4 多边形的内角和与外角和(1)

合集下载

6.4.1多边形的内角和与外角和(教案)

6.4.1多边形的内角和与外角和(教案)
6.4.1多边形的内角和与外角和(教案)
一、教学内容
6.4.1多边形的内角和与外角和:本节课我们将探讨《数学》七年级下册第六章第四节的内容,主要包括以下两点:
1.多边形的内角和:通过观察和推理,引导学生发现并证明多边形内角和定理,即任意n边形的内角和为(n-2)×180°。
2.多边形的外角和:指导学生通过实际操作,探索并证明多边形外角和定理,即任意n边形的外角和为360°。
-能够运用内角和与外角和定理解决实际问题,如计算多边形中未知角度等。
举例解释:例如,在讲解多边形内角和时,教师可以通过具体的多边形(如三角形、四边形等)引导学生观察和计算内角和,强调(n-2)×180°这一核心公式的适用性和普遍性。
2.教学难点
-难点内容:
-理解多边形内角和定理的推导过程,尤其是从具体到抽象的思维转换。
4.培养学生的数学抽象素养:让学生从具体的几何图形中抽象出多边形内角和与外角和的性质,形成数学概念,提高数学抽象素养。
三、教学难点与重点
1.教学重点
-核心知识:多边形的内角和与外角和定理。
-重点内容:
-多边形内角和定理的推导与应用,即(n-2)×180°的计算方法。
-多边形外角和定理的理解与应用,即外角和为360°的特性。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解多边形内角和与外角和的基本概念。多边形内角和是指多边形内部所有角的和,外角和是指多边形外部所有角的和。这些概念在几何学中非常重要,因为它们可以帮助我们解决多边形相关的各种问题。
2.案例分析:接下来,我们来看一个具体的案例。通过这个案例,我们将了解多边形内角和与外角和在实际中的应用,以及它们如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调多边形内角和(n-2)×180°和外角和360°这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。

多边形的内角和与外角和(1)

多边形的内角和与外角和(1)

7.5 多边形的内角和与外角和(1)教学目标1.探索并了解“三角形三个内角之和等于180°”;2.经历举例、操作(画图、度量、拼图)、观察、归纳、说理、交流等数学活动,提升学生有条理的表达能力.教学重点探索并掌握“三角形三个内角之和等于180°”.教学难点理解用推理的方法说明为什么三角形的三个内角之和一定等于180°.教学过程(教师)学生活动设计思路新课引入——问题导入:(1)同学们,小学里我们就已经知道了三角形的三个内角的和等于多少度?(2)你能举例说明三角形的三个内角的和等于180°吗?(1)集体回答:180°.(2)学生可能出现的答案:等边三角形的三个角都等于60°,和为180°;两块三角板的三个内角(30°、60°、90°与45°、45°、90°)之和也都为180°.开门见山,点出本节课所研究的问题.通过师生对话,引导学生体会说理的重要性.学生举例说明之后,教师追问:对于任意三角形,它的三个内角之和是不是等于180°呢?为什么?于是,引出下一环节的操作.探究一——画图、度量、计算请每位同学在课堂笔记本上任意画一个三角形,用量角器量出各内角的度数,并求它们的和.动手操作,交流结论.初步得出基本事实:任意三角形的三个内角之和等于180°.探究二——观察利用几何画板中的课件动画演示(通过拖动三角形的顶点改变三角形的内角),再次验证“三角形三个内角之和等于180°”.观察.进一步确认上述事实.探究三——拼图(1)问:还记得小学里怎么说明“三角形三个内角之和等于180°”的吗?(2)请每位同学将课前发下的三角形纸片的3个内角(如图1)剪开,然后拼在一起,观察它们的和是否为180°.(3)教师找出如图2、图3、图4等拼法,贴在黑板上,并标上相应字母.动手操作.通过前一环节,学生对相关结论已经深信不疑.但是,画图、度量、计算是不可能验证出所有三角形都具有上述性质的.为此,逐步引导,为下一环节的说理作好铺垫.ABC(图1)AB C(图2)(图3)ABC……探究四——说理优化选择适当的拼法,进行说理,从而得出结论“三角形三个内角之和等于180°”.师生互动,进行说理.经历说理,体会说理的必要性.知识应用——牛刀小试课本P29练一练第1、3小题.口答.熟练运用所学得的知识,解决简单问题.口答形式能较好地看出学生对性质的掌握情况与应用意识.AB C(图4)知识应用——例题例1 已知,在△ABC中,∠A=40°,∠B =∠C,求∠C的度数.例2 如图5,AD、BC相交于点O,∠A=50°,∠B=32°,∠C=45°,求∠D的度数.发表意见,表达观点,相互补充.参考答案:例 1 在△ABC中,由∠A+∠B+∠C=180°,∠A=40°,得∠B+∠C=140°,又因为∠B=∠C,所以∠C=70°.例2 在△AOB中,由∠A+∠B+∠AOB=180°,∠A=50°,∠B=32°,得∠AOB=98°.又因为∠COD=∠AOB,所以∠COD=98°.在△COD中,由∠C+∠D+∠COD=180°,∠C=45°,∠COD=98°,得∠D=37°.学以致用,师生互动,锻炼学生的口头表达能力,进一步提升学生有条理的表达能力.例2得出结果之后,追问:若不给出具体角度,你能说明∠A+∠B与∠C+∠D之间有怎样的数量关系吗?知识应用——练习1.在△ABC中,若∠A+∠B=90°,则△ABC一定是__________三角形.2.在△ABC中,若∠A∶∠B∶∠C=2∶3∶4,求∠A、∠B、∠C的度数.3.课本P29练一练第2小题.1.作答.2.学生代表口头交流解答思路与过程,其余学生聆听并作补充或纠错.进一步巩固新课知识,并在训练中提升学生有条理的书面表达能力.其中,通过练习1,让学生了解“有两个角互余的三角形是直角三角形”.反之,“直角三角形的两个锐角互余”也成立.小结:通过今天的学习,你学会了什么?你会正确共同小结.师生互动,总结学习成果,体验成功.运用吗?通过这节课的学习,你有什么感受呢?说出来告诉大家.课后作业:课后完成.巩固、运用.课本P34习题7.5第1~5小题.评课记录:(1)教学设计比较合理,条理清楚,一环扣一环。

