知识点30 直角三角形、勾股定理

合集下载

2020届中考数学直角三角形与勾股定理相似三角形典型例题讲解

2020届中考数学直角三角形与勾股定理相似三角形典型例题讲解

第20讲:直角三角形与勾股定理一、复习目标(1)掌握判定直角三角形全等的条件和直角三角形的性质。

(2)掌握角平分线性质的逆定理。

(3)掌握勾股定理及其逆定理。

二、课时安排1课时三、复习重难点直角三角形的性质和判定,勾股定理及其逆定理,直角三角形全等的判定及其应用。

四、教学过程(一)知识梳理直角三角形的概念、性质与判定定义有一个角是________的三角形叫做直角三角形性质(1)直角三角形的两个锐角互余(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于___________全套资料联系QQ/微信:1403225658(3)在直角三角形中,斜边上的中线等于________________判定(1)两个内角互余的三角形是直角三角形(2)一边上的中线等于这边的一半的三角形是直角三角形拓展(1)S Rt△ABC=12ch=12a b,其中a、b为两直角边,c为斜边,h为斜边上的高;(2)Rt△ABC内切圆半径r=a+b-c2,外接圆半径R=c2,即等于斜边的一半勾股定理及逆定理勾股定理直角三角形两直角边a、b的平方和,等于斜边c的平方.即:________勾股定理的逆定理逆定理如果三角形的三边长a、b、c有关系: ________ ,那么这个三角形是直角三角形用途(1)判断某三角形是否为直角三角形;(2)证明两条线段垂直;(3)解决生活实际问题互逆命题互逆命题如果两个命题的题设和结论正好相反,我们把这样的两个命题叫做互逆命题,如果我们把其中一个叫做______,那么另一个叫做它的______互逆定理若一个定理的逆定理是正确的,那么它就是这个定理的________,称这两个定理为互逆定理命题、定义、定理、公理定义在日常生活中,为了交流方便,我们就要对名称和术语的含义加以描述,作出明确的规定,也就是给他们下定义命题定义判断一件事情的句子叫做命题分类正确的命题称为________错误的命题称为________组成每个命题都由______和______两个部分组成公理公认的真命题称为________定理除公理以外,其他真命题的正确性都经过推理的方法证实,推理的过程称为________.经过证明的真命题称为________(二)题型、技巧归纳考点一:利用勾股定理求线段的长度技巧归纳:勾股定理的作用:(1)已知直角三角形的两边求第三边;(2)已知直角三角形的一边求另两边的关系;(3)用于证明平方关系的问题.考点2实际问题中勾股定理的应用技巧归纳:利用勾股定理求最短线路问题的方法:将起点和终点所在的面展开成为一个平面,进而利用勾股定理求最短长度.考点3勾股定理逆定理的应用技巧归纳:判断是否能构成直角三角形的三边,判断的方法是:判断两个较小的数的平方和是否等于最大数的平方即可判断.考点4定义、命题、定理、反证法技巧归纳:只有对一件事情做出判定的语句才是命题,其中正确的命题是真命题,错误的命题是假命题.对于命题的真假(正误)判断问题,一般只需根据熟记的定义、公式、性质、判定定理等相关内容直接作出判断即可,有的则需要经过必要的推理与计算才能进一步确定真与假.(三)典例精讲例1 将一个有45度角的三角板的直角顶点放在一张宽为3 cm的纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30度角,如图21-1,则三角板的最大边的长为( )全套资料联系QQ/微信:1403225658A、3CMB、6CMC、32CMD、62CM[解析] 如图所示,过点A作AD⊥BD,垂足为D,所以AB=2AD=2×3=6 (cm),△ABC是等腰直角三角形,AC=2AB=62(cm).例2 一个长方体形的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C1处.(1)请你画出蚂蚁能够最快到达目的地的可能路径;(2)当AB=4,BC=4,CC1=5时,求蚂蚁爬过的最短路径的长;(3)求点B1到最短路径的距离.解:(1)如图,木柜的表面展开图是两个矩形和.蚂蚁能够最快到达目的地的可能路径有如图的AC′1和AC1.(2)蚂蚁沿着木柜表面经线段A1B1到C′1,爬过的路径的长是l1=42+(4+5)2=97.蚂蚁沿着木柜表面经线段BB1到C1,爬过的路径的长是l2=(4+4)2+52=89.l1>l2,最短路径的长是l2=89.(3)作B1E⊥AC1于E,则B1E=B1C1AC1·AA1=489·5=208989例3 已知三组数据:①2,3,4;②3,4,5;③1,,2.分别以每组数据中的三个数为三角形的三边长,构成直角三角形的有( )A .②B .①②C .①③D .②③[解析] 根据勾股定理的逆定理,只要两边的平方和等于第三边的平方即可构成直角三角形.只要判断两个较小的数的平方和是否等于最大数的平方即可判断.①∵22+32=13≠42,∴以这三个数为长度的线段不能构成直角三角形,故不符合题意; ②∵32+42=52,∴以这三个数为长度的线段能构成直角三角形,故符合题意; ③∵12+(√3)2=22,∴以这三个数为长度的线段能构成直角三角形,故符合题意. 故构成直角三角形的有②③. 故选D.例4 下列命题为假命题的是( ) A .三角形三个内角的和等于180° B .三角形两边之和大于第三边C .三角形两边的平方和等于第三边的平方D .三角形的面积等于一条边的长与该边上的高的乘积的一半[解析] 选项A 和B 中的命题分别为三角形的内角和定理与三角形三边关系定理,均为真命题;对于选项C ,只有直角三角形中两直角边的平方和等于斜边的平方,而其他三角形的三边都不具有这一关系,因此是假命题;选项D 中的命题是三角形的面积计算公式,也是真命题,故应选C.(四)归纳小结本部分内容要求熟练掌握判定直角三角形全等的条件和直角三角形的性质、掌握角平分线性质的逆定理、掌握勾股定理及其逆定理。

2020年中考数学精选考点试卷13 三角形和勾股定理(解析版)

2020年中考数学精选考点试卷13 三角形和勾股定理(解析版)

