基于奇异值分解的图像压缩及其Matlab实现(图文)

合集下载

基于奇异值分解(SVD)和小波变换的图像压缩算法

基于奇异值分解(SVD)和小波变换的图像压缩算法

团 扦撤 砬抽 固 列 簟取 抽 上 = ~样 上= 一 样
图 1多 分 辨 率 二 维 图 象小 波分 解 重 构 算 法
的 信 噪 比和 压 缩 率 。 其 中: 里 , 这 h和 分 别 代 表 低 通 分 析 滤 波 器 、 通 合成 滤 波 低 二 .、 变换 的基 本 概 念 ,波 J 器; g和 ; 别 代 表 高 通 分 析 滤 波 器 、 通 合成 滤 波 器 , 且 h 分 高 并 小波的概念最早是在 11 9 0年 由 HA R提 出 的 .从 此 开 辟 R 和 正 交 、 和 g正交 , 即 了信 号 处 理 研 究 的新 方 向 。但 直 到 上 世 纪 八 十 年 代 才 有 了突 破 季( ) ( 1” ( 一 = - )h 1 ) 性 的发 展 。 过 M r tMee、 a be i 等 科 学 家 的 潜 心 研究 , 经 ol 、 yrD u ehe e s g( ) ( )h(一 = 一1” 1 ) 小 波 分 析 正 在 逐步 取 代 传 统 的 傅 立 叶 分 析 。尤 其 是 由 M l t a a 提 l


引 言
在 多 媒体 应 用 日益 广 泛 的今 天 图 像 压 缩 占据 了越 来 越 重 要
的 地位 。经过 几 十 年 的 发 展 , 像压 缩 技 术 开始 走 向成 熟 。 世 图 上

纪八 十年 代 发 展 起来 的小 波 理论 为 图 像 处 理 与 压 缩 技 术 开 辟 了 全 新 的领 域 。经 过 小 波 变 换 后 的 信 号 ,被 分 解 为 高 频 和低 频 分 量 。 中低 频 分 量 集 中 了信 号 的 主要 信 息 , 频 部 分 集 中 了信 号 其 高 的 细 节信 息 。 即实 现 了多 分 辨 率 的 分 解 。 由于 人 的 生 理 特 性决 定 对 细 节信 息 的不 敏 感 .使 得 利 用 小 波 可 以实 现 信 号 压 缩 同 时尽 大 可 能地 保 留信 号 的 主要 成 分 。 国 内外 学 者 在 小 波 图象 压 缩 方 面 做 了非 常多 和 卓 有成 效 的 工 作 本 文 在 小 波 基 础 上 引入 奇 异 值 分 解来 进 行 图 像 压缩 。实 验 证 明 比单 纯 应 用 小 波 变换 有 较 高

使用奇异值分解进行矩阵压缩的方法探讨(五)

使用奇异值分解进行矩阵压缩的方法探讨(五)

