【高中数学】3.1.2概率的意义(教、学案)

合集下载

高中数学 必修三 3.1.2 概率的意义学案 新人教A版必修3

高中数学  必修三   3.1.2 概率的意义学案 新人教A版必修3

高中数学必修三学案:3.1.2 概率的意义113118,找出疑惑之处)1.概率的正确理解:概率是描述随机事件发生的的度量,事件A的概率P(A)越大,其发生的可能性就越;概率P(A)越小,事件A发生的可能性就越 .2.概率的实际应用:知道随机事件的概率的大小,有利我们做出正确的 ,还可以解决某些决策或规则的正确性与公平性.3.游戏的公平性:应使参与游戏的各方的机会为等可能的, 即各方的相等,根据这一要求确定游戏规则才是的.4.决策中的概率思想:以使得样本出现的最大为决策的准则.5.天气预报的概率解释:降水的概率是指降水的这个随机事件出现的 ,而不是指某些区域有降水或能不能降水.6.遗传机理中的统计规律: (看教材P118)二、新课导学※ 探索新知探究1:概率的正确理解问题1:有人说,既然抛掷一枚硬币出现正面的概率为0.5,那么连续两次抛掷一枚质地均匀的硬币,一定是一次正面朝上,一次反面朝上。

你认为这种想法正确吗?试验:让我们做一个抛掷硬币的试验,观察它落地时的情况。

每人各取一枚同样的硬币,连续两次抛掷,观察它落地后的朝向,并记录下结果,填入下表。

重复上面的过程10次,把全班同学试验结果汇总,计三种结果发生的频率。

事实上,“两次均反面朝上”的概率为,“两次均反面朝上”的概率为,“正面朝上、反面朝上各一次”的概率为。

问题2:有人说,中奖率为 1/1000的彩票,买1000张一定中奖,这种理解对吗?探究3:游戏的公平性问题3:在一场乒乓球比赛前,必须要决定由谁先发球,并保证具有公平性,你知道裁判员常用什么方法确定发球权吗?其公平性是如何体现出来的?探究4:决策中的概率思想思考:如果连续10次掷一枚骰子,结果都是出现1点,你认为这枚骰子的质地是均匀的,还是不均匀的?如何解释这种现象?(参考教材115页)探究5:天气预报的概率解释思考:某地气象局预报说,明天本地降水概率为70%,你认为下面两个解释中哪一个能代表气象局的观点?明天本地有70%的区域下雨,30%的区域不下雨?明天本地下雨的机会是70%思考:遗传机理中的统计规律你能从课本上这些数据中发现什么规律吗?※ 典型例题例1某中学高一年级有12个班,要从中选2个班代表学校参加某项活动。

人教版高中数学必修三(教案)3.1.2 概率的意义

人教版高中数学必修三(教案)3.1.2   概率的意义

第二课时 3.1.2 概率的意义教学要求:正确理解概率的意义, 并能利用概率知识正确解释现实生活中的实际问题.教学重点:概率意义的理解和应用.教学难点:用概率知识解决现实生活中的具体问题.教学过程:一、复习准备:1. 讨论:有人说,既然抛一枚硬币出现正面的概率是0.5,那么连续两次抛一枚质地均匀的硬币,一定是“一次正面朝上,一次反面朝上”,你认为这种想法正确吗?2. 提问:如果某种彩票的中奖概率是1,那么买1000张这种彩票1000一定能中奖吗?二、讲授新课:1. 教学基本概念:①概率的正确理解:概率是描述随机事件发生的可能性大小的度量,事件A的概率P(A)越大,其发生的可能性就越大;概率P(A)越小,事件A发生的可能性就越小.②概率的实际应用(知道随机事件的概率的大小,有利我们做出正确的决策,还可以判断某些决策或规则的正确性与公平性.)③游戏的公平性:应使参与游戏的各方的机会为等可能的,即各方的概率相等,根据这一教学要求确定游戏规则才是公平的④决策中的概率思想:以使得样本出现的可能性最大为决策的准则⑤天气预报的概率解释:降水的概率是指降水的这个随机事件出现的可能,而不是指某些区域有降水或能不能降水.⑥遗传机理中的统计规律:2. 教学例题:①出示例1:有人说,既然抛一枚硬币出现正面向上的概率为0.5,那么连续抛一枚硬币两次,一定是一次正面朝上,一次反面朝上,你认为这种想法正确吗?,那么买1000张这种彩票②练习:如果某种彩票的中奖概率是11000一定能中奖吗?请用概率的意义解释.(分析:买1000张彩票,相当于1000次试验,因为每次试验的结果都是随机的,所以做1000次试验的结果也是随机的,也就是说,买1000张彩票有可能没有一张中奖。