多边形的内角和与外角和

多边形的内角和与外角和

多边形的内角和与外角和多边形是一种有多个直角或不是直角的边的几何图形。

它由一系列线段组成,这些线段的端点称为顶点。

在一个多边形中,内角和与外角和是两个重要的概念。

一、内角和内角是多边形内部两条边所形成的角,可以通过计算多边形的内角和来了解多边形的性质。

多边形的内角和可以通过以下公式来计算:内角和 = (n - 2) × 180°其中,n表示多边形的边数。

可以看出,内角和与多边形的边数呈线性关系,边数越多,内角和也会增加。

例如,对于三角形(三边形),它有3个内角,内角和为180°。

对于四边形(四边形),它有4个内角,内角和为360°。

同理,五边形(五边形)的内角和为540°,六边形(六边形)的内角和为720°。

二、外角和外角是多边形内部一条边与其相邻边的延长线之间所形成的角。

多边形的外角和可以通过以下公式来计算:外角和 = 360°不论多边形的边数是多少,其外角和总是等于360°。

这是因为多边形的各个外角之间构成了一个完整的圆周角。

三、内角和与外角和的关系多边形的内角和与外角和之间存在一定的关系。

根据数学原理,多边形内角和与外角和相差180°。

证明如下:设多边形的边数为n,每个内角为a°,每个外角为b°。

多边形的内角和为 (n - 2) × 180°,外角和为360°。

根据角度的差值关系,可以得到:(n - 2) × 180° = n × a° - n × b°化简得到:360° = n × (a° - b°)因此,a° - b° = 180°,即内角和与外角和相差180°。

这个关系在解决一些几何问题时非常有用。

通过计算内角和和外角和,我们可以推导出多边形的各种性质和特点。

多边形的内角和与外角和(一)

多边形的内角和与外角和(一)

第六章平行四边形4. 多边形的内角和与外角和(一)西安市高新一中初中校区邹国胜一.学生起点分析学生已学过三角形的内角和定理,以及三角形的边、顶点、内角等概念,并且已初步了解四边形可分成两个三角形来求内角和,这为本节课的学习打下了基础。