中考数学 专题13.1三角形和勾股定理精选考点专项突破卷(一)考试范围:三角形和勾股定理;考试时间:90分钟;总分:120分一、单选题(每小题3分,共30分)1.(2017·江苏中考真题)三角形的重心是( )A .三角形三条边上中线的交点B .三角形三条边上高线的交点C .三角形三条边垂直平分线的交点D .三角形三条内角平行线的交点2.(2019·江苏中考真题)下列长度的三条线段,能组成三角形的是( )A .2,2,4B .5,6,12C .5,7,2D .6,8,103.(2019·山东中考真题)如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,//FC AB ,若4AB =,3CF =,则BD 的长是( )A .0.5B .1C .1.5D .24.(2019·吉林中考真题)如图,在ABC ∆中,ACB ∠为钝角.用直尺和圆规在边AB 上确定一点D .使ADC 2B ∠=∠,则符合要求的作图痕迹是( )A .B .C .D .5.(2019·湖南中考真题)如图,在ABC ∆中,90︒∠=C ,8AC =,13DC AD =,BD 平分ABC ∠,则点D 到AB 的距离等于( )A .4B .3C .2D .16.(2018·浙江中考真题)如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB=AC ,△CAD=20°,则△ACE 的度数是( )A .20°B .35°C .40°D .70°7.(2015·贵州中考真题)下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )A B .C .6,7,8 D .2,3,48.(2019·湖南中考真题)如图,Rt△ABC 中,△C =90°,△B =30°,分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于M 、N 两点,作直线MN ,交BC 于点D ,连接AD ,则△CAD 的度数是( )A .20°B .30°C .45°D .60°9.(2012·黑龙江中考真题)如图,△ABC 中,AB=AC=10,BC=8,AD 平分△BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长为( )A .20B .12C .14D .1310.(2019·广西中考真题)如图,ABC ∆为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( )A.B.C.D.二、填空题(每小题4分,共28分)11.(2019·沭阳县修远中学中考模拟)如图,A、B、C分别是线段A1B、B1C、C1A的中点,若△ABC的面积是1,那么△A1B1C1的面积为____.12.(2019·山东中考模拟)如图,在线段AD,AE,AF中,△ABC的高是线段________.13.(2019·北京中考模拟)如图,在△ABC中,射线AD交BC于点D,BE△AD于E,CF△AD于F,请补充一个条件,使△BED△△CFD,你补充的条件是______(填出一个即可).14.(2019·北京中考模拟)当三角形中的一个内角α是另一个内角β的一半时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为直角三角形,则这个“特征角”的度数为______.15.(2019·辽宁中考模拟)如图,已知AB△CF,E为DF的中点,若AB=8,CF=5,则BD=_______.16.(2018·安徽中考模拟)如图,在矩形ABCD中,AB=5,BC=7,点E是AD上的一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A1恰好落在△BCD的平分线上时,CA1的长为__.17.(2019·双柏县雨龙中学中考模拟)已知三角形的两边长分别是7和10,则第三边长a的取值范围是_____.三、解答题一(每小题6分,共30分)18.(2014·江苏中考真题)如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.19.(2015·浙江中考真题)如图,已知△ABC,△C=90°,AC<BC,D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连结AD,若△B=37°,求△CAD的度数.20.(2013·浙江中考真题)如图,在△ABC中,△C=90°,AD平分△CAB,交CB于点D,过点D作DE△AB,于点E(1)求证:△ACD△△AED;(2)若△B=30°,CD=1,求BD的长.21.(2019·重庆中考真题)如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分△ABC交AC 于点E,过点E作EF△BC交AB于点F.(1)若△C=36°,求△BAD的度数.(2)若点E在边AB上,EF//AC叫AD的延长线于点F.求证:FB=FE.22.(2019·四川中考真题)如图,等腰直角三角板如图放置.直角顶点C在直线m上,分别过点A、B作AE△直线m于点E,BD△直线m于点D.;①求证:EC BD②若设△AEC三边分别为a、b、c,利用此图证明勾股定理.四、解答题二(每小题8分,共32分)23.(2017·江苏中考真题)如图,已知在四边形ABCD中,点E在AD上,△BCE=△ACD=90°,△BAC=△D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求△DEC的度数.24.(2018·山东中考真题)已知,在△ABC 中,△A=90°,AB=AC ,点D 为BC 的中点.(1)如图①,若点E 、F 分别为AB 、AC 上的点,且DE△DF ,求证:BE=AF ;(2)若点E 、F 分别为AB 、CA 延长线上的点,且DE△DF ,那么BE=AF 吗?请利用图②说明理由.25.(2015·广西中考真题)如图,在△ABC 中,△ACB=90°,AC=BC=AD .(1)作△A 的平分线交CD 于E ;(2)过B 作CD 的垂线,垂足为F ;(3)请写出图中两对全等三角形(不添加任何字母),并选择其中一对加以证明.26.(2019·山东中考真题)在ABC ∆中,90BAC ∠=︒,AB AC =,AD BC ⊥于点D .(1)如图1,点M ,N 分别在AD ,AB 上,且90BMN ∠=︒,当30AMN =︒∠,2AB =时,求线段AM 的长;(2)如图2,点E ,F 分别在AB ,AC 上,且90EDF ∠=︒,求证:BE AF =;(3)如图3,点M 在AD 的延长线上,点N 在AC 上,且90BMN ∠=︒,求证:AB AN +=.13.1三角形和勾股定理精选考点专项突破卷(一)参考答案1.A【解析】三角形的重心是三条中线的交点,故选A .2.D【解析】根据三角形三边关系,看其中较小两边的和是否大于最长边即可判断各个选项中的三条线段是否能组成三角形.【详解】224+=Q ,2∴,2,4不能组成三角形,故选项A 错误,5612+<Q ,5∴,6,12不能组成三角形,故选项B 错误,527+=Q ,5∴,7,2不能组成三角形,故选项C 错误,6810+>Q , 6∴,8,10能组成三角形,故选项D 正确,故选D .【点睛】本题考查了三角形三边关系,解答本题的关键是明确三角形两边之和大于第三边.3.B【解析】根据平行线的性质,得出A FCE ∠=∠,ADE F ∠=∠,根据全等三角形的判定,得出ADE CFE ∆≅∆,根据全等三角形的性质,得出AD CF =,根据4AB =,3CF =,即可求线段DB 的长.【详解】△//CF AB ,△A FCE ∠=∠,ADE F ∠=∠,在ADE ∆和FCE ∆中A FCE ADE F DE FE ∠=∠⎧⎪∠=∠⎨⎪=⎩,△()ADE CFE AAS ∆≅∆,△3AD CF ==,△4AB =,△431DB AB AD =-=-=.故选:B .【点睛】本题考查了全等三角形的性质和判定,平行线的性质的应用,能判定ADE FCE ∆≅∆是解此题的关键.4.B【解析】由ADC 2B ∠=∠且ADC B BCD ∠=∠+∠知B BCD ∠=∠,据此得DB DC =,由线段的中垂线的性质可得答案.【详解】解:△ADC 2B ∠=∠且ADC B BCD ∠=∠+∠,△B BCD ∠=∠,△DB DC =,△点D 是线段BC 中垂线与AB 的交点,故选B【点睛】考核知识点:线段垂直平分线.理解线段垂直平分线性质是关键.5.C【解析】如图,过点D 作DE AB ⊥于E ,根据已知求出CD 的长,再根据角平分线的性质进行求解即可.【详解】如图,过点D 作DE AB ⊥于E ,AC 8=Q ,1DC AD 3=, 1CD 8213∴=⨯=+, C 90∠︒=Q ,BD 平分ABC ∠,DE CD 2∴==,即点D到AB的距离为2,故选C.【点睛】本题考查了角平分线的性质,熟练掌握角平分线上的点到角两边的距离相等是解题的关键. 6.B【解析】先根据等腰三角形的性质以及三角形内角和定理求出△CAB=2△CAD=40°,△B=△ACB=12(180°-△CAB)=70°.再利用角平分线定义即可得出△ACE=12△ACB=35°.【详解】△AD是△ABC的中线,AB=AC,△CAD=20°,△△CAB=2△CAD=40°,△B=△ACB=12(180°-△CAB)=70°.△CE是△ABC的角平分线,△△ACE=12△ACB=35°.故选B.【点睛】本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出△ACB=70°是解题的关键.7.B【解析】试题解析:A.)2+)2≠2,故该选项错误;B.12+)2=2,故该选项正确;C.62+72≠82,故该选项错误;D.22+32≠42,故该选项错误.故选B.考点:勾股定理.8.B【解析】根据内角和定理求得△BAC=60°,由中垂线性质知DA=DB,即△DAB=△B=30°,从而得出答案.【详解】在△ABC中,△△B=30°,△C=90°,△△BAC=180°-△B-△C=60°,由作图可知MN为AB的中垂线,△DA=DB,△△DAB=△B=30°,△△CAD=△BAC-△DAB=30°,故选B.【点睛】本题主要考查作图-基本作图,熟练掌握中垂线的作图和性质是解题的关键.9.C【解析】解:△AB=AC,AD平分△BAC,BC=8,△AD△BC,CD=BD=12BC=4,△点E为AC的中点,△DE=CE=12AC=5,△△CDE的周长=CD+DE+CE=4+5+5=14.故选C.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.10.B【解析】根据题意可知点P从点A运动到点B时以及从点C运动到点A时是一条线段,故可排除选项C与D;点P从点B运动到点C时,y是x的二次函数,并且有最小值,故选项B符合题意,选项A不合题意.【详解】根据题意得,点P从点A运动到点B时以及从点C运动到点A时是一条线段,故选项C与选项D 不合题意;点P从点B运动到点C时,y是x的二次函数,并且有最小值,△选项B符合题意,选项A不合题意.故选B.【点睛】本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y与x的函数关系,然后根据二次函数和一次函数图象与性质解决问题.11.7【解析】如下图,连接A 1C ,B 1A ,C 1B ,,因B 是线段B 1C 的中点,所以B 1B=BC.△A 1B 1A 和△AB 1B 等底同高,根据等底同高的两个三角形面积相等可得S △B1AB =S △ABC =1;同理可得S △A1B1A =S △AB1B =1;所以=S △A1B1A +S △AB1B =1+1=2;同理可得S △C1CB1=2, S △C1AA1=2.S △A1B1C1= S △A1BB1+ S △C1CB1+ S △C1AA1+S △ABC =2+2+2+1=7.考点:等底同高的两个三角形面积相等.12.AF【解析】从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.【详解】△AF△BC 于F ,△AF 是△ABC 的高线,故答案为:AF .【点睛】本题主要考查了三角形的高线,锐角三角形的三条高在三角形内部,相交于三角形内一点,直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.13.答案不唯一,如BD=DC【解析】根据全等三角形的判定定理AAS 判定△BED△△CFD .【详解】解:可以添加条件:BD=DC .理由:△BD=CD ;又△BE△AD ,CF△AD ,△△E=△CFD=90°;△在△BED 和△CFD 中,90BDE CDF E CFD BD CD ∠∠⎧⎪∠∠︒⎨⎪⎩====,△△BED△△CFD(AAS).故答案是:答案不唯一,如BD=DC.【点睛】本题考查了全等三角形的判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.14.45°或30°【解析】分①“特征角”的2倍是直角时,根据“特征角”的定义列式计算即可得解;②“特征角”的2倍与“特征角”都不是直角,根据直角三角形两锐角互余列方程求解即可.【详解】解:①“特征角”的2倍是直角时,“特征角”=12×90°=45°;②“特征角”的2倍与“特征角”都不是直角时,设“特征角是x”,由题意得,x+2x=90°,解得x=30°,所以,“特征角”是30°,综上所述,这个“特征角”的度数为45°或30°.故答案为:45°或30°.【点睛】本题考查了直角三角形的性质,主要利用了直角三角形两锐角互余的性质,读懂题目信息,理解“特征角”的定义是解题的关键.15.3【解析】△AB//CF,△△A=△FCE,△ADE=△F,又△DE=FE,△△ADE△△CFE,△AD=CF=5,△AB=8,△BD=AB-AD=8-5=3,故答案为3.16.【解析】过点A1作A1M△BC于点M.由A1C是角平分线可知△A1CM=45°,可证明A1M=CM,可知△AMC是等腰直角三角形,设CM=A1M=x,在Rt△A1MB中利用勾股定理列方程求出x的值,根据△AMC是等腰直角三角形即可求出答案.【详解】过点A1作A1M△BC于点M.△点A的对应点A1恰落在△BCD的平分线上,△BCD=90°,△△A1CM=45°,即△AMC是等腰直角三角形,△设CM=A 1M=x,则BM=7-x.又由折叠的性质知AB=A 1B=5,△在直角△A 1MB 中,由勾股定理得A 1M 2=A 1B 2-BM 2=25-(7-x)2,△25-(7-x)2=x 2,解得x 1=3,x 2=4,△在等腰Rt△A 1CM 中,CA 1A 1M ,△CA 1或.【点睛】本题考查折叠性质及解直角三角形,图形折叠后对应边相等,对应角相等,熟练掌握折叠的性质是解题关键.17.3<a <17.【解析】根据三角形的第三边大于两边之差,小于两边之和,即可解决问题.【详解】解:△三角形的两边长分别是10和7,△第三边长a 的取值范围是3<a <17.故答案为3<a <17.【点睛】本题考查三角形三边关系的运用,熟记三角形的第三边大于两边之差,小于两边之和是解题的关键.18.证明见解析.【解析】试题分析:根据等腰三角形的性质可证△DBM=△ECM ,可证△BDM△△CEM ,可得MD=ME ,即可解题. 试题解析:证明:△ABC 中,△AB=AC ,△△DBM=△ECM.△M 是BC 的中点,△BM=CM.在△BDM 和△CEM 中,△,△△BDM△△CEM (SAS ).△MD=ME .BD CE DBM ECM BM CM =⎧⎪∠=∠⎨⎪=⎩考点:1.等腰三角形的性质;2.全等三角形的判定与性质.19.(1)点D的位置如图所示(D为AB中垂线与BC的交点).(2)16°.【解析】(1)根据到线段两个端点的距离相等的点在这条线段的垂直平分线上,作出AB的中垂线.(2)要求△CAD的度数,只需求出△CAD,而由(1)可知:△CAD=2△B【详解】解:(1)点D的位置如图所示(D为AB中垂线与BC的交点).(2)△在Rt△ABC中,△B=37°,△△CAB=53°.又△AD=BD,△△BAD=△B=37°.△△CAD=53°—37°=16°.考点:尺规作图,直角三角形两锐角互余、垂直平分线的性质.20.(1)见解析(2)BD=2【解析】解:(1)证明:△AD平分△CAB,DE△AB,△C=90°,△CD=ED,△DEA=△C=90°.△在Rt△ACD和Rt△AED中,AD AD {CD DE==,△Rt△ACD△Rt△AED(HL).(2)△Rt△ACD△Rt△AED ,CD=1,△DC=DE=1.△DE△AB,△△DEB=90°.△△B=30°,△BD=2DE=2.(1)根据角平分线性质求出CD=DE,根据HL定理求出另三角形全等即可.(2)求出△DEB=90°,DE=1,根据含30度角的直角三角形性质求出即可.21.(1)54BAD︒∠=;(2)见解析.【解析】(1)利用等腰三角形的三线合一的性质证明△ADB=90°,再利用等腰三角形的性质求出△ABC即可解决问题.(2)只要证明△FBE=△FEB即可解决问题.【详解】解:(1)AB AC =QC ABC ∴∠=∠36C ︒∠=Q36ABC ︒∴∠=Q D 为BC 的中点,AD BC ∴⊥90903654BAD ABC ︒︒︒︒∴∠=-∠=-=(2)Q BE 平分ABC ∠ABE EBC ∴∠=∠又//EF BC QEBC BEF ∴∠=∠EBF FEB ∴∠=∠BF EF ∴=【点睛】本题考查等腰三角形的性质,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.①证明见解析;②见解析.【解析】①通过AAS 证得CAE BCD ∆≅∆,根据全等三角形的对应边相等证得结论;②利用等面积法证得勾股定理.【详解】①证明:△90ACB ︒∠=,△90ACE BCD ︒∠+∠=.△90ACE CAE ︒∠+∠=,△CAE BCD ∠=∠.在△AEC 与△BCD 中,CEA BDC CAE BCD AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩△()CAE BCD AAS ∆∆≌.△EC BD =;②解:由①知:BD CE a ==CD AE b == △1()()2AEDB S a b a b =++梯形 221122a ab b =++. 又△AEC BCD ABC AEDB S S S S =++V V V 梯形2111222ab ab c =++ 212ab c =+. △222111222a ab b ab c ++=+. 整理,得222+=a b c .【点睛】主要考查了同角的余角相等,全等三角形的判定和性质,勾股定理的证明,解本题的关键是判断两三角形全等.23.(1)证明见解析;(2)112.5°.【解析】()1根据同角的余角相等可得到24∠=∠,结合条件BAC D ∠=∠,再加上BC CE =, 可证得结论; ()2根据90ACD AC CD ∠=︒=,,得到145D ∠=∠=︒, 根据等腰三角形的性质得到3567.5∠=∠=︒, 由平角的定义得到1805112.5DEC ∠=︒-∠=︒.【详解】() 1证明:90BCE ACD ∠=∠=︒Q ,2334,∴∠+∠=∠+∠ 24∴∠=∠,在△ABC 和△DEC 中,24BAC D BC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS ABC DEC ∴V V ≌,AC CD ∴=;(2)△△ACD =90°,AC =CD ,△△1=△D =45°,△AE =AC ,△△3=△5=67.5°,△△DEC =180°-△5=112.5°.24.(1)证明见解析;(2)BE=AF ,证明见解析.【解析】分析:(1)连接AD ,根据等腰三角形的性质可得出AD=BD 、△EBD=△FAD ,根据同角的余角相等可得出△BDE=△ADF ,由此即可证出△BDE△△ADF (ASA ),再根据全等三角形的性质即可证出BE=AF ;(2)连接AD ,根据等腰三角形的性质及等角的补角相等可得出△EBD=△FAD 、BD=AD ,根据同角的余角相等可得出△BDE=△ADF ,由此即可证出△EDB△△FDA (ASA ),再根据全等三角形的性质即可得出BE=AF . 详(1)证明:连接AD ,如图①所示.△△A=90°,AB=AC ,△△ABC 为等腰直角三角形,△EBD=45°.△点D 为BC 的中点, △AD=12BC=BD ,△FAD=45°. △△BDE+△EDA=90°,△EDA+△ADF=90°,△△BDE=△ADF .在△BDE 和△ADF 中,EBD FAD BD ADBDE ADF ∠=∠⎧⎪=⎨⎪∠=∠⎩,△△BDE△△ADF (ASA ),△BE=AF ;(2)BE=AF ,证明如下:连接AD ,如图②所示.△△ABD=△BAD=45°,△△EBD=△FAD=135°.△△EDB+△BDF=90°,△BDF+△FDA=90°,△△EDB=△FDA .在△EDB 和△FDA 中,EBD FAD BD ADEDB FDA ∠=∠⎧⎪=⎨⎪∠=∠⎩, △△EDB△△FDA (ASA ),△BE=AF .点睛:本题考查了全等三角形的判定与性质、等腰直角三角形、补角及余角,解题的关键是:(1)根据全等三角形的判定定理ASA 证出△BDE△△ADF ;(2)根据全等三角形的判定定理ASA 证出△EDB△△FDA . 25.(1)作图见试题解析;(2)作图见试题解析;(3)△ACE△△ADE ,△ACE△△CFB .【解析】试题分析:(1)利用角平分线的作法得出△A 的平分线;(2)利用钝角三角形高线的作法得出BF ;(3)利用等腰三角形的性质及全等三角形的判定得出答案.试题解析:(1)如图所示:AE 即为所求;(2)如图所示:BF 即为所求;(3)如图所示:△ACE△△ADE ,△ACE△△CFB ,△AC=AD ,AE 平分△CAD ,△AE△CD ,EC=DE ,在△ACE 和△ADE 中,△AE=AE ,△AEC=△AED ,EC=ED ,△△ACE△△ADE (SAS ).考点:1.作图—复杂作图;2.全等三角形的判定.26.(1) AM =(2)见解析;(3)见解析.【解析】(1)根据等腰三角形的性质、直角三角形的性质得到 AD =BD =DC =,求出 △MBD =30°,根据勾股定理计算即可;(2)证明△BDE △△ADF ,根据全等三角形的性质证明; (3)过点 M 作 ME △BC 交 AB 的延长线于 E ,证明△BME △△AMN ,根据全等三角形的性质得到 BE =AN ,根据等腰直角三角形的性质、勾股定理证明结论.【详解】(1)解:90BAC ∠=︒Q ,AB AC =,AD BC ⊥,AD BD DC ∴==,45ABC ACB ∠=∠=︒,45BAD CAD ∠=∠=︒,2AB =Q ,AD BD DC ∴===,30AMN ∠=︒Q ,180903060BMD ∴∠=︒-︒-︒=︒,30BMD ∴∠=︒,2BM DM ∴=,由勾股定理得,222BM DM BD -=,即222(2)DM DM -=,解得,DM =AM AD DM∴=-=(2)证明:AD BC⊥Q,90EDF∠=︒,BDE ADF∴∠=∠,在BDE∆和ADF∆中,{B DAFDB DABDE ADF∠=∠=∠=∠,()BDE ADF ASA∴∆∆≌BE AF∴=;(3)证明:过点M作//ME BC交AB的延长线于E,90AME∴∠=︒,则AE=,45E∠=︒,ME MA∴=,90AME∠=︒∵,90BMN∠=︒,BME AMN∴∠=∠,在BME∆和AMN∆中,{E MANME MABME AMN∠=∠=∠=∠,()BME AMN ASA∴∆∆≌,BE AN∴=,AB AN AB BE AE∴+=+==.【点睛】本题考查的是等腰直角三角形的性质、全等三角形的判定和性质、直角三角形的性质,掌握全等三角形的判定定理和性质定理是解题的关键。

(精品人教版)2020年中考数学专题复习卷 三角形(含解析)

(精品人教版)2020年中考数学专题复习卷 三角形(含解析)

三角形一、选择题1.在直角三角形中,若勾为3,股为4,则弦为()A. 5B. 6C. 7D. 8【答案】A【解析】:∵在直角三角形中,勾为3,股为4,∴弦为故答案为:A.【分析】根据在直角三角形中,勾是最短的直角边,股是长的直角边,弦是斜边,知道勾和股利用勾股定理,即可得出答案。

2.在▱ABCD中,对角线AC,BD相交于点O,AC=8,BD=10,那么BC的取值范围是()A.8<BC<10B.2<BC<18C.1<BC<8D.1<BC<9【答案】D【解析】:如图∵▱ABCD,AC=8,BD=10,∴OB=BD=5,OC=AC=4∴5-4<BC<5+4,即1<BC<9故答案为:D【分析】根据平行四边形的性质求出OB、OC的长,再根据三角形三边关系定理,建立不等式组,求解即可。

3.如图所示,∠A=50°,∠B=20°,∠D=30°,则∠BCD的度数为()A. 80°B. 100°C. 120°D. 140°【答案】B【解析】如图,延长BC交AD于点E,∵∠BCD=∠D+∠DEC,∠DEC=∠A+∠B,∴∠BCD=∠A+∠B+∠D,∵∠A=50°,∠B=20°,∠D=30°,∴∠BCD=50°+20°+30°=100°,故答案为:B.【分析】延长BC交AD于点E,根据三角形的一个外角等于和它不相邻的两个内角的和可得∠BCD=∠D+∠DEC,∠DEC=∠A+∠B,所以∠BCD=∠A+∠B+∠D,由已知可得∠BCD=50°+20°+30°=100°。

4.如图,BE∥AF,点D是AB上一点,且DC⊥BE于点C,若∠A=35°,则∠ADC的度数()A. 105°B. 115°C. 125°D. 135°【答案】C【解析】:∵BE∥AF,∴∠B=∠A=35°.∵DC⊥BE,∴∠DCB=90°,∴∠ADC=90°+35°=125°.故答案为:C.【分析】由平行线的性质可得∠B=∠A=35°,根据三角形的一个外角等于和它不相邻的两个内角的和可得∠ADC=90°+35°=125°。

第18讲人教版中考数学总复习《直角三角形与勾股定理》课件

第18讲人教版中考数学总复习《直角三角形与勾股定理》课件
斜边 的中点,且 = 1 ,则 的长为( B )
(第2题)
A.2
B. 2 2
C.3
D. 3 2
知识点二 直角三角形的判定
90∘
1.有一个角为____的三角形是直角三角形.
2
2
2

+

=

2.勾股定理的逆定理:如果三角形的三边长 , , 满足_____________,那
A.1个
B.2个
C.3个
D.4个
4.(人教八下P34习题17.2第1题改编)下列长度的四组线段中,不能构成直角三角
形的是( D )
A.5,12,13
B.8,15,17
C.3,4,5
D.2,3,4
知识点三 勾股定理的证明及应用
1.证明勾股定理,主要根据剪拼和图形的面积关系来寻找思路.
2.勾股定理的应用,主要体现在检验垂直,测量角度、距离等.求解立体图形上
形的两边长,则可求出第三边长;若已知直角三角形的三边关系,则可设未知数,
根据勾股定理列方程求解.判断三角形是否是直角三角形,既可根据能否得到 90∘
角来判断,也可根据勾股定理的逆定理来判断.
针对训练1 如图, △ 与 △ 都是等边三角形,线段
, , 的长是一组勾股数,且 最长.
∵ 四边形 为正方形,且 为 的中点,
∴ = = = = 4 , = = 2 .
由勾股定理得
2 = 2 + 2 = 4 2 + 2 2 = 202 ,
2 = 2 + 2 = 2 + 2 2 = 52 ,
∵△ ≌△ ,
∴ ∠ = ∠ = 150∘ .