)③出示例2:在一场乒乓球比赛前,裁判员利用抽签器来决定由谁先发球,请用概率的知识解释其公平性.。

高中数学《3.1.2 概率的意义》导学案 新人教A版必修3

高中数学《3.1.2 概率的意义》导学案 新人教A版必修3
例3.为了增强学生对世园会的了解和认识,某校决定在全校30 00名学生中随机抽取10名学生举行一次有关西安世园会的知识问卷,小明认为被选取的可能性为 ,不可能抽到他, 所以他就不想去查阅、咨询有关世园会的知识,你认为他的做法对吗?请说明理由.
达标训练
1.课本p129练习1
2.课本p132练习1 2 3
精讲互动
例1.(1)某厂产品的次品率为0.02,问“从该厂产品中任意地抽取100件,其中一定有2件次品”这一说法对不对?为什么?
(2)一次抽奖活动中,中奖的概率为0.3,解释该概率的含义;
(3)某种病治愈的概率是0.3,那么,现有10人得这种病,在治疗 中前7人没有治愈,后3人一定能治 愈吗?
例2.抛一枚硬币(质地均匀),连 续出现5次正面向上,有 人认 为下次出现反面向上的概率大于1/2,这种理解正确吗?
3 .已知射手甲射中靶的概率为0.9,因此我们认为即使射手甲比较优秀,他射击 10发子弹也不可能全中,其中必有一发不中,试判断这种认识是否正确.
作业
布置
1.习题3-1 A3,B组
2.教辅资料
学习小结/教学
反思
探索新知:
1.阅读课本p127“思考交流”,讨论其结果:
2.问题1:抛掷10次硬币,是否一定是5次“正面朝上”和 5次“5次反面朝上”?
3.问题2:有四个阉,其中两 个分别代表两件奖品,四个人按排序依次抓阉来决定这两件奖品的归属.先抓的人中奖率一定大吗?
4.阅读课本p127-130,你发现了什么问题?
§3.1.2概率的意义
授课
时间
第周星期第 节
课型
新授课
主备课人
学习
目标
1.理解概率的意义;
2.能正确利用概率知识解决现实中的生活问题.