因而学生在探索多边形内角和时,便会很容易想到“拼”和“量”和把多边形转化成三角形等方法,但是,学生对把多边形转化成三角形这种化归思想的理解和应用还存在一定的困难。

尽管如此,由于在以往的学习中,学生的动手实践、自主探索及合作探究能力都得到了一定的训练,通过本节课的学习,这一方面的能力将会得到进一步的提高,学生将会轻松、愉快地完成本节课的学习任务。

二.教学任务分析本节内容是七年级上册多边形相关知识的延展和升华,并且在探索学习过程中又与三角形相联系,从三角形的内角和到多边形的内角和环环相扣,前面的知识为后边的知识做了铺垫,联系性比较强,特别是教材中设计了现实情境,“想一想”,“议一议”等内容,体现了课改的精神.在编写意图上,编者强调使学生经历探索、猜想、归纳等过程,回归多边形的几何特征,而不是硬背公式,发展了学生的合情推理能力.教学目标【知识与技能】掌握多边形内角和定理,进一步了解转化的数学思想【过程与方法】经历质疑、猜想、归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的思想和方法.【情感态度与价值观】让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造.教学重难点【教学重点】多边形内角和定理的探索和应用【教学难点】多边形定义的理解;多边形内角和公式的推导;转化的数学思维方法的渗透.三.教学过程设计本节课分成八个环节:第一环节创设现实情境,提出问题,引入新课第二环节实验探究第三环节巩固训练第四环节拓展延伸第五环节思维升华第六环节知识小结第七环节作业布置第八环节课后反思第一环节创设现实情境,提出问题,引入新课1.三角形是如何定义的?2.仿照三角形定义,你能学着给四边形、五边形……边形下定义吗?3.结合图形认识多边形的顶点、边、内角及对角线。

多边形的内角和

多边形的内角和

9、已知四边形ABCD中,∠A∶∠B∶∠C ∶∠D =3:4:5:6,分别求出最大角和最小角的度数.
解:依题意可设∠A=3x°,∠B=4x°, ∠C=5x°,∠D=6x °,由题意得:
3x+4x+5x+6x=(4-2)×180 18x=2×180 x=20 ∴∠A=3x°= 60° ∠B=4x°= 80° ∠C=5x°=100° ∠D=6x °= 120°
答:最大角和最小角分别为120°,60°.
思维升华
议一议: 剪掉一张长方形纸片的一个角后, 纸片还剩几个角?这个多边形的内角和是 多少度?与同伴交流.
4 -3 = 1
3 -2 = 1
4 -2 = 2
(n=5) 六边形
(n=6)
5 -3 = 2
6 -3 = 3 · · · · · · · · · · · ·
5 -2= 3
6 -2 = 4 · · · · · ·
540º
720º
· · · · · ·
n边形
· · · · · ·
(n-2)· 180º
n-3
第六章 平行四边形
4 多边形的内角和与外角和(一)
在平面内,由若干条不在同 一条直线上的线段首尾顺次相连 组成的封闭图形叫做多边形。
对角线:在多边形中,连接不相邻的两个顶 点的线段叫做多边形的对角线。
多 边 形 的 构 成
对角线 外角 内角
顶点

外角: 多边形内角的一边与另一边的பைடு நூலகம்向延长 线所组成的角叫做这个多边形的外角。
3.过某个顶点的所有对角线,将这个多边形分成5个 三角形。这个多边形是几边形?它的内角和是多少?
4.一个多边形的每个内角都等于150°,则这个多边 形是几边形?