中考解直角三角形知识点整理复习

中考解直角三角形知识点整理复习

x tan 21°
8 3
x

B
D
第 19 题图

Rt△CEG 中, tan
CGE
CE GE
,则 GE
tan
CE CGE
x tan 37°
4 3
x
∵ EF FG EG,∴ 8 x 50 4 x . x 37.5 ,∴ CD CE ED 37.51.5 39 (米).
3
3
答:古塔的高度约是 39 米. ························ 6 分
a2 b2
a 由 Sin A=c,求∠A;∠B=90°-A,b=
c2 - a2
∠B=90°-A,a=b·Sin A,c=cosA
A bC 一

角 一锐角
锐角,对边 (如∠A,a)
∠B=90°-A,b=,c=
斜边,锐角(如 c,∠A)
∠B=90°-A,a=c·Sin A, b=c·cos A
2、测量物体的高度的常见模型
35º 40
CB
D
面 CD 有多长
º
(结果精确到 0.1m.参考数据:sin40º ≈,cos40º ≈,sin35º ≈,tan35º ≈
(2012)20.(8 分)
附历年真题标准答案:
(2007)19.(本小题满分 6 分)
解:过 C 作 AB 的垂线,交直线 AB 于点 D,得到 Rt△ACD 与 Rt△BCD.
数学模型
所用 应测数据
工具
α β x
h1
h
皮尺
αβ a
h x
侧倾 器
仰角α 俯角β 高度 a
俯角α 俯角β
高度
数量关系

2020届中考数学直角三角形与勾股定理相似三角形及其应用

2020届中考数学直角三角形与勾股定理相似三角形及其应用

第21讲:直角三角形与勾股定理一、夯实基础1.在△ABC 中,∠C=90°, ∠C=72°,AB=10,则边AC 的长约为(精确到0.1)( ) A.9.1 B.9.5 C.3.1 D.3.52.如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为6m 和8m.按照输油中心O 到三条支路的距离相等来连接管道,则O 到三条支路的管道总长(计算时视管道为线,中心O 为点)是( )A 2m B.3m C.6m D.9m3. 已知小龙、阿虎两人均在同一地点,若小龙向北直走160公尺,再向东直走80公尺后,可到神仙百货,则阿虎向西直走多少公尺后,他与神仙百货的距离为340公尺?A . 100B . 180C . 220D . 2604. 将一个有45度角的三角板的直角顶点放在一张宽为3cm 的纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30度角,如图(3),则三角板的最大边的长为A. 3cmB. 6cmC. 32cmD. 62cm5.如图,△ABC 中,∠C=90°,AC=3,∠B=30°,点P 是BC 边上的动点,则AP 长不可能是O(第2题图)(A )3.5 (B )4.2 (C )5.8 (D )76. 如图3,在△ABC 中,∠C=90°,BC=6,D,E 分别在AB,AC 上,将△ABC 沿DE 折叠,使点A 落在点A′处,若A′为CE 的中点,则折痕DE 的长为( )A .21 B .2 C .3 D .4图3A 'CBADE二、能力提升7.下列命题中,其逆.命题成立的是______________.(只填写序号) ①同旁内角互补,两直线平行;全套资料联系QQ/微信:1403225658 ②如果两个角是直角,那么它们相等; ③如果两个实数相等,那么它们的平方相等;④如果三角形的三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形.8. 我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3. 若S 1,S 2,S 3=10,则S 2的值是 .9. 一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH 的边长为2米,坡角∠A =30°,∠B =90°,BC=6米. 当正方形DEFH 运动到什么位置,即当AE = 米时,有DC 2=AE 2+BC 2.10. 把命题“如果直角三角形的两直角边长分别为a 、b ,斜边长为c ,那么222a b c +=”的逆命题改写成“如果……,那么……”的形式:。