3.1.2概率的意义

3.1.2概率的意义

§3.1.2概率的意义【学习目标】正确理解概率的意义, 并能利用概率知识正确解释现实生活中的实际问题.【重点难点】重点: 概率意义的理解和应用.难点:用概率知识解决现实生活中的具体问题.【学法指导】理解概率的实质,明确随机事件发生可能性的大小的度量(概率)是由它自身决定的,并且是客观存在的,学习时注意结合背景材料建立概率和实际的联系.【知识链接】1.概率的意义:概率的大小反映事件发生的可能性的大小,无论随机事件的概率是很大(接近于1)或很小(接近于0),在一次试验中仍有两种可能,即随机事件可能发生,也可能不发生.2.理解概率的实质,明确随机事件发生可能性的大小的度量(概率)是由它自身决定的,并且是客观存在的,学习时注意结合背景材料建立概率和实际的联系.【问题探究】探究一.概率的正确理解思考1:有人说,既然抛掷一枚硬币出现正面的概率为0.5,那么连续两次抛掷一枚质地均匀的硬币,一定是一次正面朝上,一次反面朝上.你认为这种想法正确吗?动手做一做.引导:通过具体的试验可以发现有三种可能的结果:_____________________________________,这正体现了随机事件发生的随机性,所以这种想法是_______.点拨:随机事件在一次试验中发生与否是随机的,但是随机性中含有,认识了这种随机性中的规律性,就能使我们比较准确的预测随机事件发生的,概率只是度量事件发生的可能性的,不能确定是否发生.思考2:如果某种彩票的中奖概率为11000,那么买1000张这种彩票一定能中奖吗?为什么?引导:买一千次彩票,等于做一千次试验,因为每次试验结果都有,所以买一千张中奖.点拨:虽然中奖张数是随机的,但这种随机性中也有规律性.随着试验次数的增加,即随着所买彩票张数的增加,其中中奖彩票所占的比例可能越接近于 .探究二: 游戏的公平性(阅读教材115页内容)思考3:在一场乒乓球比赛前,裁判员利用抽签器来决定由谁先发球,请用概率的知识解释其公平性.引导:这个规则是______,因为每个运动员先发球的概率为_____,即每个运动员取得先发球权的概率是______,抽签上抛后,红圈朝上与绿圈朝上的概率均是______,因此任何一名运动员猜中的概率都是______,也就是每个运动员取得先发球权的概率都是______.点拨:使两个运动员取得先发球权的概率都是______的规则都是公平的.思考4:某中学高一年级有12个班,要从中选2个班代表学校参加某项活动.由于某种原因,一班必须参加,另外再从二班至十二班中选1个班.有人提议用如下方法:抛掷两枚骰子,得到的点数和是几,就选几班,你认为这种方法公平吗?引导:这种方法______,如课本图标所示,投掷两个骰子总共会产生______种结果,但点数和是2的只有______种,点数和是7的有______种,这样选2班的概率是______,选7班的概率是______,显然此做法不公平.点拨:利用概率思想正确处理和解释实际问题,是一种科学的理性思维,在实践中要不断巩固和应用,提升自己的数学素养.探究三:决策中的概率思想(阅读教材116页内容)思考5:如果连续10次掷一枚骰子,结果都出现1点.你认为这枚骰子的质地均匀吗?为什么?引导:此时我们面临两种决策,一种是___________,另一种是_____________.当连续10次抛掷这枚骰子,结果都出现1点,而如果骰子是均匀的,一次试验中每个面出现的可能性是____,从而连续10次出现一点的概率是__________,在一次试验中________.点拨:在一次试验中的事件称为小概率事件.如果我们面临的是从多个可选答案中挑选正确的答案的决策任务,那么“使样本出现的可能性”可以作为决策的准则,这种判断问题的方法称为,此法是统计中重要的统计思想方法之一.探究四:天气预报的概率解释(阅读教材116—117页内容)思考6:某地气象局预报说,明天本地降水概率为0.7,你认为下列两个解释哪一个能代表气象局的观点?(1)明天本地有0.7的区域下雨,0.3的区域不下雨(2)明天本地下雨的机会是0.7. 思考7:天气预报说昨天降水概率是0.9,结果根本一点雨也没下,天气预报页太不准确了,学了概率后,你能给出解释吗?引导:思考6:很显然,是正确的.思考7:天气预报的降水是一个,因此昨天没有下雨并不说明昨天的降水概率为0.9的天气是错的.点拨:概率是描述随机事件发生的可能性大小的一个数量,即使是大概率事件,也不能肯定事件一定会发生,只是认为事件发生的可能性大.探究五:遗传学中的统计规律(阅读课本117,118页)引导:(1)在第二代中YY出现的概率是,Yy出现的概率是,yy出现的概率是 .(2)在第二代中黄色豌豆与绿色豌豆的数量比约为 .点拨:孟德尔通过试验、观察、猜想、论证,从豌豆实验中发现遗传规律是一种统计规律,这是一种科学的研究方法,我们应认真体会和借鉴.【典例分析】例1.一个箱子中放置了若干个大小相同的白球和黑球,从箱中抽到白球的概率是99%,抽到黑球的概率是1%,现在随机取出一球,你估计这个球是白球还是黑球?引导:概率是描述随机事件发生的可能性大小的一个数量.点拨: 即使是大概率事件,也不能肯定事件一定会发生,只是认为事件发生的可能性大, 这正体现了随机事件发生的随机性.例2.一个不透明的袋子里放有同样大小的9个白色乒乓球和1个黄色乒乓球,每次从中随机摸出1个球后再放回,一共摸10次,你认为一定有一次会摸到黄色乒乓球吗?试说明你的理由.引导: 每次从中摸球都是随机的, 10次摸球的结果也是随机的.点拨: 随机事件在一次试验中发生与否是随机的,但是随机性中含有规律性,认识了这种随机性中的规律性,就能使我们比较准确的预测随机事件发生的可能性,概率只是度量事件发生的可能性的大小,不能确定是否发生.【目标检测】一.选择题1.气象台预报“本市明天降雨概率是70%”,以下理解正确的是 ( )A.本市明天将有70%的地区降雨;B.本市明天将有70%的时间降雨;C.明天出行不带雨具肯定淋雨;D.明天出行不带雨具淋雨的可能性很大.2.在给病人动手术之前,外科医生会告知病人或家属一些情况,如这种手术的成功率大约是99%,下列解释正确的是 ( )A.100个手术有99个手术成功,1个失败;B .这个手术一定成功;C .99%的医生能做这个手术,另外1%的医生不能做;D .这个手术成功的可能性是99%.3.抛掷一枚质地均匀的正方体骰子,若前三次连续抛到“6点朝上”,则对于第四次抛掷结果的预测,下列说法中正确的是 ( )A .出现“6点朝上”的概率大于61;B .出现“6点朝上”的概率等于61; C .一定出现“6点朝上”; D .无法预测“6点朝上”的概率.4.从一批计算机中随机抽出100台进行质检,其中有10台次品,下列说法正确的是( )A.次品率小于10%B.次品率大于10%C.次品率接近10%D.次品率等于10%二.填空题5.从A,B,C 三个同学中选2名代表学校到省里参加奥林匹克数学竞赛,A 被选中的概率是______. 6﹡设某厂产品的次品率为2%,估计该厂8000件产品中合格品的件数可能为______.三.解答题7.先后抛掷两枚质地均匀的硬币.(1)一共可以出现多少种不同的结果?(2)出现“一枚正面、一枚反面“的结果有几种?8*“一个骰子掷一次得到2的概率是61,这说明一个骰子掷6次会出现一次2”这种说法对吗?请说明你的理由.提示: 每掷一次都是随机的, 掷6次的结果也是随机的.【总结提升】:1. 概率是描述随机事件发生的可能性大小的一个数量,即使是大概率事件,也不能肯定事件一定会发生,只是认为事件发生的可能性大.2. 孟德尔通过试验、观察、猜想、论证,从豌豆实验中发现遗传规律是一种统计规律,这是一种科学的研究方法,我们应认真体会和借鉴.3. 利用概率思想正确处理和解释实际问题,是一种科学的理性思维,在实践中要不断巩固和应用,提升自己的数学素养.【总结反思】知识重点 .能力与思想方法【自我评价】你完成本学案的情况为( )A.很好B.较好C.一般D.较差。