多边形内角和外角和的公式

多边形内角和外角和的公式

多边形内角和外角和的公式
多边形的内角和公式是:n边形的内角和等于(n-2)×180°。

其中,n是多边形的边数。

而多边形的外角和总是等于360°,它与边数的多少无关。

对于内角和,随着多边形边数的增加,内角和也会增加;反之,边数减少,内角和也会减少。

每增加一条边,内角的和就增加180°,且多边形的内角和必须是180°的整数倍。

另外,一个多边形最多有三个内角为锐角,最少可以没有锐角(如矩形);而多边形的外角中最多有三个钝角,最少可以没有钝角。

以上内容仅供参考,如需更全面准确的信息,可查阅数学相关书籍或请教数学专业人士。

多边形的内角和与外角和公开课课件ppt

多边形的内角和与外角和公开课课件ppt
会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能

多边形内角与外角和公式

多边形内角与外角和公式

多边形内角与外角和公式在我们学习数学的旅程中,多边形内角和与外角和公式就像是一把神奇的钥匙,能打开许多几何谜题的大门。

先来说说多边形的内角和公式。

对于一个 n 边形,其内角和等于 (n - 2)×180°。

这看起来好像挺抽象的,但咱们举个例子就好懂多啦。

比如说一个三角形,这是最简单的多边形啦,那 n = 3,代入公式算算,(3 - 2)×180° = 180°,这是不是和咱们熟悉的三角形内角和 180°完全对上啦!我记得有一次给学生们讲这个知识点的时候,有个特别调皮的小家伙,怎么都不相信这个公式。

我就随手在黑板上画了个六边形,然后带着大家一起把这个六边形分割成了 4 个三角形。

通过一步步的计算和推导,这小家伙终于恍然大悟,眼睛瞪得圆圆的,那种从疑惑到明白的表情,真的太有趣啦!再说说多边形的外角和。

不管是三角形、四边形,还是更多边的多边形,它们的外角和永远都是 360°。

这个结论是不是有点让人意外又惊喜呢?有一回,我带着学生们到操场上做了一个有趣的小实验。

让大家沿着操场的边缘走,每走到一个角就记录下外角的度数。

一圈走下来,把所有的外角度数加起来,嘿,还真就是 360°!当时同学们都兴奋得不行,觉得数学原来这么神奇,就在我们身边。

咱们来深入理解一下这两个公式的应用。

比如说,知道了一个多边形的内角和,就能算出它有几条边;或者知道了边数,就能求出内角和。

在解决几何问题、设计图案、建筑规划等等方面,这两个公式都大有用处。

就像上次我去参观一个新小区的规划图,设计师们就是运用了多边形的内角和与外角和公式,来设计小区里各种形状的花园和休闲区域,让整个小区看起来既美观又合理。

在数学的世界里,多边形内角和与外角和公式就像是坚固的基石,支撑着我们去探索更广阔、更复杂的几何天地。

它们虽然简单,却蕴含着无尽的智慧和乐趣。

所以啊,同学们可别小看这两个公式,好好掌握它们,能让我们在数学的海洋里畅游得更加畅快!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

随堂练习: 判断:
(1) 一个多边形中,锐角最多只能有三个 ( ) (2)一个多边形的内角和等于1080°等,各角也相等 (4)一个正多边形的内角和不可能是960°

( ( ) )
(5)所有正多边形都是轴对称图形,也是中心对称图形 ( )
2、四边形各内角之比为3:4:5:6,求各内角度数。
3、一个多边形,除了一个内角外,其余各内角之 和为1780 °,求这个内角的度数。
4 、如图,作多边形所有 过顶点 A的对角线,分别 用 字 母 表 示 出来 ,并求 这个多边形的内角和。
课外作业
结论:n边形的内角和等于(n-2)· 180º
“ 想一想”:观察下图中的多边形,它们的边、角有什么 特点?
在平面内,内角都相等,边也相等的多边形叫做正多边形。
“议一议”:
(1) 一个多边形的边都相等,它 的内角一定都相等吗? (2) 一个多边形的内角都相等, 它的边一定都相等吗? (3) 正三角形、正四边形(正方 形)、正五边形、正六边形、正 八边形的内角分别是多少度?
4 多边形的内角和与外角和
第1课时
(1)上图中广场中心的边缘是一个五边形,你能 设法求出它的五个内角的和吗?与同伴进行交流。 ( 2 )小明和小亮分别利用下面的图形求出了该 五边形的五个内角和,你知道他们是怎样做的吗?
(3)还有其他的方法吗?
“做一做”: 按照图1的方法,六边形能分成多少个三角形?n边形 (n 是大于或等于 3的自然数)呢?你能确定 n 边形的 内角和吗?
相关文档
最新文档