奇异值分解(Singular Value Decomposition,SVD)是一种常用的矩阵分解方法,它在数据压缩和噪音过滤等领域有着广泛的应用。

在本文中,我将探讨使用奇异值分解进行矩阵压缩的方法,包括其原理、实现步骤以及应用场景。

奇异值分解是一种将一个矩阵分解为三个矩阵的方法,即将一个矩阵A分解为U、Σ和V的乘积,其中U和V是正交矩阵,Σ是对角矩阵。

在奇异值分解中,U和V代表了A的左奇异向量和右奇异向量,Σ则包含了A的奇异值。

奇异值分解的原理是将原始矩阵A映射到一个更低维的空间中,从而实现数据的压缩和降维。

实现奇异值分解的步骤主要包括以下几个步骤:首先,对原始矩阵A进行对称正交化处理,得到对称矩阵B。

然后,对矩阵B进行特征值分解,得到特征值和特征向量。

接下来,根据特征值和特征向量构建对角矩阵Σ和正交矩阵U和V。

最后,将U、Σ和V相乘,即可得到原始矩阵A的奇异值分解。

奇异值分解可以被广泛用于数据压缩和噪音过滤等领域。

在数据压缩方面,奇异值分解可以将原始矩阵A映射到一个更低维的空间中,从而实现对数据的压缩。

这种压缩方法在图像处理和语音识别等领域有着重要的应用,能够减小数据的存储空间和传输带宽。

另外,在噪音过滤方面,奇异值分解可以通过保留较大的奇异值,实现对数据中噪音的过滤,提高数据的质量和准确性。

除了数据压缩和噪音过滤,奇异值分解还可以应用于推荐系统和模式识别等领域。

在推荐系统中,奇异值分解可以通过对用户-物品评分矩阵进行分解,实现对用户的个性化推荐。

在模式识别中,奇异值分解可以通过对特征矩阵进行分解,实现对模式的识别和分类。

总之,奇异值分解是一种重要的矩阵分解方法,它在数据压缩、噪音过滤、推荐系统和模式识别等领域有着广泛的应用。

通过对奇异值分解的原理、实现步骤和应用场景进行探讨,可以更好地理解和应用这一方法,从而实现对数据的有效处理和利用。

基于Y-H模型的奇异值分解图像压缩方法

基于Y-H模型的奇异值分解图像压缩方法
e itn ea d gv so thesr t a t l fYH— x se c n ie u t urlsyeo t uc SVD,a da pist i e o oc mp esc lri g fe tsta so e t e v ss a e n p l sm t d t o rs o o ma ea ri n f r di oGr a e p c . e h h t i r m n
第 3 卷 第 2 期 7 3
、0 .7 厂13






21 0 1年 1 2月
De e e 2 c mb r 01 1
No. 23
Co mpu e gi e i trEn ne rng
图形 图像 处 理 ・
文章编号t 00 48 013-0-0 文献标识码t 0 ̄32( 12-0 3 2 1 2 ) 2- - A
操作。
参考文献
【] B ih m Morw RE T e at o r r r s r M]【. . 1 r a EO, r . h sF ui a f m[ .S 1 g o F e Tn o ]
Pe t eHal 1 7 rn c l, 9 6. i
整个模块 的设计结构如图 4所示 。
现低功耗设计 。
6 结束语
圈 3 滚水线单媛 C R I O D C运算模块
在 F T处理器设计 中, F 平衡 C R I O D C算法的信 噪比、面 积大小和功耗成了研究的热 点,本文通过选择合理的迭代级
C R I F O D C F T运算模块主要有 2 条流水线传输路径 ,一 条传输路径传输的是蝶形运算 中 k 的数据 ,并且传输原位操 作 的存储器地址 ;另一条传输路径传输 的则是经过迭代运算 后得到 的 k bt的运算项 ,延迟模块 中传输的数据为 1 i +i 6 bt 的数据 ,而在传输迭代 模块 ,传输 的是 2 i数据 ,在输入 5bt

基于小波变换和奇异值分解的图像压缩

基于小波变换和奇异值分解的图像压缩
参 考 文 献 [] 1 丁鹭飞, 富禄. 耿 雷达 原理 [ 西安 电子科技 大学 出版社 ,0 1 M] 20
五 部 支 援 f扰 机 信 息
序号 干扰功 率
( ) W
1 2 3

天线增 益
( B) d
5 5 5

f扰带宽
( MHz )
科 技信 息
甫达接收机 雷达总 雷达 脉冲 虚警概 方位 波束 方位扫描 序 号 噪声系数 耗损 重 复频率 室 宽度 ( ) 速率 ( 度 度/
(B) d
l 2 3 4. 5 4. 5 30
(B) d
1 2 l 2 l 5
( z H )
1 5
降雨速 率 ( h) mm/r
1 O
图 1搜 索 雷 达 网探 测慨 率 仿 真 罔 6 结束 语 、
随队干扰机信息
干扰功率 ห้องสมุดไป่ตู้
( j W
1 0
天 线 增 益
( dB)

f 扰 带 宽
( Hz M )
2 0
干扰机损耗
( B) d

本文提 出利用空 间分割方法 , 以搜索雷达 的探测 概率为指标 , 过 通 汁算机仿真 出雷达 网在 无干扰和有干扰情况 ( 随队干扰 、 掩护干扰 ) , 下 不 同责任 区域检测 概率的变 化 , 来直 观地获得该 空间雷达 网的探测 效 能, 该方法可根据作 战需 要确定不 同分辨 力, 适用 于装备级 、 战术级 、 战 役级层次的雷达干扰效能评估 。
l 31 7 2 0
值: 高频带 I 3 L , H 分别保 留 2 %, 2 个奇异值 , 高频带 L 2 , 3 3 H H H 0 即 0 次 H, H 2 H 分别保 留 1%, l 个奇异 值 , 低高频 带 L 1 L , H 分 L, 2 H 0 即 O 最 H, 1 1 H H 别保留 5 5 O 即5 5 0 %,%, %, , , 个奇异 值。保留 5 个奇异值点 , f 0 按 面的 比例计算 。实验结果如 图5 罔6 、 和表 2 示 : 所