高中数学 3.1.2概率的意义导学案 新人教A版必修3

高中数学 3.1.2概率的意义导学案 新人教A版必修3

课题离散型随机变量的数学期望一、学习目标:1、熟记离散型随机变量的数学期望的计算公式,能计算离散型随机变量的数学期望。

2、记住二点分布、二项分布、超几何分布的数学期望计算公式。

二、自学指导:认真阅读课本59页——61页的内容(二项分布与超几何分布公式的推导不做要求), 并注意以下几个方面:1、能通过实例总结出离散型随机变量的数学期望公式。

2、记住二点分布、二项分布、超几何分布的数学期望计算公式。

3、看例1、学会用数学期望来估计水平的高低。

3、看例2、3、学会求离散型随机变量的数学期望。

(说明:限时12分钟,12分钟后进行检测,看谁能运用本节知识作对检测题。

)三、自学检测一:(2分钟)1、离散型随机变量的数学期望公式,离散型随机变量的数学期望刻画了这个离散型随机变量的2、二点分布的数学期望计算公式3、二项分布的数学期望计算公式4、超几何分布的数学期望计算公式自学检测二:(要求:书写规范,步骤完整,限时12分钟。

)1、设离散型随机变量X的分布列为求E(X)2、两台生产同一零件的车床,设一天生产中次品的分布列分别为如果两台车床在一天中的产量相同,试问哪台车床期望的次品少?3. 在10件产品中,有3件一等品、7件二等品.从这10件产品中任取3件,求取出的3件产品中一等品件数X 的分布列和数学期望.4、甲、乙两人各进行3次射击,甲每次击中目标的概率为12,乙每次击中目标的概率为23.记甲击中目标的次数为ξ,乙击中目标的次数为η. (1)求ξ的分布列; (2)求ξ和η的数学期望.四、当堂训练:(不讨论,独立完成,时间:10分钟)1、袋中有4只红球,3只黑球,今从袋中随机取出4只球.设取到一只红球得2分,取到一只黑球得1分,试求得分ξ的概率分布和数学期望.2.从装有3个白球和2个黑球的布袋中摸取一球,有放回的摸取5次,求摸得的白球数X的数学期望。