【2020中考试题分类】知识点28 直角三角形、勾股定理

【2020中考试题分类】知识点28  直角三角形、勾股定理

知识点28 直角三角形、勾股定理一、选择题7.(2020·宁波)如图,在Rt △ABC 中,∠ACB =90°,CD 为中线,延长CB 至点E ,使BE=BC ,连结DE ,F 为DE 中点,连结BF .若AC =8,BC =6,则BF 的长为A .2B .2.5C .3D .4{答案}B{解析}在Rt △ABC 中, AC =8,BC =6,根据勾股定理,得AB =22AC BC +=10.∵CD 为Rt △ABC 斜边上的中线,∴CD =12AB =5.∵BE =BC ,F 为DE 的中点,∴由中位线定理,得BF =12CD =12×5=2.5.因此本题选B .6.(2020·陕西)如图,在3×3的网格中,每个小正方形的边长均为1,点A 、B 、C 都在格点上,若BD 是△ABC 的高,则BD 的长为( ) A .101313B .91313C .81313D .71313第6题图{答案}D{解析}本题考查了利用勾股定理求线段长、割补法求三角形面积以及等积法等知识.首先求出△ABC 的面积为3.5,AC =13,再运用等积法求出BD =3.5×2÷13=71313.(2020·包头)8、如图,在Rt ABC 中,90ACB ∠=︒,D 是AB 的中点,BE CD ⊥,交CD 的延长线于点E .若2AC =,22BC =,则BE 的长为( )A .263 B .62C .3D .2{答案}A{解析}∵∠ACB=90°,∴△ABC 是直角三角形,∴22212AB AC BC =+=, ∴23AB =.又∵点D是AB 的中点,∴3CD =.∴△ABC 的面积等于△BCD 面积的2倍,即11222CD BE BC AC ⨯=,DBACEDCBA∴BE=.故选A.12.(2020·河北)如图7,从笔直的公路l旁一点P出发,向西走6km到达l;从P出发向北走6km也到达l.下列说法错误的是A.从点P向北偏西45°走3km到达lB.公路l的走向是南偏西45°C.公路l的走向是北偏东45°D.从点P向北走3km后,再向西走3km到达l{答案}A{解析}解析:如图,在Rt△PAB中,∵∠APB=90°,PA=PB=6km,∴∠PAB=∠PBA=45°,AB=km.过点P作PC⊥AB,垂足为C,∴PC=1 2×=.∴点P向北偏西45°走km到达l,故选项A错误;过点A作DE⊥PA,则∠1=∠2=45°,∴公路l的走向是北偏东45°或南偏西45°,故选项B和C正确;过点C作CF⊥PB,垂足为F.在Rt△PCB中,∵∠PCB=90°,PC=BC,PB=6km,∴CF=PF= 12×6=3km,即从点P向北走3km后,再向西走3km到达l,故选项D正确.16.(2020·河北)图10是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图10的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()B.2,3,5C.3,4,5D.2,2,4{解析}设选取的三块纸片的面积分别为a,b,c(a≤b<c),根据勾股定理可知a+b=c,所以选取的三块纸片可能为:①a=b=1,b=2,此时ab=1;②a=1,b=2,c=3, 此时ab=2;③a=1,b=3,c=4, 此时ab=3;④a=1,b=4,c=5, 此时ab=4;⑤a=2,b=2,c=4, 此时ab=4;⑥a=2,b=3,c=5, 此时ab=6.∴选取的三块纸片的面积分别是2,3,5时,所围成的三角形的面积最大,故答案为B.二、填空题16.(2020·衢州)图1是由七根连杆链接而成的机械装置,图2是其示意图.已知O,P两点固定,连杆PA=PC=140cm,AB=BC=CQ=QA=60cm,OQ=50cm,O,P两点间距与OQ长度相等.当OQ绕点O转动时,点A,B,C的位置随之改变,点B恰好在线段MN上来回运动.当点B运动至点M或N时,点A,C重合,点P,Q,A,B在同一直线上(如图3).(1)点P到MN的距离为cm;(2)当点P,O,A在同一直线上时,点Q到MN的距离为cm.{答案}(1)160,(2)640 9{解析}(1)如图3中,延长PO交MN于T,过点O作OH⊥PQ于H.由题意:OP=OQ=50cm,∵P,Q,A,B在同一直线上,∴PQ=PA-AQ=140-60=80(cm),PM=PA+BC=140+60=200(cm).∵当点B运动至点M或N时,点A,C重合,点P,Q,A,B在同一直线上(如图3),∴当点B运动到点M处的△PCO与点B运动到点N处的△PCO全等,又PM=PN,∴PT⊥MN.∵OH⊥PQ,∴PH=HQ=40(cm),∵cos∠PPH PTOP PM==,∴4050200PT=,解得PT=160(cm),∴点P到MN的距离为160 cm.(2)如图4中,当O,P,A共线时,过Q作QH⊥PT于H.设HA=x cm.由题意AT=PT﹣PA=160﹣140=20(cm),OA=PA﹣OP=140﹣50=90(cm),OQ=50cm,AQ=60cm,∵QH⊥OA,∴QH2=AQ2﹣AH2=OQ2﹣OH2,∴602﹣x2=502﹣(90﹣x)2,解得x4609=.∴HT=AH+AT6409=(cm),∴点Q到MN的距离为6409cm.因此本题答案为.(1)160(2)640 913.(2020·绍兴)如图1,直角三角形纸片的一条直角边长为2,剪四块这样的直角三角形纸片,把它们按图2放入一个边长为3的正方形中(纸片在结合部分不重叠无缝隙),则图2中阴影部分面积为________. {答案}45.{解析}本题考查了三角形的面积计算,勾股定理.由题意可得,直角三角形的斜边长为3,一条直角边长为2,由勾股定理得直角三角形的另一条直角边长为:22325-=,故阴影部分的面积是1254452⨯⨯⨯=.因此本题答案为45.16.(2020·绥化)在Rt △ABC 中,∠C =90°,若AB -AC =2,BC =8,则AB 的长是______. {答案}17{解析}设AB =x ,则AC =x -2.由勾股定理,得x2-(x -2)2=82.解得x =17.13.(2020·江苏徐州)如图,在Rt △ABC 中,∠ABC =90°,D 、E 、F 分别为AB 、BC 、CA 的中点,若BF =5,则DE = .(第13题){答案}5{解析}利用三角形的中位线的性质以及直角三角形斜边上中线的性质进行计算,∵点D 、E 、F 分别为AB 、BC 、CA 的中点,∠ABC=90˚,∴AC=2DE=2BF,∵BF=5,∴DE=5. 9.(2020·齐齐哈尔)有两个直角三角形纸板,一个含45°角,另一个含30°角,如图①所示叠放,先将含30°角的纸板固定不动,再将含45°角的纸板绕顶点A 顺时针旋转,使BC ∥DE ,如图②所示,则旋转角∠BAD 的度数为( )A .15°B .30°C .45°D .60°{答案} B{解析}由平行线的性质可得∠CF A =∠D =90°,由外角的性质可求∠BAD 的度数.如图,设AD 与BC 交于点F ,∵BC ∥DE ,∴∠CF A =∠D =90°,∵∠CF A =∠B +∠BAD =60°+∠BAD ,∴∠BAD =30°FEDBCA故选:B .13. (2020·淮安)已知直角三角形斜边长为16,则这个直角三角形斜边上的中线长为_______________. {答案}8{解析}根据直角三角形斜边上的中线性质得出CD =12AB ,代入求出即可. ∵在△ACB 中,∠ACB =90°,CD 是斜边AB 上的中线,AB =16,∴CD =12AB =8,故答案为:8. 18.(2020·无锡)如图,在Rt △ABC 中,∠ACB =90°,AB =4,点D ,E 分别在边AB ,AC 上,且DB =2AD ,AE =3EC ,连接BE ,CD ,相交于点O ,则△ABO 面积最大值为 ▲ .{答案}83{解析}过点D 作DF ∥AC 交BE 于F (如图1),易得△BDF ∽△BAE ,∴DF AE =BD AB =23,∵AE =3EC ,∴DF =2EC ,∴△COE ∽△DOF ,CO OD =CE CF =12,∴S ∆AOB =23S ∆ABC ;点C 显然在以AB 为直径的圆弧上运动,AB 中点为M ,∴当CM ⊥AB 时,即点C 在圆弧最高处时,△ABC 面积最大,此时面积为12×4×2=4,∴S ∆ABC =23×4=83.14.(2020·扬州)《九章算术》是中国传统数学的重要著作之一,奠定了中国传统数学的基本框架.如图所示是其中记载的一道“折竹”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:一根竹子原高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?答:折断处离地面 尺高.EODBAC ED 图2图 1M C ABOFEOD BAC{答案}9120{解析}本题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.设竹子折断处离地面x 尺,则斜边为(10﹣x )尺,根据勾股定理得:x 2+32=(10﹣x )2,解得x 9120=.因此本题答. 12. (2020·岳阳)如图,在ABC Rt ∆中,CD 是斜边AB 上的中线,︒=∠20A ,则=∠BCD °.{答案}70°{解析}在在ABC Rt ∆中,∵CD 是斜边AB 上的中线,∴AB BD AD CD 21===,∴∠ACD =∠A =20°,∴∠BCD =∠ACB -∠ACD =90°-20°=70°.15.(2020·湖北孝感)如图1,四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.在此图形中连接四条线段得到如图2的图案,记阴影部分的面积为1S ,空白部分的面积为2S ,大正方形的边长为m ,小正方形的边长为n ,若1S =2S ,则nm的值为________.(第15题 图1) (第15题 图2){答案}3-12. {解析}设图1中三角形较短的直角边的长为x ,则较长的直角边的长为x+n ,由题意可得S 1=2nx+n 2,S 2=2x 2,由题意可得{2nx +n 2=2x 2,m 2=x 2+(x +n)2,解得{x =m 2n =√3−12m,, 所以nm=3-12.故答案为3-12.15.(2020·达州)已知△ABC 的三边a 、b 、c 满足b +|c −3|+a 2-8a =4√b −1-19,则△ABC 的内切圆半径= . {答案}1{解析} 式子b +|c −3|+a 2-8a =4√b −1-19可整理为:(a -4)2+(√b −1−2)2+|c −3|=0,由平方、二次根式、绝对值的非负性可得:a -4=0且√b −1−2=0、c −3=0,所以a =4,b =5,c=3,由勾股定理得逆定理得△ABC 是直角三角形,所以r=12×(3+4-5)=1.11.(2020·菏泽)如图,在△ABC 中,∠ACB =90°,点D 为AB 边的中点,连接CD ,若BC =4,CD =3,则cos ∠DCB 的值为______.{答案}32 {解析}结合直角三角形斜边中线的性质把∠DCB 等量转化到直角三角形中求余弦值.在Rt △ABC 中,∵点D 为AB 边的中点,∴CD =21AB ,∴CD =BD ,AB =2CD =6,△△DCB =△B ,△cos ∠DCB =cos B =AB BC =64=32. 15.“健康荆州,你我同行”,市民小张积极响应“全民健身动起来”号召,坚持在某环形步道上跑步.已知此步道外形近似于如图所示的Rt △ABC ,其中∠C=90°,AB 与BC 间另有步道DE 相连,D 在AB 正中位置,E 地与C 相距1 km .若tan ∠ABC=43,∠DEB=45°,小张某天沿A →C →E →B →D →A 路线跑一圈,则他跑了 km .ACBD{答案}24{解析}过点D 作DF ⊥BC ,垂足为F ,设DF=x , ∵∠DEB=45°,tan ∠ABC=43, ∴tan ∠ABC=BF DF =43,tan ∠DEF=EF DF =1,∴43BF x ,EF x . ∵CE=1,∴471133BC x x x .∵DF ⊥BC ,AC ⊥BC ,∴DF ∥AC ,∵D 在AB 正中位置,∴DF 是△ABC 的中位线,∴AC=2DF=2x ,在Rt △ABC 中,∠C=90°,tan ∠ABC=43,∴tan ∠ABC=BC AC =43,即237413x x ,解得x =3,∴AC=6,BC=8, ∴226810AB,∴当小张某天沿A →C →E →B →D →A 路线跑一圈时,则他跑了681024AC BCAB km .15.(2020·安顺)如图,ABC ∆中,点E 在边AC 上,EB EA =,2A CBE ∠=∠,CD 垂直于BE 的延长线于点D ,8BD =,11AC =,则边BC 的长为 .{答案}45{解析} 过点C ,作CF ∥AB ,交AB 的延长线于点F,作点F 关于直线CD 的对称点G.则,FCE A F ABE ∠=∠∠=∠,CF=CG,DF=DG.∵EB=EA ,∴A ABE ∠=∠,∴FCE F ∠=∠,∴EF=EC.即AC=BF=11. ∵DF=DG=3,∴BG=5. ∵CF=CG, ∴2FGC F CBE ∠=∠=∠ ,即CG=BG=5,则CD=4.在Rt △BDC 中,224845BC =+=.第15题图18.(2020·宜宾)在Rt△ABC 中,△ACB =90°,D 是AB 的中点,BE 平分△ABC 交AC 于点E ,连结CD 交BE 于点O .若AC =8,BC =6,则OE 的长是 .{答案}9511{解析}在Rt △ABC 中,∠ACB =90°,AC =8,BC =6,根据勾股定理,得AB =22AC BC +=2286+=10.∴S △ABC =24,∵D 是AB 的中点,∴BD =5,S △BCD =12,如图,过点E 作EF ⊥AB 于点F ,过点O 分别作OG ⊥AB 于点G ,OH ⊥BC 于点H ,∵BE 平分∠ABC ,∴CE =FE ,OG =OH ,设CE =FE =m ,OG =OH =n ,∴AE =8-m ,∵S △ABE =12AE·BC =12AB·FE ,∴AE·BC =AB·FE ,∴6(8-m )=10m ,∴CE =FE =m =3,在Rt △ABC 中,∠ECB =90°,根据勾股定理,得BE =22CE BC +=2236+=35.∵S △BCD =12BD·OG+12BC·OH ,∴12×5×n+12×6×n =12,∴OG =OH =n =2411,由OH ∥BC 得BO BE =OH CE=24113=811,∴OE =311BE =9511.三、解答题22.(2020·哈尔滨)如图,方格纸中的每个小正方形的边长均为1,线段AB 和线段CD 的端点均在第15题答F G H小正方形的顶点上.(1)在图中画出以AB 为边的正方形ABEF ,点E 和点F 均在小正方形的顶点上;(2)在图中画出以CD 为边的等腰△CDG ,点G 在小正方形的顶点上,且△CDG 的周长1010+.连接EG ,请直接写出线段EG 的长.{解析}本题考查了使用正方形判定等进行尺规作图,等腰三角形的性质;熟练掌握等腰三角形尺规作图方法是解题的关键,(1)以A 和B 为圆心,AB 为半径作圆,格点即为点F 和点E ;(2)因为△CDG 的周长1010+,CD =10,所以腰长是5,以C 或D 为圆心,5个格长为半径作圆,格点即为点G ,最后勾股得出EG =51222=+. {答案}解:(1)如图所示.(2)如图所示, EG =516.(2020·贵阳)(8分)如图,在4×4的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图△中,画一个直角三角形,使它的三边长都是有理数;(2)在图△中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数; (3)在图△中,画一个直角三角形,使它的三边长都是无理数.{答案}解:(1)如图△中,△ABC 即为所求. (2)如图△中,△ABC 即为所求. (3)△ABC 即为所求.23.(2020·随州)勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今. (1)①请叙述勾股定理;②勾股定理的证明,人们已经找到了400多种方法,请从下列几种常见的证明方法中任选一种来证FEG明该定理:(以下图形均满足证明勾股定理所需的条件)(2)①如图4、5、6,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,这三个图形中面积关系满足321S S S =+的有 个;②如图7所示,分别以直角三角形三边为直径作半圆,设图中两个月形图案(图中阴影部分)的面积分别为21S S 、,直角三角形面积为3S ,请判断321S S S 、、的关系并证明;(3)如果以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到如图8所示的“勾股树”.在如图9所示的“勾股树”的某部分图形中,设大正方形M 的边长为定值m ,四个小正方形A ,B ,C ,D 的边长分别为a ,b ,c ,d ,已知∠1=∠2=∠3=∠α,则当∠α变化时,回答下列问题:(结果可用含m 的式子表示)①=+++2222d c b a ;②b 与c 的关系为 ,a 与d 的关系为 .{解析}本题考查了勾股定理及其证明方法、整式的化简、方程组的解法.(1)①按照教材内容叙述勾股定理的内容;②利用各部分图形的面积和等于总面积列出关于a 、b 、c 的等式,然后化简整理即可得到勾股定理的结论;(2)①在每个图形中都可以利用各部分图形的面积公式和勾股定理证明321S S S =+,进而得到答案为3;②首先利用正方形、半圆、等边三角形的面积公式求出321S S S 、、,然后结合勾股定理证明321S S S =+.(3)①首先利用正方形形的面积公式和勾股定理证明正方形A 、B 、C 、D 的面积和等于正方形M 的面积,然后代入数值可以得到=+++2222d c b a 2m .②利用∠1=∠2=∠3=∠α,得到它们的正切值e f c d a b ==,再结合勾股定理解方程组可以确定b=c ,a+d=m.{答案}解:(1)①如果直角三角形的两条直角边分别为a ,b ,斜边为c ,那么222c b a =+.(或者:在直角三角形中,两条直角边的平方和等于斜边的平方.)……1分②证明:(学生只需写出一种证明方法即可,未写文字说明不扣分)在图1中,大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和. 即22)(421a b ab c -+⋅=,化简得222c b a =+. 在图2中,大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和. 即421)(22⋅+=+ab c b a ,化简得222c b a =+. 在图3中,梯形的面积等于三个直角三角形的面积的和. 即221221))((21c ab b a b a +⋅=++,化简得222c b a =+.……………3分 (2)①3……4分②结论321S S S =+.……5分 证明如下:∵232221)2(21)2(21)2(21c S b a S S πππ-++=+3222)(81S c b a +-+=π ∵222c b a =+,∴321S S S =+.…………………7分 (3)①如图所示,由(1)②的证明可知:M F E D C B A S S S S S S S =+=+++,∵大正方形M 的边长为定值m ,四个小正方形A ,B ,C ,D 的边长分别为a ,b ,c ,d ,∴=+++2222d c b a 2m .答案:2m …8分②如图所示,设正方形E 、F 的边长分别为e 、f ,∵∠1=∠2=∠3=∠α,∴ef c d a b ==. 又∵=+++2222d c b a 2m ,222e b a =+,∴222f d c =+, ∴b=c ,a+d=m.答案:b=c ,…9分a+d=m.…11分23.(2020·随州)勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.(1)①请叙述勾股定理;②勾股定理的证明,人们已经找到了400多种方法,请从下列几种常见的证明方法中任选一种来证明该定理:(以下图形均满足证明勾股定理所需的条件)(2)①如图4、5、6,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,这三个图形中面积关系满足321S S S =+的有 个;②如图7所示,分别以直角三角形三边为直径作半圆,设图中两个月形图案(图中阴影部分)的面积分别为21SS、,直角三角形面积为3S,请判断321SSS、、的关系并证明;(3)如果以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到如图8所示的“勾股树”.在如图9所示的“勾股树”的某部分图形中,设大正方形M的边长为定值m,四个小正方形A,B,C,D的边长分别为a,b,c,d,已知∠1=∠2=∠3=∠α,则当∠α变化时,回答下列问题:(结果可用含m的式子表示)①=+++2222dcba;②b与c的关系为,a与d的关系为.{解析}本题考查了勾股定理及其证明方法、整式的化简、方程组的解法.(1)①按照教材内容叙述勾股定理的内容;②利用各部分图形的面积和等于总面积列出关于a、b、c的等式,然后化简整理即可得到勾股定理的结论;(2)①在每个图形中都可以利用各部分图形的面积公式和勾股定理证明321SSS=+,进而得到答案为3;②首先利用正方形、半圆、等边三角形的面积公式求出321SSS、、,然后结合勾股定理证明321SSS=+.(3)①首先利用正方形形的面积公式和勾股定理证明正方形A、B、C、D的面积和等于正方形M的面积,然后代入数值可以得到=+++2222dcba2m.②利用∠1=∠2=∠3=∠α,得到它们的正切值efcdab==,再结合勾股定理解方程组可以确定b=c,a+d=m. {答案}解:(1)①如果直角三角形的两条直角边分别为a,b,斜边为c,那么222cba=+.(或者:在直角三角形中,两条直角边的平方和等于斜边的平方.)……1分②证明:(学生只需写出一种证明方法即可,未写文字说明不扣分)在图1中,大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和.即22)(421a b ab c -+⋅=,化简得222c b a =+. 在图2中,大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和. 即421)(22⋅+=+ab c b a ,化简得222c b a =+. 在图3中,梯形的面积等于三个直角三角形的面积的和. 即221221))((21c ab b a b a +⋅=++,化简得222c b a =+.……………3分 (2)①3……4分②结论321S S S =+.……5分 证明如下:∵232221)2(21)2(21)2(21c S b a S S πππ-++=+3222)(81S c b a +-+=π ∵222c b a =+,∴321S S S =+.…………………7分(3)①如图所示,由(1)②的证明可知:M F E D C B A S S S S S S S =+=+++,∵大正方形M 的边长为定值m ,四个小正方形A ,B ,C ,D 的边长分别为a ,b ,c ,d ,∴=+++2222d c b a 2m .答案:2m …8分②如图所示,设正方形E 、F 的边长分别为e 、f ,∵∠1=∠2=∠3=∠α,∴ef c d a b ==. 又∵=+++2222d c b a 2m ,222e b a =+,∴222f d c =+,∴b=c ,a+d=m.答案:b=c ,…9分a+d=m.…11分23.(2020·牡丹江)等腰三角形ABC 中,AB =AC =4,∠BAC =45°,以AC 为腰作等腰直角三角形ACD ,∠CAD为90°,请画出图形,并直接写出点B 到CD 的距离.{解析}根据题目条件先画出相应的图形,分点D 在AC 的左侧或右侧两种情况讨论,然后根据特殊的45°角及相关线段长度,结合等腰直角三角形的性质和勾股定理求出点B 到CD 的垂线段的长度,即点B 到CD 的距离. {答案}解:本题有两种情况:点B 到CD 的距离为22;点B 到CD 的距离为4-22.(每图正确得1分,每个答案正确得2分)16. (2020·安顺)如图,在44 的正方形网格中,每个小格的顶点叫做格点,以格点为项点分别按下列要求画三角形.(1)在图△中,画一个直角三角形,使它的三边长都是有理数;(2)在图△中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数;(3)在图△中,画一个直角三角形,使它的三边长都是无理数.图△图△图△{解析} 画直角三角形的关键在于利用勾股定理的逆定理,即一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形,同时,合理使用格点三角形的特征.(1)显然利用边长为3、4、5即可画出直角三角形;(2)可以借助三边长为222、、的特点画直角三角形;(3)可以借助三边长为22210、、画出直角三角形.本题画法不唯一.{答案}(答案不唯一)(1)答图①(2)答图②(3)答图③DB AC A B C D。