奇异值分解在信号处理和图像压缩中的应用

奇异值分解在信号处理和图像压缩中的应用

奇异值分解在信号处理和图像压缩中的应用奇异值分解(SVD)是一种常用的线性代数方法,通常用于矩阵分解和对特定数据进行降维处理。

在信号处理和图像压缩方面,奇异值分解广泛应用于减少噪声、提高信号精度以及优化图像压缩。

一、奇异值分解的原理SVD是一种将一个矩阵分解成三个矩阵乘积的方法,即$A =U\sum V^T$。

其中,$A$ 是任意$m×n$的矩阵,$U$是$m × m$的酉矩阵,$\sum$是$m × n$的非负矩阵,$V$是$n × n$的酉矩阵。

$\sum$中的非零元素称为矩阵A的奇异值。

当矩阵A是方阵或正定情况时,奇异值等于矩阵A 的特征值的非负平方根。

SVD的基本思路是对矩阵A进行坐标变换,使得变换后的矩阵$\sum$保留最大的奇异值,因此,SVD被广泛地应用在信号处理和图像压缩的领域中。

二、奇异值分解在信号处理中的应用SVD在信号处理领域中的应用主要有两个方面:抑制噪声和优化信号去噪。

1. 抑制噪声当信号中出现噪声时,为了减少噪声对信号的影响,可以将信号在SVD的基础上进行降维,从而减少噪声的影响。

首先,对信号进行奇异值分解,然后通过对$\sum$矩阵进行裁剪,达到从整个信号中删除关于误差的部分的效果,这些信息通常是与噪声相关的。

2. 优化信号去噪通过SVD,保留最大的奇异值,可以增强信号的精度。

在去噪方面,SVD分解后取前n个奇异值和正交相应的列矢量,通过这个信息构建一个更干净的信号。

三、奇异值分解在图像压缩中的应用SVD在图像压缩领域中的应用主要是基于对于大图像的数据压缩,奇异矩阵中保留有关原始图像的所有信息,用于图像的还原。

1. 图像分解将原图像分解成三个分量,其中一个分量是正交基,可以用于完成压缩。

任何大小的图像都可以用三个分量表示,并且图像分解是可逆的,因此可以在不失真截止的情况下重建图像。

2. 压缩SVD的一个重要应用是在图像压缩方面。

在Matlab中进行图像压缩与图像解密的方法与技巧

在Matlab中进行图像压缩与图像解密的方法与技巧

在Matlab中进行图像压缩与图像解密的方法与技巧Matlab是一种强大的工具,被广泛用于图像处理和计算机视觉领域。

在本文中,我们将讨论如何利用Matlab进行图像压缩与图像解密,并探讨一些相应的方法和技巧。

首先,让我们来了解一下图像压缩的基本概念和原理。

图像压缩是通过减少图像占用的存储空间或传输带宽来减小图像文件的大小。

压缩分为有损压缩和无损压缩两种类型。

有损压缩会丢失一些图像信息,以达到压缩的目的,而无损压缩则尽量保留所有图像信息。

在Matlab中,我们可以使用多种方法进行图像压缩。

常见的方法之一是使用离散余弦变换(Discrete Cosine Transform,DCT)。

DCT将图像分解为一系列互不相关的频率成分,然后根据其重要性对这些成分进行量化和编码。

通过调整量化步长可以控制压缩比率和图像质量。

除了DCT,还有其他一些常用的压缩方法,如小波变换(Wavelet Transform),它可以提供更好的局部逼近能力,适用于不同尺度和方向的图像特征。

Matlab中有许多内置函数可以实现小波变换,例如waverec和wavedec函数。

另一个常用的图像压缩方法是基于向量量化(Vector Quantization,VQ)的编码。

VQ将图像划分为不重叠的块,并使用聚类算法将每个块映射到具有较少位数的代表向量。

然后,通过编码代表向量和其在图像中的位置来表示整个图像。

这种方法对于有损压缩非常有效,但在无损压缩方面效果较差。

一旦我们对图像进行了压缩,接下来我们需要了解如何进行图像解密。

在Matlab中,解密可以通过逆向操作来实现。

对于DCT压缩,我们可以通过应用逆离散余弦变换(Inverse Discrete Cosine Transform,IDCT)来恢复原始图像。

同样,对于小波变换压缩,我们可以使用逆小波变换(Inverse Wavelet Transform)来还原图像。

需要注意的是,如果进行了有损压缩,解密后的图像与原始图像之间很可能有一些质量损失。

MATLAB技术图像缩放教程

MATLAB技术图像缩放教程

MATLAB技术图像缩放教程图像缩放是数字图像处理中常用的技术之一,它可以改变图像的大小和比例,不仅可以用于美化图像,还可以用于图像处理和模式识别等领域。

在MATLAB中,通过一些简单的代码就可以实现图像的缩放。

本文将介绍如何使用MATLAB进行图像缩放,并展示一些实际应用案例。

一、图像缩放的原理图像缩放是指改变图像的尺寸或大小,通常有两种方式:一种是等比例缩放,另一种是非等比例缩放。

1. 等比例缩放等比例缩放是指将图像的宽度和高度按照相同的比例进行缩放,这样可以保持图像的形状不变。

在MATLAB中,使用imresize函数可以实现等比例缩放,具体的代码如下:```matlabA = imread('image.jpg'); % 读取原始图像B = imresize(A, 0.5); % 将图像缩小为原来的一半imshow(B); % 显示缩小后的图像```上述代码中,imread函数用于读取原始图像,imresize函数用于对图像进行缩放,0.5表示将图像缩小为原来的一半。