五、课堂小结。

高中数学人教A版必修3《3.1.2概率的意义》教案4

高中数学人教A版必修3《3.1.2概率的意义》教案4

必修三概率的意义教课目的重点:概率的正确理解及其在实质生活中的应用.难点:利用概率思想正确办理和解说实质问题,随机试验结果的随机性与规律性的关系. 知识点:①正确理解概率的含义.②随机性与规律性:解说每次试验结果的随机性,多次试验结果的规律性,进一步说明频次与概率之间的差别. ③概率与公正性的关系. ④概率与决议的关系. ⑤概率与预告的关系⑥试验与发现,遗传机理中的统计规律.能力点:学生经历试验,统计,剖析,概括,总结,从而认识并感觉概率的定义的过程,引导学生从数学的视角,察看客观世界;用数学的思想,思虑客观世界;以数学的语言,描绘客观世界. 学生经历试验,整理,剖析,概括,确认等数学活动,感觉数学活动充满了研究性与创建性,感觉量变与质变的对峙一致规律,培育对概率的精准,新奇,独到的思想方式的能力.教育点:经过对概率的实质意义的理解,领会知识根源于实践并应用于实践的辩证唯心主义观,从而领会数学与现实世界的联系. 认识事物之间的广泛联系与互相转变,培育学生用联系的看法看问题.自主研究点:①有人说,既然扔掷一枚硬币出现正面向上的概率为,那么连续扔掷两次一枚质地平均的硬币,必定是一次正面向上,一次反面向上. 你以为这类想法正确吗?②某中学高一年级有12 个班,要从中选 2 个班代表学校参加某项活动,因为某种原由,一班必须参加,此外再从二至十二班中选 1 个班 . 方法:掷两个骰子获得的点数和是几,就选几班,公平吗?考试点:概率内容高考必考.易错易混点:频次与概率关系,等可能与非等可能问题,有序与无序问题.拓展点 :大千世界充满了随机事件,生活中到处有概率. 利用概率的理论意义,对各样实质问题作出合理解说和正确决议,是我们学习概率的一个基本目的.教具准备乒乓球 9 白 1 黄、学生每人 1 枚硬币、 8 个骰子、三角板和多媒体.【教课过程】一、引入新课1.创建情境,揭露课题(导教案题组)同学们,我们上节课学习了随机事件的概率,请回想必定事件、不行能事件、确立事件、随机事件的定义,概率、频次定义,频次与概率关系,并回答以下问题:( 1) 指出以下事件是必定事件、不行能事件,仍是随机事件:①枣庄明年 1 月 1 日刮西寒风;②三个乒乓球放入两个盒子里,此中一盒必有两个球;③手机的电池没电,能打电话;④一个电影院某天的上座率超出50% ;⑤明日坐公交车比较拥堵;⑥将一枚硬币扔掷 4 次出现两次正面和两次反面;学生思虑,而后找两位同学说出答案.答案:②是必定事件,③是不行能事件,①④⑤⑥是随机事件.( 2) 以下说法:①频次是反应事件发生的屡次程度,概率反应事件发生的可能性的大小;②做n次随机试验,事件 A 发生的频次m就是事件的概率;③百分率是频次,但不是概率;④频次是不n能离开详细的n 次试验的试验值,而概率是拥有确立性的不依靠于试验次数的理论值;⑤频率是概率的近似值,概率是频次的稳固值. 此中正确的选项是___.学生思虑,而后找两位同学说出答案.答案:( 1)(4)( 5).【设计企图】经过问题复习回首随机事件概率相关的看法,做好知识铺垫.某商场为了促销,搞摸奖活动,促销员大叫:“快来摸奖,中奖率50℅,买两张,中一张!”,买两张真的能中一张吗?,要解决这个问题,我们来学习概率的意义.【板书】 3.1.2 概率的意义【设计企图】由实质问题,引入课题.二、研究新知【研究新知一】概率的正确理解思虑 1:既然扔掷一枚硬币出现正面的概率为,那么连续两次扔掷一枚质地平均的硬币,必定是一次正面向上,一次反面向上,你以为这类想法正确吗?学生回答“是”与“否”,同学们的看法不一致,让学生做试验.研究 1:教师指引学生做试验:全班同学各取一枚相同的硬币,连续两次扔掷,察看它落地后朝向,并记录结果 . 重复上边的过程10 次,将全班同学的试验结果汇总,计算三种结果发生的频次。

高中数学人教A版必修3教案-3.1.2__概率的意义

高中数学人教A版必修3教案-3.1.2__概率的意义

教学准备
1. 教学目标
1.正确理解概率的意义;利用概率知识正确理解现实生活中的实际问题.
2.通过对现实生活中的“掷币”、“游戏的公平性”、“彩票中奖”等问题的探究,感知应用数学知识解决数学问题的方法,理解逻辑推理的数学方法.
3.通过对概率的实际意义的理解,体会知识来源于实践并应用于实践的辩证唯物主义观,进而体会数学与现实世界的联系.
2. 教学重点/难点
教学重点:
理解概率的意义.
教学难点:
用概率的知识解释现实生活中的具体问题.
3. 教学用具
4. 标签
教学过程
课堂小结
概率是一门研究现实世界中广泛存在的随机现象的科学,正确理解概率的意义是认识、理解现实生活中有关概率的实例的关键,学习过程中应有意识形成概率意识,并用这种意识来理解现实世界,主动参与对事件发生的概率的感受和探索.通过以上例题与练习可以感到,数学特别是概率正越来越多地应用到我们的生活当
中.它们已经不是数学家手中的抽象理论,而成为我们认识世界的工具.从彩票中奖,到证券分析;从基因工程,到法律诉讼;从市场调查,到经济宏观调控;概率无处不在.
课后习题
教材第118页练习:1、2、3、
板书
引入复习知识点
1
2
3
例题讲解
1
2
3
4
课堂练习
1
2。