直角三角形与勾股定理(优选真题60道)三年(2021-2023)中考数学真题分项汇编(全国通用)解析

直角三角形与勾股定理(优选真题60道)三年(2021-2023)中考数学真题分项汇编(全国通用)解析

三年(2021-2023)中考数学真题分项汇编(全国通用)直角三角形与勾股定理(优选真题60道)一.选择题(共28小题)1.(2023•湖北)如图,在△ABC 中,∠ABC =90°,AB =3,BC =4,点D 在边AC 上,且BD 平分△ABC 的周长,则BD 的长是( )A .√5B .√6C .6√55D .3√64【分析】根据勾股定理得到AC =√AB 2+BC 2=5,求得△ABC 的周长=3+4+5=12,得到AD =3,CD=2,过D 作DE ⊥BC 于E ,根据相似三角形的性质得到DE =65,CE =85,根据勾股定理即可得到结论.【解答】解:在△ABC 中,∠ABC =90°,AB =3,BC =4,∴AC =√AB 2+BC 2=5,∴△ABC 的周长=3+4+5=12,∵BD 平分△ABC 的周长,∴AB +AD =BC +CD =6,∴AD =3,CD =2,过D 作DE ⊥BC 于E ,∴AB ∥DE ,∴△CDE ∽△CAB ,∴DE AB =CD AC =CE CB , ∴DE 3=25=CE 4,∴DE =65,CE =85,∴BE =125,∴BD =√BE 2+DE 2=√(125)2+(65)2=6√55,故选:C.【点评】本题考查了勾股定理,相似三角形的判定和性质,正确地作出辅助线是解题的关键.2.(2023•济宁)如图,在正方形方格中,每个小正方形的边长都是一个单位长度,点A,B,C,D,E均在小正方形方格的顶点上,线段AB,CD交于点F,若∠CFB=α,则∠ABE等于()A.180°﹣αB.180°﹣2αC.90°+αD.90°+2α【分析】过B点作BG∥CD,连接EG,根据平行线的性质得出∠ABG=∠CFB=α.根据勾股定理求出BG2=17,BE2=17,EG2=34,那么BG2+BE2=EG2,根据勾股定理的逆定理得出∠GBE=90°,进而求出∠ABE的度数.【解答】解:如图,过B点作BG∥CD,连接EG,∵BG∥CD,∴∠ABG=∠CFB=α.∵BG2=12+42=17,BE2=12+42=17,EG2=32+52=34,∴BG2+BE2=EG2,∴△BEG是直角三角形,∴∠GBE=90°,∴∠ABE=∠GBE+∠ABG=90°+α.故选:C.【点评】本题考查了勾股定理及其逆定理,平行线的性质,准确作出辅助线是解题的关键.3.(2023•天津)如图,在△ABC 中,分别以点A 和点C 为圆心,大于12AC 的长为半径作弧(弧所在圆的半径都相等),两弧相交于M ,N 两点,直线MN 分别与边BC ,AC 相交于点D ,E ,连接AD .若BD =DC ,AE =4,AD =5,则AB 的长为( )A .9B .8C .7D .6【分析】根据线段垂直平分线的性质可得AC =2AE =8,DA =DC ,从而可得∠DAC =∠C ,再结合已知易得BD =AD ,从而可得∠B =∠BAD ,然后利用三角形内角和定理可得∠BAC =90°,从而在Rt △ABC 中,利用勾股定理进行计算,即可解答.【解答】解:由题意得:MN 是AC 的垂直平分线,∴AC =2AE =8,DA =DC ,∴∠DAC =∠C ,∵BD =CD ,∴BD =AD ,∴∠B =∠BAD ,∵∠B +∠BAD +∠C +∠DAC =180°,∴2∠BAD +2∠DAC =180°,∴∠BAD +∠DAC =90°,∴∠BAC =90°,在Rt △ABC 中,BC =BD +CD =2AD =10,∴AB =√BC 2−AC 2=√102−82=6,故选:D .【点评】本题考查了勾股定理,线段垂直平分线的性质,等腰三角形的性质,三角形内角和定理,熟练掌握勾股定理,以及线段垂直平分线的性质是解题的关键.4.(2023•泸州)《九章算术》是中国古代重要的数学著作,该著作中给出了勾股数a ,b ,c 的计算公式:a =12(m 2﹣n 2),b =mn ,c =12(m 2+n 2),其中m >n >0,m ,n 是互质的奇数.下列四组勾股数中,不能由该勾股数计算公式直接得出的是( )A .3,4,5B .5,12,13C .6,8,10D .7,24,25【分析】根据题目要求逐一代入符合条件的m ,n 进行验证、辨别.【解答】解:∵当m =3,n =1时,a =12(m 2﹣n 2)=12(32﹣12)=4,b =mn =3×1=3,c =12(m 2+n 2)=12×(32+12)=5,∴选项A 不符合题意;∵当m =5,n =1时,a =12(m 2﹣n 2)=12(52﹣12)=12,b =mn =5×1=5,c =12(m 2+n 2)=12×(52+12)=13,∴选项B 不符合题意;∵当m =7,n =1时,a =12(m 2﹣n 2)=12(72﹣12)=24,b =mn =7×1=7,c =12(m 2+n 2)=12×(72+12)=25,∴选项D 不符合题意;∵没有符合条件的m ,n 使a ,b ,c 各为6,8,10,∴选项C 符合题意,故选:C .【点评】此题考查了整式乘法运算和勾股数的应用能力,关键是能准确理解并运用以上知识进行正确地计算.5.(2023•无锡)如图,在四边形ABCD 中,AD ∥BC ,∠DAB =30°,∠ADC =60°,BC =CD =2,若线段MN 在边AD 上运动,且1,则BM 2+2BN 2的最小值是( )A .132B .293C .394D .10【分析】过B 作BF ⊥AD 于F ,过C 作CE ⊥AD 于E ,根据直角三角形的性质得到CE =√32CD =√3,求得BF =CE =√3,要使BM 2+2BN 2的值最小,则BM 和BN 越小越好,MN 显然在点B 的上方(中间位置时),设MF =x ,FN =1﹣x ,根据勾股定理和二次函数的性质即可得到结论.【解答】解:过B 作BF ⊥AD 于F ,过C 作CE ⊥AD 于E ,∵∠D =60°,CD =2,∴CE =√32CD =√3,∵AD∥BC,∴BF=CE=√3,要使BM2+2BN2的值最小,则BM和BN越小越好,∴MN显然在点B的上方(中间位置时),设MF=x,FN=1﹣x,∴BM2+2BN2=BF2+FM2+2(BF2+FN2)=x2+3+2[(1﹣x)2+3]=3x2﹣4x+11=3(x−23)2+293,∴当x=23时,BM2+2BN2的最小值是293.故选:B.【点评】本题考查了矩形的性质,直角三角形的性质,正确地作出辅助线是解题的关键.6.(2023•日照)已知直角三角形的三边a,b,c满足c>a>b,分别以a,b,c为边作三个正方形,把两个较小的正方形放置在最大正方形内,如图,设三个正方形无重叠部分的面积为S1,均重叠部分的面积为S2,则()A.S1>S2B.S1<S2C.S1=S2D.S1,S2大小无法确定【分析】由直角三角形的三边a,b,c满足c>a>b,根据垂线段最短可知该直角三角形的斜边为c,则c2=a2+b2,所以c2﹣a2﹣b2=0,则S1=c2﹣a2﹣b2+b(a+b﹣c)=ab+b2﹣bc,而S2=b(a+b﹣c)=ab+b2﹣bc,所以S1=S2,于是得到问题的答案.【解答】解:∵直角三角形的三边a,b,c满足c>a>b,∴该直角三角形的斜边为c,∴c2=a2+b2,∴c2﹣a2﹣b2=0,∴S1=c2﹣a2﹣b2+b(a+b﹣c)=ab+b2﹣bc,∵S2=b(a+b﹣c)=ab+b2﹣bc,∴S1=S2,故选:C.【点评】此题重点考查勾股定理、正方形的面积公式、根据转化思想解决面积问题等知识与方法,确定三边为a,b,c的直角三角形的斜边为c是解题的关键.7.(2022•百色)活动探究:我们知道,已知两边和其中一边的对角对应相等的两个三角形不一定全等.如已知△ABC中,∠A=30°,AC=3,∠A所对的边为√3,满足已知条件的三角形有两个(我们发现其中如图的△ABC是一个直角三角形),则满足已知条件的三角形的第三边长为()A.2√3B.2√3−3C.2√3或√3D.2√3或2√3−3【分析】根据题意知,CD=CB,作CH⊥AB于H,再利用含30°角的直角三角形的性质可得CH,AH 的长,再利用勾股定理求出BH,从而得出答案.【解答】解:如图,CD=CB,作CH⊥AB于H,∴DH=BH,∵∠A=30°,∴CH=12AC=32,AH=√3CH=32√3,在Rt△CBH中,由勾股定理得BH=√BC2−CH2=√3−94=√32,∴AB=AH+BH=3√32+√32=2√3,AD=AH﹣DH=3√32−√32=√3,故选:C.【点评】本题主要考查了勾股定理,含30°角的直角三角形的性质等知识,理解题意,求出BH的长是解题的关键.8.(2022•南充)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE∥AB,交AC于点E,DF⊥AB于点F,DE=5,DF=3,则下列结论错误的是()A.BF=1B.DC=3C.AE=5D.AC=9【分析】根据角平分线的性质和和勾股定理,可以求得CD和CE的长,再根据平行线的性质,即可得到AE的长,从而可以判断B和C,然后即可得到AC的长,即可判断D;再根据全等三角形的判定和性质即可得到BF的长,从而可以判断A.【解答】解:∵AD平分∠BAC,∠C=90°,DF⊥AB,∴∠1=∠2,DC=FD,∠C=∠DFB=90°,∵DE∥AB,∴∠2=∠3,∴∠1=∠3,∴AE=DE,∵DE=5,DF=3,∴AE=5,CD=3,故选项B、正确;∴CE=√DE2−CD2=4,∴AC=AE+EC=5+4=9,故选项D正确;∵DE∥AB,∠DFB=90°,∴∠EDF=∠DFB=90°,∴∠CDE+∠FDB=90°,∵∠CDE+∠DEC=90°,∴∠DEC=∠FDB,∵tan∠DEC=CDCE,tan∠FDB=BFDF,∴34=BF3,解得BF=94,故选项A错误;故选:A.【点评】本题考查勾股定理、全等三角形的判定和性质、等腰三角形的性质、角平分线的性质、锐角三角函数,解答本题的关键是明确题意,利用数形结合的思想解答.9.(2022•遵义)如图1是第七届国际数学教育大会(ICME )会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC .若AB =BC =1,∠AOB =30°,则点B 到OC 的距离为( )A .√55B .2√55C .1D .2【分析】作BH ⊥OC 于H ,利用含30°角的直角三角形的性质得OB =2,再由勾股定理得OC =√5,再根据cos ∠BOC =cos ∠CBH ,得OB OC =BH BC,代入计算可得答案. 【解答】解:作BH ⊥OC 于H ,∵∠AOB =30°,∠A =90°,∴OB =2AB =2,在Rt △OBC 中,由勾股定理得,OC =√OB 2+BC 2=√22+12=√5,∵∠CBO =∠BHC =90°,∴∠CBH =∠BOC ,∴cos ∠BOC =cos ∠CBH ,∴OB OC =BH BC , ∴√5=BH1,∴BH =2√55, 故选:B .【点评】本题主要考查了勾股定理,含30°角的直角三角形的性质,三角函数等知识,熟练掌握等角的三角函数值相等是解题的关键.10.(2022•安徽)已知点O 是边长为6的等边△ABC 的中心,点P 在△ABC 外,△ABC ,△P AB ,△PBC ,△PCA 的面积分别记为S 0,S 1,S 2,S 3.若S 1+S 2+S 3=2S 0,则线段OP 长的最小值是( ) A .3√32 B .5√32 C .3√3 D .7√32【分析】如图,不妨假设点P 在AB 的左侧,证明△P AB 的面积是定值,过点P 作AB 的平行线PM ,连接CO 并延长CO 交AB 于点R ,交PM 于点T .因为△P AB 的面积是定值,推出点P 的运动轨迹是直线PM ,求出OT 的值,可得结论.【解答】解:如图,不妨假设点P 在AB 的左侧,∵S △P AB +S △ABC =S △PBC +S △P AC ,∴S 1+S 0=S 2+S 3,∵S 1+S 2+S 3=2S 0,∴S 1+S 1+S 0=2S0,∴S 1=12S 0, ∵△ABC 是等边三角形,边长为6,∴S 0=√34×62=9√3,∴S 1=9√32,过点P 作AB 的平行线PM ,连接CO 延长CO 交AB 于点R ,交PM 于点T .∵△P AB 的面积是定值,∴点P 的运动轨迹是直线PM ,∵O 是△ABC 的中心,∴CT ⊥AB ,CT ⊥PM ,∴12•AB •RT =9√32,CR =3√3,OR =√3, ∴RT =3√32, ∴OT =OR +TR =5√32, ∵OP ≥OT ,∴OP 的最小值为5√32, 当点P 在②区域时,同法可得OP 的最小值为7√32, 如图,当点P 在①③⑤区域时,OP 的最小值为5√32,当点P 在②④⑥区域时,最小值为7√32, ∵5√32<7√32,故选:B .【点评】本题考查等边三角形的性质,解直角三角形,三角形的面积等知识,解题的关键是证明△P AB 的面积是定值.11.(2022•广元)如图,在△ABC 中,BC =6,AC =8,∠C =90°,以点B 为圆心,BC 长为半径画弧,与AB 交于点D ,再分别以A 、D 为圆心,大于12AD 的长为半径画弧,两弧交于点M 、N ,作直线MN ,分别交AC 、AB 于点E 、F ,则AE 的长度为( )A .52B .3C .2√2D .103【分析】利用勾股定理求出AB ,再利用相似三角形的性质求出AE 即可.【解答】解:在Rt △ABC 中,BC =6,AC =8,∴AB =√BC 2+AC 2=√62+82=10,∵BD =CB =6,∴AD =AB ﹣BC =4,由作图可知EF 垂直平分线段AD ,∴AF =DF =2,∵∠A =∠A ,∠AFE =∠ACB =90°,∴△AFE ∽△ACB ,∴AE AB =AF AC , ∴AE 10=28, ∴AE =52,故选:A .【点评】本题考查勾股定理,相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.12.(2022•南京)直三棱柱的表面展开图如图所示,AC =3,BC =4,AB =5,四边形AMNB 是正方形,将其折叠成直三棱柱后,下列各点中,与点C 距离最大的是( )A .点MB .点NC .点PD .点Q【分析】根据直三棱柱的特征结合勾股定理求出各线段的距离,再比较大小即可求解.【解答】解:如图,过C点作CE⊥AB于E,∵AC=3,BC=4,AB=5,32+42=52,∴△ACB是直角三角形,∴CE=12AC•BC÷12÷AB=3×4÷5=2.4,∴AE=√AC2−CE2=√32−2.42=1.8,∴BE=5﹣1.8=3.2,∵四边形AMNB是正方形,立方体是直三棱柱,∴CQ=5,∴CM=CP=√52+32=√34,CN=√52+42=√41,∵√41>√34>5,∴与点C距离最大的是点N.故选:B.【点评】本题考查了勾股定理,勾股定理的逆定理,展开图折叠成几何体,关键是求出各线段的距离.13.