必修三 3.1.2 概率的意义

必修三  3.1.2 概率的意义

班级:姓名:小组:评价:课题必修三 3.1.2 概率的意义教学目标1.通过实例,进一步理解概率的意义.2.会用概率的意义解释生活中的实例.3.了解“极大似然法”和遗传机理中的统计规律课型课时学法指导:1.通过实例理解概率的意义.(重点、难点)2.概率在实际生活中的应用.(重点)【教学过程及内容】[上节回顾][教学过程](含各环节设计、方法指导、课堂练习等)1.知识引入1.随机事件概率的理解随机事件在一次试验中发生与否是随机的,但随机性中含有规律性,认识了这种随机性中的规律性,就能使我们比较准确地预测随机事件发生的可能性.2.极大似然法的概念如果我们面临的是从多个可选答案中挑选正确答案的决策任务,那么课海拾贝/反思纠错“使得样本出现的可能性最大”可以作为决策的准则,这种判断问题的方法称为极大似然法.3.概率的意义概率的意义就是用概率的大小反映事件A发生的可能性,但在一次试验中仍有两种可能,即事件A可能发生也可能不发生2.自主探究对概率意义的理解(1)概率是从数量上反映了随机事件发生的可能性大小的一个数学概念,它是对大量重复试验来说存在的一种统计性规律,对单次试验来说,随机事件发生与否是随机的.(2)错误认识的澄清:有人说:“既然抛掷一枚质地均匀的硬币出现正面的概率是0.5,那么连续两次抛掷一枚质地均匀的硬币,一定是一次正面向上,一次反面向上”.这种说法显然是错误的.(3)概率是描述随机事件发生的可能性大小的度量.即:概率越大,事件A发生的可能性就越大;概率越小,事件A发生的可能性就越小.(4)随机事件在一次试验中发生与否是随机的,但随机性中含有规律性,认识了这种随机性中的规律性,就能使我们比较准确地预测随机事件发生的可能性.(5)求随机事件概率的必要性.知道事件的概率可以为人们做决策提供依据,概率是用来度量事件发生可能性大小的量.小概率事件很少发生,而大概率事件经常发生.例如:如果天气预报报道:“今天降水的概率是10%”.可能绝大多数人出门都不会带雨具,而如果天气预报报道:“今天降水的概率是90%”,那么大多数人出门都会带雨具.特别提示 概率是一种可能性,只是频率在理论上的一种期望值.3.典例讲析某射手击中靶心的概率是0.9,是不是说明他射击10次就一定能击中9次?抛掷10枚硬币,全部正面向上.试就这一现象分析,这些硬币的质地是否均匀.4.变式练习下列说法正确的是( ).A .由生物学知,生男生女的概率大约都是12,则一对夫妇生了两个孩子,一定是一男一女B .10张券中有1张奖券,10个人去摸,谁先摸则谁中奖的可能性大C .昨天没有下雨,则说明昨天的天气预报“降水概率是80%”是错的D .一次摸奖,中奖率是15,则某人连摸5张券,也不一定会中奖[反馈习题]为了估计水库中鱼的尾数,可以使用以下的方法:先从水库中捕出一定数量的鱼,例如2 000尾,给每尾鱼做上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中的其他鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾,试根据上述数据,估计水库中鱼的尾数.山东三吉钢木家具厂为2010年广州亚运会游泳比赛场馆生产观众座椅.质检人员对该厂所产2 500套座椅进行抽检,共抽检了100套,发现有5套次品,试问该厂所产2 500套座椅中大约有多少套次品?[学生知识结构整理归纳]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3. 1.2概率的意义一、教材分析(1)正确理解概率的含义。

在概率定义的基础上,从以下两个方面帮助学生正确理解概率的含义,澄清日常生活中遇到的一些错误认识:①试验:通过抛掷一枚质地均匀的硬币,解释正面朝上的概率为0.5含义,纠正“连续两次抛掷一枚质地均匀的硬币,一定是一次正面朝上,一次反面朝上”的错误认识;通过从盒子中摸球的试验,解释中奖概率为的含义,纠正“如果中奖率为,那么买1000张彩票一定能中奖”的错误认识。

②随机性与规律性:解释每次试验结果的随机性,多次试验结果的规律性,进一步说明频率与概率之间的区别。

(2)了解概率在实际问题中的应用。

①概率与公平性的关系:利用概率解释游戏规则的公平性,判断实际生活中的一些现象是否合理。

可以从正反两个方面举例让学生进行判断。

②概率与决策的关系:介绍统计中极大似然法思想的概率解释,并清楚它的概率基础:在一次试验中,概率大的事件发生的可能性大。

这种思想是“风险与决策”中经常使用的。

③概率与预报的关系:通过天气预报、地震预报、股票预报等实例,让学生了解概率在预报中的作用。

二、教学目标1.从频率稳定性的角度,了解概率的意义.2.学生经历试验,统计,分析,归纳,总结,进而了解并感受概率的定义的过程,引导学生从数学的视角,观察客观世界;用数学的思维,思考客观世界;以数学的语言,描述客观世界.3.学生经历试验,整理,分析,归纳,确认等数学活动,感受数学活动充满了探索性与创造性,感受量变与质变的对立统一规律,同时为概率的精准,新颖,独特的思维方式所震撼..三、教学重点难点重点:概率的正确理解。

难点:用概率知识解决现实生活中的具体问题。

四、学情分析回忆上节课有关概率的定义,通过试验解释概率的含义,纠正日常生活中的一些错误认识,介绍概率与公平性、概率与决策、概率与预报方面的实例。

五、教学方法1.举例法2.学案导学:见后面的学案。

3.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习六、课前准备1.学生的学习准备:预习课本,初步把握概率的定义。

2.教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案。

七、课时安排:1课时八、教学过程(一)预习检查、总结疑惑检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。

(二)情景导入、展示目标。

1在条件S下进行n次重复实验,事件A出现的频数和频率的含义分别如何?2.概率是反映随机事件发生的可能性大小的一个数据,概率与频率之间有什么联系和区别?它们的取值范围如何?联系:概率是频率的稳定值;区别:频率具有随机性,概率是一个确定的数;范围:[0,1].3.大千世界充满了随机事件,生活中处处有概率.利用概率的理论意义,对各种实际问题作出合理解释和正确决策,是我们学习概率的一个基本目的.(三)合作探究、精讲点拨。

1.概率的正确理解思考1:连续两次抛掷一枚硬币,可能会出现哪几种结果?“两次正面朝上”,“两次反面朝上”,“一次正面朝上,一次反面朝上”.思考2:抛掷—枚质地均匀的硬币,出现正、反面的概率都是0.5,那么连续两次抛掷一枚硬币,一定是出现一次正面和一次反面吗?探究:试验:全班同学各取一枚同样的硬币,连续抛掷两次,观察它落地后的朝向.将全班同学的试验结果汇总,计算三种结果发生的频率.你有什么发现?随着试验次数的增多,三种结果发生的频率会有什么变化规律?“两次正面朝上”的频率约为0.25,“两次反面朝上”的频率约为0.25,“一次正面朝上,一次反面朝上”的频率约为0.5.思考3:围棋盒里放有同样大小的9枚白棋子和1枚黑棋子,每次从中随机摸出1枚棋子后再放回,一共摸10次,你认为一定有一次会摸到黑子吗?说明你的理由.不一定.摸10次棋子相当于做10次重复试验,因为每次试验的结果都是随机的,所以摸10次棋子的结果也是随机的.可能有两次或两次以上摸到黑子,也可能没有一次摸到黑子,摸到黑子的概率为1-0.910≈0.6513思考4:如果某种彩票的中奖概率为 0.001,那么买1000张这种彩票一定能中奖吗?为什么?不一定,理由同上. 买1 000张这种彩票的中奖概率约为1-0.9991000≈0.632,即有63.2%的可能性中奖,但不能肯定中奖.2.游戏的公平性在一场乒乓球比赛前,必须要决定由谁先发球,并保证具有公平性,你知道裁判员常用什么方法确定发球权吗?其公平性是如何体现出来的?裁判员拿出一个抽签器,它是-个像大硬币似的均匀塑料圆板,一面是红圈,一面是绿圈,然后随意指定一名运动员,要他猜上抛的抽签器落到球台上时,是红圈那面朝上还是绿圈那面朝上。