(2022•温州)如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,连结CF,作GM⊥CF于点M,BJ⊥GM于点J,AK⊥BJ于点K,交CF于点L.若正方形ABGF与正方形JKLM的面积之比为5,CE=√10+√2,则CH的长为()A.√5B.3+√52C.2√2D.√10【分析】设CF 交AB 于点P ,过C 作CN ⊥AB 于点N ,设正方形JKLM 边长为m ,根据正方形ABGF 与正方形JKLM 的面积之比为5,得AF =AB =√5m ,证明△AFL ≌△FGM (AAS ),可得AL =FM ,设AL =FM =x ,在Rt △AFL 中,x 2+(x +m )2=(√5m )2,可解得x =m ,有AL =FM =m ,FL =2m ,从而可得AP =√5m 2,FP =52m ,BP =√5m 2,即知P 为AB 中点,CP =AP =BP =√5m 2,由△CPN ∽△FP A ,得CN =m ,PN =12m ,即得AN =√5+12m ,而tan ∠BAC =BC AC =CN AN =2√5+1,又△AEC ∽△BCH ,得BC AC =CH CE,即√5+1=√10+√2,故CH =2√2.【解答】解:设CF 交AB 于点P ,过C 作CN ⊥AB 于点N ,如图:设正方形JKLM 边长为m ,∴正方形JKLM 面积为m 2,∵正方形ABGF 与正方形JKLM 的面积之比为5,∴正方形ABGF 的面积为5m 2, ∴AF =AB =√5m ,由已知可得:∠AFL =90°﹣∠MFG =∠MGF ,∠ALF =90°=∠FMG ,AF =GF ,∴△AFL ≌△FGM (AAS ),∴AL =FM ,设AL =FM =x ,则FL =FM +ML =x +m ,在Rt △AFL 中,AL 2+FL 2=AF 2,∴x 2+(x +m )2=(√5m )2,解得x =m 或x =﹣2m (舍去),∴AL =FM =m ,FL =2m , ∵tan ∠AFL =AP AF =AL FL =m 2m =12,∴√5m=12, ∴AP =√5m 2,∴FP =√AP 2+AF 2=√(5m 2)2+(√5m)2=52m ,BP =AB ﹣AP =√5m −√5m 2=√5m 2, ∴AP =BP ,即P 为AB 中点,∵∠ACB =90°,∴CP =AP =BP =√5m2,∵∠CPN =∠APF ,∠CNP =90°=∠F AP ,∴△CPN ∽△FP A ,∴CP FP =CN AF =PN AP ,即√5m 252m =5m =√5m 2,∴CN =m ,PN =12m , ∴AN =AP +PN =√5+12m ,∴tan ∠BAC =BC AC =CN AN =m √5+12=25+1, ∵△AEC 和△BCH 是等腰直角三角形, ∴△AEC ∽△BCH ,∴BC AC =CH CE ,∵CE =√10+√2,∴√5+1=10+2,∴CH =2√2,故选:C .【点评】本题考查正方形性质及应用,涉及全等三角形判定与性质,相似三角形判定与性质,勾股定理等知识,解题的关键是用含m 的代数式表示相关线段的长度.14.(2022•湖州)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,在6×6的正方形网格图形ABCD 中,M ,N 分别是AB ,BC 上的格点,BM =4,BN =2.若点P 是这个网格图形中的格点,连结PM ,PN ,则所有满足∠MPN =45°的△PMN 中,边PM 的长的最大值是( )A.4√2B.6C.2√10D.3√5【分析】在网格中,以MN为直角边构造一个等腰直角三角形,使PM最长,利用勾股定理求出即可.【解答】解:如图所示:∵BM=NC=4,BN=CP=2,且∠B=∠C=90°,∴△BMN≌△CNP(SAS),∴MN=NP,∠BMN=∠CNP,∵∠BMN+∠BNM=90°,∴∠BNM+∠CNP=90°,∴∠MNP=90°,∴△NMP为等腰直角三角形,根据题意得到点P的轨迹为圆弧,当MP为直径时最长,在Rt△BMN和Rt△NCP中,根据勾股定理得:MN=NP=√22+42=2√5,则PM=√MN2+PN2=2√10.故选:C.【点评】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.15.(2022•攀枝花)如图1是第七届国际数学教育大会(ICME)的会徽,在其主体图案中选择两个相邻的直角三角形,恰好能够组合得到如图2所示的四边形OABC.若OC=√5,BC=1,∠AOB=30°,则OA的值为()A.√3B.32C.√2D.1【分析】根据勾股定理和含30°角的直角三角形的性质即可得到结论.【解答】解:∵∠OBC=90°,OC=√5,BC=1,∴OB=√OC2−BC2=√(√5)2−12=2,∵∠A=90°,∠AOB=30°,∴AB=12OB=1,∴OA=√OB2−AB2=√22−12=√3,故选:A.【点评】本题主要考查了勾股定理,含30°角的直角三角形的性质,三角函数等知识,熟练掌握等角的16.(2022•金华)如图是城市某区域的示意图,建立平面直角坐标系后,学校和体育场的坐标分别是(3,1),(4,﹣2),下列各地点中,离原点最近的是()A.超市B.医院C.体育场D.学校【分析】根据题意可以画出相应的平面直角坐标系,然后根据勾股定理,可以得到点O到超市、学校、体育场、医院的距离,再比较大小即可.【解答】解:如右图所示,点O到超市的距离为:√22+12=√5,点O到学校的距离为:√32+12=√10,点O到体育场的距离为:√42+22=√20,点O到医院的距离为:√12+32=√10,∵√5<√10=√10<√20,∴点O到超市的距离最近,故选:A.【点评】本题考查勾股定理、平面直角坐标系,解答本题的关键是明确题意,作出合适平面直角坐标系.17.(2021•山西)在勾股定理的学习过程中,我们已经学会了运用如图图形,验证著名的勾股定理,这种根据图形直观推论或验证数学规律和公式的方法,简称为“无字证明”.实际上它也可用于验证数与代数,图形与几何等领域中的许多数学公式和规律,它体现的数学思想是()A.统计思想B.分类思想C.数形结合思想D.函数思想【分析】根据图形直观推论或验证数学规律和公式的方法体现的数学思想为数形结合思想.【解答】解:这种根据图形直观推论或验证数学规律和公式的方法,简称为“无字证明”,它体现的数学思想是数形结合思想,故选:C.【点评】本题考查了勾股定理的证明,掌握根据图形直观推论或验证数学规律和公式的方法体现的数学思想为数形结合思想.18.(2021•襄阳)我国古代数学著作《九章算术》中记载了一个问题:“今有池方一丈,葭(jiā)生其中,出水一尺.引葭赴岸,适与岸齐.问水深几何.”(丈、尺是长度单位,1丈=10尺)其大意为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.水的深度是多少?则水深为()A.10尺B.11尺C.12尺D.13尺【分析】设水深为h尺,则芦苇长为(h+1)尺,根据勾股定理列方程,解出h即可.【解答】解:设水深为h尺,则芦苇长为(h+1)尺,根据勾股定理,得(h+1)2﹣h2=(10÷2)2,解得h=12,∴水深为12尺,故选:C.【点评】本题主要考查勾股定理的应用,熟练根据勾股定理列出方程是解题的关键.19.(2021•自贡)如图,A(8,0),C(﹣2,0),以点A为圆心,AC长为半径画弧,交y轴正半轴于点B,则点B的坐标为()A.(0,5)B.(5,0)C.(6,0)D.(0,6)【分析】根据已知可得AB=AC=10,OA=8.利用勾股定理即可求解.【解答】解:根据已知可得:AB=AC=10,OA=8.在Rt△ABO中,OB=√AB2−OA2=6.∴B(0,6).故选:D.【点评】本题考查勾股定理的应用、坐标的特征知识.关键在于利用点的坐标表示边的长度.20.(2021•常德)阅读理解:如果一个正整数m能表示为两个正整数a,b的平方和,即m=a2+b2,那么称m为广义勾股数,则下面的四个结论:①7不是广义勾股数;②13是广义勾股数;③两个广义勾股数的和是广义勾股数;④两个广义勾股数的积是广义勾股数.依次正确的是()A.②④B.①②④C.①②D.①④【分析】根据广义勾股数的定义进行判断即可.【解答】解:①∵7不能表示为两个正整数的平方和,∴7不是广义勾股数,故①结论正确;②∵13=22+32,∴13是广义勾股数,故②结论正确;③两个广义勾股数的和不一定是广义勾股数,如5和10是广义勾股数,但是它们的和不是广义勾股数,故③结论错误;④设m1=a2+b2,m2=c2+d2,则m1⋅m2=(a2+b2)⋅(c2+d=a2c2+a2d2+b2c2+b2d2=(a2c2+b2d2+2abcd)+(a2d2+b2c2﹣2abcd)=(ac+bd)2+(ad﹣bc)2,ad=bc或ac=bd时,两个广义勾股数的积不一定是广义勾股数,如2和2都是广义勾股数,但2×2=4,4不是广义勾股数,故④结论错误,∴依次正确的是①②.故选:C.【点评】本题考查了勾股数的综合应用,掌握勾股定理以及常见的勾股数是解题的关键.21.(2023•赤峰)如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6.点F是AB中点,连接CF,把线段CF沿射线BC方向平移到DE,点D在AC上.则线段CF在平移过程中扫过区域形成的四边形CFDE 的周长和面积分别是()A.16,6B.18,18C.16,12D.12,16【分析】先论证四边形CFDE是平行四边形,再分别求出CF,CD,DF,继而用平行四边形的周长公式和面积公式求出即可.【解答】解:由平移的性质可知DF∥CE,DF=CE,∴四边形CFDE是平行四边形,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,∴AC=√AB2−BC2=√102−62=8,在Rt△ABC中,∠ACB=90°,AB=10,点F是AB的中点,∴CF=12AB=5,∵DF∥CE,点F是AB的中点,∴ADAC=AFAB=12,∠CDF=180°﹣∠ABC=90°,∴点D是AC的中点,∴CD=12AC=4,∵点F是AB的中点,点D是AC的中点,∴DF是Rt△ABC的中位线,∴DF=12BC=3,∴四边形CFDE的周长为2(DF+CF)=2×(5+3)=16,四边形CFDE的面积为DF•CD=3×4=12.故选:C.【点评】本题主要考查了平移的性质,平行四边形的判定和性质,直角三角形斜边的中线等于斜边的一半,平行线分线段成比例定理,三角形中位线定理等知识,推到四边形FDE是平行四边形和DF是Rt △ABC的中位线是解决问题的关键.22.(2023•株洲)一技术人员用刻度尺(单位:cm)测量某三角形部件的尺寸.如图所示,已知∠ACB=90°,点D为边AB的中点,点A、B对应的刻度为1、7,则CD=()A.3.5cm B.3cm C.4.5cm D.6cm【分析】根据图形和直角三角形斜边上的中线等于斜边的一半,可以计算出CD的长.【解答】解:由图可得,∠ACB=90°,AB=7﹣1=6(cm),点D为线段AB的中点,∴CD=12AB=3cm,故选:B.【点评】本题考查直角三角形斜边上的中线,解答本题的关键是明确题意,利用数形结合的思想解答.23.(2022•永州)如图,在Rt△ABC中,∠ABC=90°,∠C=60°,点D为边AC的中点,BD=2,则BC的长为()A.√3B.2√3C.2D.4【分析】根据直角三角形斜边中线等于斜边的一半和30°角所对的直角边等于斜边的一半即可得到结论.【解答】解:在Rt△ABC中,∠ABC=90°,点D为边AC的中点,BD=2,∴AC=2BD=4,∵∠C=60°,∴∠A=30°,∴BC =12AC =2,故选:C .【点评】本题考查了直角三角形斜边中线,含30°角的直角三角形的性质,熟练掌握直角三角形的性质是解题的关键.24.(2022•大连)如图,在△ABC 中,∠ACB =90°.分别以点A 和点C 为圆心,大于12AC 的长为半径作弧,两弧相交于M ,N 两点,作直线MN .直线MN 与AB 相交于点D ,连接CD ,若AB =3,则CD 的长是( )A .6B .3C .1.5D .1【分析】根据题意可知:MN 是线段AC 的垂直平分线,然后根据三角形相似可以得到点D 为AB 的中点,再根据直角三角形斜边上的中线和斜边的关系,即可得到CD 的长.【解答】解:由已知可得,MN 是线段AC 的垂直平分线,设AC 与MN 的交点为E ,∵∠ACB =90°,MN 垂直平分AC ,∴∠AED =∠ACB =90°,AE =CE ,∴ED ∥CB ,∴△AED ∽△ACB ,∴AE AC =AD AB ,∴12=AD AB, ∴AD =12AB ,∴点D 为AB 的中点,∵AB =3,∠ACB =90°,∴CD =12AB =1.5,故选:C.【点评】本题考查直角三角形斜边上的中线、线段垂直平分线的性质、相似三角形的判定和性质,解答本题的关键是明确题意,利用数形结合的思想解答.25.(2021•新疆)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=4,CD⊥AB于点D,E是AB 的中点,则DE的长为()A.1B.2C.3D.4【分析】利用三角形的内角和定理可得∠B=60°,由直角三角形斜边的中线性质定理可得CE=BE=2,利用等边三角形的性质可得结果.【解答】解:∵∠ACB=90°,∠A=30°,∴∠B=60°,∵E是AB的中点,AB=4,∴CE=BE=12AB=12×4=2,∴△BCE为等边三角形,∵CD⊥AB,∴DE=BD=12BE=12×2=1,故选:A.【点评】本题主要考查了直角三角形的性质,熟练掌握定理是解答此题的关键.26.(2023•贵州)5月26日,“2023中国国际大数据产业博览会”在贵阳开幕,在“自动化立体库”中有许多几何元素,其中有一个等腰三角形模型(示意图如图所示),它的顶角为120°,腰长为12m,则底边上的高是()A .4mB .6mC .10mD .12m【分析】作AD ⊥BC 于点 D ,根据等腰三角形的性质和三角形内角和定理可得∠B =∠C =12(180°﹣∠BAC )=30°,再根据含30度角的直角三角形的性质即可得出答案.【解答】解:如图,作AD ⊥BC 于点D ,在△ABC 中,∠BAC =120°,AB =AC ,∴∠B =∠C =12(180°﹣∠BAC )=30°, 又∵AD ⊥BC ,∴AD =12AB =12×12=6(m ),故选:B .【点评】本题考查等腰三角形的性质,三角形内角和定理,含30度角的直角三角形的性质等,解题关键是掌握3027.(2021•黑龙江)如图,矩形ABCD 的边CD 上有一点E ,∠DAE =22.5°,EF ⊥AB ,垂足为F ,将△AEF 绕着点F 顺时针旋转,使得点A 的对应点M 落在EF 上,点E 恰好落在点B 处,连接BE .下列结论:①BM ⊥AE ;②四边形EFBC 是正方形;③∠EBM =30°;④S 四边形BCEM :S △BFM =(2√2+1):1.