如果他猜对了,就由他先发球,否则,由另一方先发球. 两个运动员取得发球权的概率都是0.5.探究:某中学高一年级有12个班,要从中选2个班代表学校参加某项活动。

由于某种原因,一班必须参加,另外再从二至十二班中选1个班.有人提议用如下的方法:掷两个骰子得到的点数和是几,就选几班,你认为这种方法公平吗?哪个班被选中的概率最大?(图参考课本115页)不公平,因为各班被选中的概率不全相等,七班被选中的概率最大.3.决策中的概率思想思考:如果连续10次掷一枚骰子,结果都是出现1点,你认为这枚骰子的质地是均匀的,还是不均匀的?如何解释这种现象?(参考课本115页)这枚骰子的质地不均匀,标有6点的那面比较重,会使出现1点的概率最大,更有可能连续10次都出现1点. 如果这枚骰子的质地均匀,那么抛掷一次出现1点的概率为,连续10次都出现1点的概率为这是一个小概率事件,几乎不可能发生.如果我们面临的是从多个可选答案中挑选正确答案的决策任务,那么“使得样本出现的可能性最大”可以作为决策的准则,这种判断问题的方法称为极大似然法.4.天气预报的概率解释思考:某地气象局预报说,明天本地降水概率为70%,你认为下面两个解释中哪一个能代表气象局的观点?明天本地有70%的区域下雨,30%的区域不下雨?明天本地下雨的机会是70%降水概率≠降水区域;明天本地下雨的可能性为70%.答案参考课本117页思考:天气预报说昨天的降水概率为 90%,结果昨天根本没下雨,能否认为这次天气预报不准确?如何根据频率与概率的关系判断这个天气预报是否正确?不能,概率为90%的事件发生的可能性很大,但“明天下雨”是随即事件,也有可能不发生.收集近50年同日的天气情况,考察这一天下雨的频率是否为90%左右.5试验与发现奥地利遗传学家孟德尔从1856年开始用豌豆作试验,他把黄色和绿色的豌豆杂交,第一年收获的豌豆都是黄色的.第二年,他把第一年收获的黄色豌豆再种下,收获的豌豆既有黄色的又有绿色的.同样他把圆形和皱皮豌豆杂交,第一年收获的豌豆都是圆形的.第二年,他把第一年收获的圆形豌豆再种下,收获的豌豆却既有圆形豌豆,又有皱皮豌豆.类似地,他把长茎的豌豆与短茎的豌豆杂交,第一年长出来的都是长茎的豌豆. 第二年,他把这种杂交长茎豌豆再种下,得到的却既有长茎豌豆,又有短茎豌豆.试验的具体数据如下:豌豆杂交试验的子二代结果你能从这些数据中发现什么规律吗?孟德尔的豌豆实验表明,外表完全相同的豌豆会长出不同的后代,并且每次试验的显性与隐性之比都接近3︰1,这种现象是偶然的,还是必然的?我们希望用概率思想作出合理解释.6.遗传机理中的统计规律在遗传学中有下列原理:(1)纯黄色和纯绿色的豌豆均由两个特征因子组成,下一代是从父母辈中各随机地选取一个特征组成自己的两个特征.(2)用符号AA代表纯黄色豌豆的两个特征,符号BB代表纯绿色豌豆的两个特征.(3)当这两种豌豆杂交时,第一年收获的豌豆特征为:AB.把第一代杂交豌豆再种下时,第二年收获的豌豆特征为: AA,AB,BB.(4)对于豌豆的颜色来说.A是显性因子,B是隐性因子.当显性因子与隐性因子组合时,表现显性因子的特性,即AA,AB都呈黄色;当两个隐性因子组合时才表现隐性因子的特性,即BB呈绿色.在第二代中AA,AB,BB出现的概率分别是多少?黄色豌豆与绿色豌豆的数量比约为多少?P(AA)=0.5×0.5=0.25 p(BB)=0.5×0.5=0.25P(AB)=1-0.25-0.25=0.5黄色豌豆(AA,AB)︰绿色豌豆(BB)≈3︰1(四)反思总结,当堂检测。

教师组织学生反思总结本节课的主要内容,并进行当堂检测。

设计意图:引导学生构建知识网络并对所学内容进行简单的反馈纠正。

(课堂实录)(五)发导学案、布置预习。

我们已经学习了概率的意义,那么,概率还具有那些性质呢?在下一节课我们一起来学习概率的基本性质。

这节课后大家可以先预习这一部分,如何得出恰当的结论的。

并完成本节的课后练习及课后延伸拓展作业。

设计意图:布置下节课的预习作业,并对本节课巩固提高。

教师课后及时批阅本节的延伸拓展训练。

九、板书设计1.概率的正确理解2.游戏的公平性3.决策中的概率思想4.天气预报的概率解释5试验与发现十、教学反思本课的设计采用了课前下发预习学案,学生预习本节内容,找出自己迷惑的地方。

课堂上师生主要解决重点、难点、疑点、考点、探究点以及学生学习过程中易忘、易混点等,最后进行当堂检测,课后进行延伸拓展,以达到提高课堂效率的目的。

1.概率是描述随机事件发生的可能性大小的一个数量,即使是大概率事件,也不能肯定事件一定会发生,只是认为事件发生的可能性大.2.孟德尔通过试验、观察、猜想、论证,从豌豆实验中发现遗传规律是一种统计规律,这是一种科学的研究方法,我们应认真体会和借鉴.3.利用概率思想正确处理和解释实际问题,是一种科学的理性思维,在实践中要不断巩固和应用,提升自己的数学素养.在后面的教学过程中会继续研究本节课,争取设计的更科学,更有利于学生的学习,也希望大家提出宝贵意见,共同完善,共同进步!十一、学案设计(见下页)3.1.2概率的意义课前预习学案一、预习目标1.从频率稳定性的角度,了解概率的意义.2.怎样从数量上刻画一个随机事件发生的可能性的大小.二、预习内容知识生成:1.概率的正确理解:概率是描述随机事件发生的的度量,事件A的概率P(A)越大,其发生的可能性就越;概率P(A)越小,事件A发生的可能性就越.2.概率的实际应用:知道随机事件的概率的大小,有利我们做出正确的,还可以某些决策或规则的正确性与公平性.3.游戏的公平性:应使参与游戏的各方的机会为等可能的, 即各方的相等, 根据这一要求确定游戏规则才是的.4.决策中的概率思想:以使得样本出现的最大为决策的准则.5.天气预报的概率解释:降水的概率是指降水的这个随机事件出现的,而不是指某些区域有降水或能不能降水.6.遗传机理中的统计规律: (看书P118)三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中课内探究学案一、学习目标1.概率的正确理解;2.概率思想的实际应用.二、学习重难点:重点:概率的正确理解难点:用概率知识解决现实生活中的具体问题。

相关文档
最新文档