其中结论正确的序号是( )A .①②B .①②③C .①②④D .③④【分析】延长BM 交AE 于N ,连接AM ,由垂直的定义可得∠AFE =∠EFB =90°,根据直角三角形的两个锐角互余得∠EAF =67.5°,从而有∠EAF +∠FBM =90°,得到①正确;根据三个角是直角可判断四边形EFBC是矩形,再由EF=BF可知是正方形,故②正确,计算出∠EBM=22.5°得③错误;根据等腰直角三角形的性质可知AM=√2FM,推导得出AM=EM=√2FM,从而EF=EM+FM=(√2+1)FM,得到S△EFB:S△BFM=(√2+1):1,再由S四边形BCEF=2S△EFB,得S四边形BCEM:S△BFM=(2√2+1):1,判断出④正确.【解答】解:如图,延长BM交AE于N,连接AM,∵EF⊥AB,∴∠AFE=∠EFB=90°,∵∠DAE=22.5°,∴∠EAF=90°﹣∠DAE=67.5°,∵将△AEF绕着点F顺时针旋转得△MFB,∴MF=AF,FB=FE,∠FBM=∠AEF=∠DAE=22.5°,∴∠EAF+∠FBM=90°,∴∠ANB=90°,∴BM⊥AE,故①正确;∵四边形ABCD是矩形,∴∠ABC=∠C=90°,∵∠EFB=90°,∴四边形EFBC是矩形,又∵EF=BF,∴矩形EFBC是正方形,故②正确;∴∠EBF=45°,∴∠EBM=∠EBF﹣∠FBM=45°﹣22.5°=22.5°,故③错误;∵∠AFM=90°,AF=FM,∴∠MAF=45°,AM=√2FM,∴∠EAM=67.5°﹣45°=22.5°,∴∠AEM=∠MAE,∴EM=AM=√2FM,∴EF=EM+FM=(√2+1)FM,∴S△EFB:S△BFM=(√2+1):1,又∵四边形BCEF是正方形,∴S四边形BCEF=2S△EFB,∴S四边形BCEM:S△BFM=(2√2+1):1,故④正确,∴正确的是:①②④,故选:C.【点评】本题考查了矩形的性质、旋转的性质、勾股定理和正方形的判定与性质,掌握常用辅助线的添加方法,灵活运用相关知识是解题的关键.28.(2022•绍兴)如图,把一块三角板ABC的直角顶点B放在直线EF上,∠C=30°,AC∥EF,则∠1=()A.30°B.45°C.60°D.75°【分析】根据平行线的性质,可以得到∠CBF的度数,再根据∠ABC=90°,可以得到∠1的度数.【解答】解:∵AC∥EF,∠C=30°,∴∠C=∠CBF=30°,∵∠ABC=90°,∴∠1=180°﹣∠ABC﹣∠CBF=180°﹣90°﹣30°=60°,故选:C.【点评】本题考查直角三角形的性质、平行线的性质,解答本题的关键是明确题意,利用平行线的性质解答.二.填空题(共27小题)29.(2023•东营)一艘船由A港沿北偏东60°方向航行30km至B港,然后再沿北偏西30°方向航行40km 至C港,则A,C两港之间的距离为km.【分析】根据题意可得:∠DAB=60°,∠FBC=30°,AD∥EF,从而可得∠DAB=∠ABE=60°,然后利用平角定义可得∠ABC=90°,从而在Rt△ABC中,利用勾股定理进行计算即可解答.【解答】解:如图:由题意得:∠DAB=60°,∠FBC=30°,AD∥EF,∴∠DAB=∠ABE=60°,∴∠ABC=180°﹣∠ABE﹣∠FBC=90°,在Rt△ABC中,AB=30km,BC=40km,AC=√AB2+BC2=√302+40250(km),∴A,C两港之间的距离为50km,故答案为:50.【点评】本题考查了勾股定理的应用,根据题目的已知条件画出图形进行分析是解题的关键.30.(2023•菏泽)如图,在四边形ABCD中,∠ABC=∠BAD=90°,AB=5,AD=4,AD<BC,点E在线段BC上运动,点F在线段AE上,∠ADF=∠BAE,则线段BF的最小值为.【分析】设AD的中点为O,以AD为直径画圆,连接OB交⊙O于F′,证得∠DF A=90°,于是得到点F在以AD为直径的半圆上运动,当点F运动到OB与⊙O是交点F′时,线段BF有最小值,据此解答即可.【解答】解:设AD的中点为O,以AD为直径画圆,连接OB交⊙O于F′,∵∠ABC=∠BAD=90°,∴AD∥BC,∴∠DAE=∠AEB,∵∠ADF=∠BAE,∴∠DF A=∠ABE=90°,∴点F在以AD为直径的半圆上运动,当点F运动到OB与⊙O是交点F′时,线段BF有最小值,∵AD=4,∴AO=OF′=12AD=2,∴BO=√52+22=√29,∴线段BF的最小值为√29−2,故答案为:√29−2.【点评】本题考查了勾股定理,平行线的性质,圆周角定理,根据题意得到点F的运动轨迹是解题的关键.31.(2023•随州)如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,D为AC上一点,若BD是∠ABC 的角平分线,则AD=.【分析】过点D作DE⊥AB于点E,由角平分线的性质得到CD=DE,再通过HL证明Rt△BCD≌Rt△BED,得到BC=BE=6,根据勾股定理可求出AB=10,进而求出AE=4,设CD=DE=x,则AD=8﹣x,在Rt△ADE中,利用勾股定理建立方程求解即可.【解答】解:如图,过点D 作DE ⊥AB 于点E ,∵∠C =90°,∴CD ⊥BC ,∵BD 是∠ABC 的角平分线,CD ⊥BC ,DE ⊥AB ,∴CD =DE ,在Rt △BCD 和Rt △BED 中,{CD =DE BD =BD, ∴Rt △BCD ≌Rt △BED (HL ),∴BC =BE =6,在Rt △ABC 中,AB =√AC 2+BC 2=√82+62=10,∴AE =AB ﹣BE =10﹣6=4,设CD =DE =x ,则AD =AC ﹣CD =8﹣x ,在Rt △ADE 中,AE 2+DE 2=AD 2,∴42+x 2=(8﹣x )2,解得:x =3,∴AD =8﹣x =5.故答案为:5.【点评】本题主要考查角平分线的性质、全等三角形的判定与性质、勾股定理、解二元一次方程,解题关键是正确作出辅助线,利用角平分线的性质和勾股定理解决问题.32.(2023•扬州)我国汉代数学家赵爽证明勾股定理时创制了一幅“勾股圆方图”,后人称之为“赵爽弦图”,它是由4个全等的直角三角形和一个小正方形组成.如图,直角三角形的直角边长为a 、b ,斜边长为c ,若b ﹣a =4,c =20,则每个直角三角形的面积为 .【分析】根据勾股定理可知a 2+b 2=c 2,再根据b ﹣a =4,c =20,即可得到a 、b 的值,然后即可计算出每个直角三角形的面积.【解答】解:由图可得,a 2+b 2=c 2,∴{a 2+b 2=202b −a =4且a 、b 均大于0, 解得{a =12b =16, ∴每个直角三角形的面积为12ab =12×12×16=96, 故答案为:96.【点评】本题考查勾股定理的证明、解直角三角形,解答本题的关键是明确题意,求出a 、b 的值.33.(2022•常州)如图,在Rt △ABC 中,∠C =90°,AC =9,BC =12.在Rt △DEF 中,∠F =90°,DF =3,EF =4.用一条始终绷直的弹性染色线连接CF ,Rt △DEF 从起始位置(点D 与点B 重合)平移至终止位置(点E 与点A 重合),且斜边DE 始终在线段AB 上,则Rt △ABC 的外部被染色的区域面积是 .【分析】如图,连接CF 交AB 于点M ,连接CF ′交AB 于点N ,过点F 作FG ⊥AB 于点G ,过点F ′作F ′H ⊥AB 于点H ,连接FF ′,则四边形FGHF ′是矩形,Rt △ABC 的外部被染色的区域是梯形MFF ′N .求出梯形的上下底以及高,可得结论.【解答】解:如图,连接CF 交AB 于点M ,连接CF ′交AB 于点N ,过点F 作FG ⊥AB 于点H ,过点F ′作F ′H ⊥AB 于点G ,连接FF ′,则四边形FGHF ′是矩形,Rt △ABC 的外部被染色的区域是梯形MFF ′N .在Rt△DEF中,DF=3,EF=4,∴DE=√DF2+EF2=√32+42=5,在Rt△ABC中,AC=9,BC=12,∴AB=√AC2+BC2=√92+122=15,∵12•DF•EF=12•DE•GF,∴FG=12 5,∴BG=√BF2−FG2=√32−(125)2=95,∴GE=BE﹣BG=165,AH=GE=165,∴F′H=FG=12 5,∴FF′=GH=AB﹣BG﹣AH=15﹣5=10,∵BF∥AC,∴BMAM=BFAC=13,∴BM=14AB=154,同法可证AN=14AB=154,∴MN=15−154−154=152,∴Rt△ABC的外部被染色的区域的面积=12×(10+152)×125=21,故答案为:21.【点评】本题考查勾股定理,梯形的面积,平行线分线段成比例定理等知识,解题的关键是理解题意,学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题在的压轴题.34.(2022•无锡)已知△ABC中,∠B=45o,∠C=60o,AB=√6,则AC=.【分析】:过A作AH⊥BC于H,由∠B=45°,得BH=AH=AB2=√3,而∠C=60°,知CH=12AC,由勾股定理有(12AC)2+(√3)2=AC2,即可解得答案.【解答】解:过A作AH⊥BC于H,如图:∵∠B =45°,∴△ABH 是等腰直角三角形,∴BH =AH =AB 2=√62=√3, ∵∠C =60°,∴∠CAH =30°,∴CH =12AC ,在Rt △ACH 中,CH 2+AH 2=AC 2,∴(12AC )2+(√3)2=AC 2, 解得AC =2(负值舍去),故答案为:2.【点评】本题考查勾股定理,解题的关键是掌握含45°,30°角的直角三角形三边的关系.35.(2022•无锡)如图,在Rt △ABC 中,∠C =90o ,AC =2,BC =4,点E 、F 分别在AB 、AC 上,点A 关于EF 的对称点A '落在BC CA '=x .若AE =AF ,则x = ;设AE =y ,请写出y 关于x 的函数表达式: .【分析】连接A 'E ,A 'F ,由点A 关于EF 的对称点A '落在BC 上,AE =AF ,可得A 'E =AE =A 'F =AF ,四边形AEA 'F 是菱形,即知A 'B =2A 'E ,而CA '=x ,在Rt △A 'CF 中,可得x 2+(12x )2=(2−12x )2,解得x =√5−1;若AE =y ,过E 作EH ⊥BC 于H ,由△BHE ∽△BCA ,可得BH =4−2√55y ,HE =2−√55y ,在Rt △A 'HE 中,有(2√55y ﹣x )2+(2−√55y )2=y 2,变形可得答案. 【解答】解:连接A 'E ,A 'F ,如图:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识点30 直角三角形、勾股定理一、选择题1. (2018山东滨州,1,3分)在直角三角形中,若勾为3,股为4,则弦为( ) A .5 B .6 C .7 D .8 【答案】A【解析】∵三角形为直角三角形,∴三边满足勾股定理,∴弦为:223+4=5. 【知识点】勾股定理2. (2018四川泸州,8题,3分) “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图3所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b ,若ab =8,大正方形的面积为25,则小正方形的边长为( ) A. 9 B.6 C. 4 D.3第8题图 【答案】D【解析】因为ab=8,所以三角形的面积为21ab=4,则小正方形的面积为25-4×4=9,边长为3 【知识点】勾股定理,三角形面积,平方根3. (2018年山东省枣庄市,12,3分)如图,在ABC Rt ∆中,090=∠ACB ,AB CD ⊥,垂足为D ,AF 平分CAB ∠,交CD 于点E ,交CB 于点F .若5,3==AB AC ,则CE 的长为( )A .23 B .34 C .35D .58 【答案】A【思路分析】在ABC Rt ∆中, AB CD ⊥, AF 平分CAB ∠,可知CE=CF ,过F 作FH 垂直于AB ,FH=CF ,在Rt △FBH 中设CF=x ,利用勾股定理列方程求出CF 的长,从而得到CE 的长.【解题过程】解:在ABC Rt ∆中, AB CD ⊥,∴∠ACD=∠B ,∵AF 平分CAB ∠,∴∠CAF=∠BAF ,∴∠CEF=∠CFE ,CE=CF ,如图,过点F 作FG ⊥AB ,∵AF 平分CAB ∠,∴CF=FG ,AG=AC=3,BG=2,设CF=FG=x , ∵5,3==AB AC ,∴BC=4,则BF=4-x ,在Rt △FBG 中,2222(4)x x +=-,解得23=x ,即CE=CF=23,故选A.EC ABF【知识点】勾股定理;角平分线的性质;等腰三角形4. (2018湖南长沙,11题,3分)我国南宋著名数学家秦久韶的著作《数书九章》里记载有这样一道题目:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三边长分别为5里,12里,13里,问这块沙田面积有多大?题中的“里”是我国市制长度单位,1里=500米,则该沙田的面积为( )A.7.5平方千米B.15平方千米C.75平方千米D.750平方千米 【答案】A【解析】将里换算为米为单位,则三角形沙田的三边长为2.5千米,6千米,6.5千米,因为2.52+62=6.52,所以这个三角形为直角三角形,直角边长为2.5千米和6千米,所以S=12×6×2.5=7.5(平方千米),故选A【知识点】勾股定理的逆定理,三角形面积5. (2018山东青岛中考,6,3分)如图,三角形纸片ABC ,AB=AC ,∠BAC=90°,点E 为AB 中点.沿过点E 的直线折叠,使点B 与点A 重合,折痕EF 交BC 于点F .已知32EF,则BC 的长是( )A .322B .32.3 D .33【答案】B【解析】∵AB=AC ,∠BAC=90°,∴∠B=45°.由折叠的性质可得∠BEF=90°,∴∠BFE=45°,∴BE=EF=32. ∵点E 为AB 中点,∴AB=AC=3.在Rt△ABC 中,22AB AC +2233+32B .【知识点】折叠的性质;等腰三角形的性质与判定;勾股定理;6.(2018山东省淄博市,12,4分)如图,P 为等边三角形ABC 内的一点,且P 到三个顶点A 、B 、C 的距离分别为3、4、5,则△ABC 的面积为(A )9+2534 (B )9+2532 (C )18+253(D )18+2532(第12题图)B【答案】A【思路分析】将△APB 绕点A 逆时针旋转60°得到△AHC ,作AI ⊥CH 交CH 延长线于点I ,则△APH 为等边三角形,利用已知线段证明△PHC 为直角三角形,从而得到∠AHC =150°,∠AHI =30°,求得AI 、IH ,进而求得IC ,利用勾股定理求出AC ,再利用正三角形面积公式求出三角形ABC 的面积.(第12题答案图)B【解题过程】将△APB 绕点A 逆时针旋转60°得到△AHC ,作AI ⊥CH 交CH 延长线于点I ,则△APH 为等边三角形,HA =HP =PA =3,HC =PB =4,∵PC =5,∴PC 2=PH 2+CH 2,∴∠PHC =90°,∴∠AHI =30°,∴AI =32,HI =32∴CI =32,∴AC 2=(32)2+(32)2△ABC =4AC 2=4(=9+4.【知识点】图形的旋转的性质;解直角三角形;正三角形的面积;勾股定理及逆定理1. (2018湖北黄冈,5题,3分)如图,在Rt △ABC 中,∠ACB=90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD=2,CE=5,则CD=( ) A.2 B.3 C.4 D.第5题图 【答案】C【解析】在Rt △ABC 中,CE 为AB 边上的中线,所以CE=12AB=AE ,因为CE=5,AD=2,所以DE=3,因为CD 为AB 边上的高,所以在Rt △CDE 中,22CD CE DE =+=4,故选C 【知识点】直角三角形斜边上的中线等于斜边的一半,勾股定理2. (2018四川凉山州,3,4分)如图,数轴上点A 对应的数为2,AB ⊥OA 于A ,且AB =1,以O 为圆心,OB 长为半径作弧,交数轴于点C ,则OC 长为( )A.3B.2C.3D.5【答案】D【解析】∵AB ⊥OA 于A ,∴∠OAB=90°.在Rt △OAB 中,由勾股定理得2222521OA AB ++=.∴5.故选择D.【知识点】直角三角形的判定,勾股定理,尺规作图.二、填空题1. (2018年山东省枣庄市,15,4分) 我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式.即:如果一个三角形的三边长分别为c b a ,,,则该三角形的面积为2222221()42a b c s a b ⎡⎤+-=-⎢⎥⎣⎦,已知ABC ∆的三边长分别为1,2,5,则ABC ∆的面积为 .【答案】1【解析】方法一:把1,2,5代入三角形的面积得[]21541154()20161424s +-⎡⎤=⨯-=-=⎢⎥⎣⎦,故填 1. 方法二:由ABC ∆的三边长分别为1,2,5,根据勾股定理的逆定理得ABC ∆是直角三角形,其面积为12112⨯⨯=,故填 1. 【知识点】二次根式;勾股定理的逆定理2. (2018四川省成都市,14,4)如图,在矩形ABCD 中,按以下步骤作图:①分别以点A 和C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交CD 于点E ,若DE =2,CE =3,则矩形的对角线AC 的长为 .30【思路分析】因为由作图可知MN 为线段AC 的垂直平分线,则有AE =CE =3,在Rt △ADE 中,由勾股定理可以求出AD 的长,然后再在Rt △ADC 中用勾股定理求出AC 即可.【解析】解:连接AE ,由作图可知MN 为线段AC 的垂直平分线,∴AE =CE =3,在Rt △ADE 中,2AE =2AD +2DE ,∴AD 22AE DE -5,在Rt △ADC 中,2AC =2AD +2CD ,∵CD =DE +CE =5,∴AC ()2255+30【知识点】尺规作图;线段垂直平分线的性质;勾股定理3. (2018天津市,18,3)如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,B,C均在格点上.(1)∠ACB的大小为(度);(2)在如图所示的网格中,P是BC边上任意一点.A为中心,取旋转角等于∠BAC,把点P逆时针旋转,点P的对应点为P′.当CP′最短时,请用无刻度...的直尺,画出点P′,并简要说明点P′的位置是如何找到的(不要求证明).【答案】90°; 如图,取格点D,E,连接DE交AB于点T;取格点M,N,连接MN交BC延长线于点G;取格点F,连接FG交TC延长线于点P′,则点P′即为所求.【解析】分析:本题考查了勾股定理及其逆定理.解题的关键是分析题意并构造出如图所示的三对格点.解:(1)在网格中由勾股定理得:222222222505055AB,3244BC,1833=ACABBCAC==+∴=+==+==+∴△ABC为直角三角形,∴∠ACB=90°(2) 如图,取格点D,E,连接DE交AB于点T;取格点M,N,连接MN交BC延长线于点G;取格点F,连接FG交TC延长线于点'P,则点'P即为所求.【知识点】勾股定理定理及逆定理;格点作图4. (2018浙江湖州,16,4)在每个小正方形的边为1的网格图形中,每个小正方形的顶点为格点.以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形EFGH为正方形,我们把这样的图形称为格点弦图.例如,在图1所示的格点弦图中,正方形ABCD 的边长为65,此时正方形EFGH的面积为5.问:当格点弦图中的正方形ABCD的边长为65时,正方形EFGH的面积的所有可能值是(不包括5).【答案】9,13和49【解析】设图中直角三角形的长直角边为a,短直角边为b,则a2+b2=65.小正方形的面积为(a-b)2.∴只要能把长为a和b的线段在网格中画出来,并且a和b的端点都在格点上即可.∵65可以写作64+1或49+16,所以a,b的值分别为8,1或7,4.此时小正方形的面积为49或9.另外,∵长为13和5的线段也可以在网格中画出,所以65还可以写成52+13或45+20,此时a,b的值分别为213,13和35,25.此时小正方形的面积为13和5.小正方形的面积为9,13和49对应的图形分别为下图的①②③.故填9,13和49.【知识点】勾股定理1. (2018湖北黄冈,13题,3分)如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为______cm (杯壁厚度不计)第13题图 【答案】20【解析】如图,点E 与点A 关于直线l 对称,连接EB ,即为蚂蚁爬行的最短路径,过点B 做BC ⊥AE 于点C ,则Rt △EBC 中,BC=32÷2=16cm ,EC=3+14-5=12cm ,所以2220EB EC BC cm +=第13题解图【知识点】轴对称,勾股定理2. (2018·重庆A 卷,16,4)如图,把三角形纸片折叠,使点B 、点C 都与点A 重合,折痕分别为DE 、FG ,得到∠AGE =30°,若AE =EG =23ABC 的边BC 的长为 厘米. 【答案】3+6.【解析】如下图,过点E 作EM ⊥AG 于点M ,则由AE =EG ,得AG =2MG . ∵∠AGE =30°,EG =23∴EM =12EG 3cm ). 在Rt △EMG 中,由勾股定理,得MG 22(23)(3)-3(cm ),从而AG =6cm .由折叠可知,BE =AE =23(cm ),GC =AG =6cm .∴BC =BE +EG +GC =23+23+6=43+6(cm ).M 30FG D CBA【知识点】翻折;轴对称;勾股定理;直角三角形的性质;等腰三角形3. (2018江苏淮安,15,3) 如图,在份Rt △ABC 中,∠C=90°,AC=3, BC=5,分别以A 、B 为圆心,大于21AB 的长为半径画弧,两弧交点分别为点P 、Q,过P 、Q 两点作直线交BC 于点D ,则CD 的长是 .(第15题) 【答案】1.6【解析】本题考查勾股定理和基本作图,连结AD,由线段的垂直平分线的性质可知AD=BD,再由勾股定理可求得CD. 解:连结AD 由作法可知AD=BD,在Rt △ACD 中设CD=x,则AD=BD=5-x,AC=3. 由勾股定理得,CD 2+AC 2=AD 2即x 2+32=(5-x)2解得x=1.6故答案为1.6【知识点】勾股定理;轴对称;线段的垂直平分线;基本作图4. (2018山东德州,15,4分)如图,OC 为AOB ∠的平分线,CM OB ⊥,5OC =,4OM =,则点C 到射线OA 的距离为 .【答案】3【解析】因为CM OB ⊥,5OC =,4OM =,所以CM =3,过点C 作CM ⊥OA 于N ,又因为OC 为AOB ∠的平分线,所以CN = CM =3,即点C 到射线OA 的距离为3.【知识点】勾股定理,角平分线的性质5. (2018福建A 卷,13,4)如图,在Rt △ABC 中,∠ACB=90°,AB=6,D 为AB 的中点,则CD= _______.【答案】3【思路分析】根据直角三角形斜边上的中线等于斜边的一半,可得出CD 的值.【解析】解:在△ABC 中,以∠ACB 为直角的直角三角形的斜边AB=6,∵CD 是AB 边上的中线,∴CD=12AB=3. 【知识点】直角三角形6.(2018福建A 卷,15,4)把两个相同大小的含45°角的三角板如图所示放置,其中一个三角板的锐角顶点与另一个的直角顶点重合于点A ,另外三角板的锐角顶点B 、C 、D 在同一直线上,若AB=2,则CD=_______. 【答案】31-【思路分析】首先利用勾股定理计算出BC 、AD 的长,过点A 作AF ⊥BC ,由“三线合一”及等腰直直角三角形的性质易求得AF=CF ,在直角三角形ADF 中,再次利用勾股定理计算出DF 的长度,问题便获得解决.【解析】解:过点A 作AF ⊥BC ,垂足为点F ,∵ AB=AC ,∴CF=12BC ,∵ AB=AC=2,∴AD=222BC AB AC =+=,∴CF=1,∵∠C =45°,∴AF=CF=1,∴223DF AD AF =-=,∴31CD DF CF =-=-.【知识点】等腰三角形的性质,勾股定理7. (2018福建B 卷,13,4)如图,在Rt △ABC 中,∠ACB=90°,AB=6,D 为AB 的中点,则CD= _______.【答案】3【思路分析】根据直角三角形斜边上的中线等于斜边的一半,可得出CD 的值.【解题过程】解:在△ABC 中,以∠ACB 为直角的直角三角形的斜边AB=6,∵CD 是AB 边上的中线,∴CD=12AB=3. 【知识点】直角三角形8. (2018福建B 卷,15,4)把两个相同大小的含45°角的三角板如图所示放置,其中一个三角板的锐角顶点与另一个的直角顶点重合于点A ,另外三角板的锐角顶点B 、C 、D 在同一直线上,若AB=2,则CD=_______.【答案】31- 【思路分析】首先利用勾股定理计算出BC 、AD 的长,过点A 作AF ⊥BC ,由“三线合一”及等腰直直角三角形的性质易求得AF=CF ,在直角三角形ADF 中,再次利用勾股定理计算出DF 的长度,问题便获得解决.【解析】解:过点A 作AF ⊥BC ,垂足为点F ,∵ AB=AC ,∴CF=12BC ,∵ AB=AC=2,∴AD=222BC AB AC =+=,∴CF=1,∵∠C =45°,∴AF=CF=1,∴223DF AD AF =-=,∴31CD DF CF =-=-.【知识点】等腰三角形的性质,勾股定理9.(2018湖北省襄阳市,15,3分)已知CD 是△ABC 的边AB 上的高,若CD=3,AD=1,AB=2AC ,则BC 的长为= ▲ .【答案】7232或【解析】解:分两种情况讨论:①当CD 在△ABC 内部时,如图在Rt △ACD 中,由勾股定理得AC =22CD AD +=2.∴AB =2AC =4,∴BD =AB -AD =3.在Rt △BCD 中,由勾股定理得,BC =22CB CD +=32.②当CD 在△ABC 外部时,如图此时,AB =4,BD =BA +AD =5,在Rt △ABD 中,由勾股定理得,BC =22CB CD =72.综上所述,BC 的长为7232或.故答案为7232或.【知识点】勾股定理,分类讨论思想10. (2018广西玉林,17题,3分)如图,在四边形ABCD 中,∠B=∠D=90°,∠A=60°,AB=4,则AD 的取值范围是_______第17题图【答案】2<AD<8【解析】由题,∠A=60°,AB=4,已确定,AD 的长度可以变化,如下图(1),是AD 最短的情况,此时AD=ABcos60°=2,如下图(2),是AD 最长的情况,此时AD=AB/cos60°=8,而这两种情况四边形ABCD 就变成了三角形,故都不能达到,故AD 的取值范围是2<AD<8第17题图(1)第17题图(2)【知识点】动态问题,特殊的三角函数值三、解答题1. (2018四川广安,题号24,分值8)下面有4张形状,大小完全相同的方格纸,方格纸中的每个小正方形的边长都是1,请在方格纸中分别画出符合要求的图形,所画图形各顶点必须与方格纸中小正方形的顶点重合,具体要求如下:(1)画一个直角边为4,面积为6的直角三角形.(2)画一个底边为4,面积为8的等腰三角形.(3)画一个面积为5的等腰直角三角形.(4)画一个边长为2,面积为6的等腰三角形.第24题图【思路分析】对于(1),根据面积公式求出两条直角边即可画出图形;对于(2),根据面积公式求出底边上的高,再画出图形即可;对于(3),根据面积公式求出直角边,即可画出图形;对于(4)根据腰长为2不成立,可知以2为底边,再求出底边上的高,可画出图形.【解题过程】如图所示.(1)直角边为4,3的直角三角形;………………………….2分(2)底边为4,底边上的高为4的等腰三角形;………………………………………..4分(3)直角边为的等腰直角三角形;…………………………………………………..6分(4)底边为2,底边上的高为3的等腰三角形……………………………………8分第24题答图【知识点】勾股定理,三角形的面积1. (2018湖北荆门,19,9分) 如图,在Rt ABC ∆中,90ACB ∠=o ,30BAC ∠=o ,E 为AB 边的中点,以BE 为边作等边BDE ∆,连接AD ,CD .(1)求证:ADE CDB ∆∆≌;(2)若3BC =,在AC 边上找一点H ,使得BH EH +最小,并求出这个最小值.【思路分析】(1)首先根据E 为AB 边的中点可得BC=AE ,根据△DEB 为等边三角形可得DB=DE ,∠DEA=∠DBC ,然后根据全等三角形的判定即可证明出结论;(2)作点E 关于直线AC 对称点E ′,连接BE ′交AC 于点H ,由作图可知:EH+BH=BE ′,根据勾股定理计算即可.【解题过程】(1)证明:在Rt △ABC 中,∠BAC=30°,E 为AB 边为中点,∴BC=EA ,∠ABC=60°.∵△DEB 为等边三角形,∴DB=DE ,∠DEB=∠DBE=60°,∴∠DEA=120°,∠DBC=120°,∴∠DEA=∠DBC ,∴△ADE ≌△CDB.(2)解:如图,作点E 关于直线AC 对称点E ′,连接BE ′交AC 于点H.则点H 即为符合条件的点.由作图可知:EH+BH=BE ′,AE ′=AE ,∠E ′AC=∠BAC=30°,∴∠EAE ′=60°,∴△EAE ′为等边三角形,∴EE ′=EA=21AB , ∴∠AE ′B=90°,在Rt △ABC 中,∠BAC=30°,BC=3,∴AB=23,AE ′=AE=3,∴BE ′=2222)3()32(-='-AE AB =3,∴BH+EH 的最小值为3.【知识点】等边三角形的性质,含30°角的直角三角形的性质,全等三角形的判定,利用轴对称作图,勾股定理。

相关文档
最新文档