最后使用imshow函数将缩放后的图像显示出来。

2. 非等比例缩放非等比例缩放是指将图像的宽度和高度按照不同的比例进行缩放,这样可以改变图像的形状。

在MATLAB中,同样可以使用imresize函数实现非等比例缩放。

下面是一个示例代码:```matlabA = imread('image.jpg'); % 读取原始图像B = imresize(A, [200 300]); % 将图像缩放为200x300的尺寸imshow(B); % 显示缩放后的图像```上述代码中,[200 300]表示将图像缩放为200x300的尺寸。

同样使用imshow函数将缩放后的图像显示出来。

二、图像缩放的应用案例图像缩放广泛应用于图像处理和模式识别等领域。

下面介绍一些实际应用案例,展示图像缩放的实际效果。

1. 图像美化图像缩放可以用于调整图像的大小,从而达到美化图像的效果。

奇异值分解在图像处理中的实际案例分析

奇异值分解在图像处理中的实际案例分析

奇异值分解(Singular Value Decomposition, SVD)是一种常用的矩阵分解方法,被广泛应用于图像处理、信号处理、数据降维等领域。

在图像处理中,SVD可以用来对图像进行压缩、去噪、特征提取等操作。

本文将通过实际案例分析,探讨奇异值分解在图像处理中的应用。

1. 奇异值分解的基本原理奇异值分解是将一个矩阵分解为三个矩阵的乘积,即A=UΣV^T,其中A是一个m×n的矩阵,U是一个m×m的正交矩阵,Σ是一个m×n的对角矩阵,V^T是一个n×n的正交矩阵。

在图像处理中,我们通常将图像矩阵看作一个二维数组,利用SVD可以将图像矩阵分解为三个部分,分别对应图像的亮度、颜色和空间结构。

2. 图像压缩奇异值分解可以实现对图像的压缩,通过保留最重要的奇异值,可以在减小数据量的同时尽可能地保持图像的质量。

这在图像传输和存储中有着重要的应用。

例如,当我们需要将大尺寸的图像传输到远程地点时,可以利用SVD对图像进行压缩,减小传输所需的带宽和存储空间。

3. 图像去噪在图像处理中,图像去噪是一个重要的问题。

奇异值分解可以通过滤除较小的奇异值来实现图像去噪。

实际上,奇异值表示了图像的重要信息,而较小的奇异值通常对应于图像中的噪声。

通过保留较大的奇异值,可以有效地去除图像中的噪声,从而得到更清晰的图像。

4. 图像特征提取奇异值分解还可以用于图像的特征提取。

通过保留最大的奇异值和对应的左右奇异向量,可以得到图像的主要特征。

这对于图像识别和分类等任务非常有用。

例如,在人脸识别中,可以利用奇异值分解提取人脸图像的主要特征,从而实现人脸识别的任务。

5. 实际案例分析以图像压缩为例,我们可以通过以下步骤对图像进行压缩:- 读取原始图像,并将其转换为灰度图像。

- 对灰度图像进行奇异值分解,得到对应的U、Σ和V^T三个矩阵。

- 保留部分奇异值,将其余奇异值置零,从而实现对图像的压缩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于奇异值分解的图像压缩及其Matlab实
现(图文)
论文导读:本文在介绍奇异值分解基本原理的基础上,实现了基于奇异值分解的图像压缩,并给出了相关的Matlab程序。

本文以Lena 图像为例,说明了奇异值分解压缩率和峰值信噪比之间的关系,实验结果表明奇异值分解可较好地实现图像压缩。

关键词:图像压缩,奇异值分解,压缩率,峰值信噪比
1.前言
图像压缩是数字图像压缩的简称,图像压缩又称为图像压缩编码或图像编码。

在数字图像的存储、处理和传送过程中,采用高效的图像压缩技术可以节省传输资源、降低传输时间、提高传输效率。

科技论文。

图像压缩要解决的问题是尽量减少表示数字图像时需要的数据量[1]。

科技论文。

论文参考。

目前应用较为广泛的图像压缩方法有统计编码、预测编码、变换编码、分形图像压缩编码、利用神经网络的图像编码等。

近年来,奇异值分解方法在图像压缩编码上的应用得到了重视[2-3]。

本文在介绍奇异值分解原理的基础上,以512×512的Lena图像为例,给出了算法的Matlab程序,并对算法进行了评价。

2.奇异值分解的图像压缩原理
矩阵A的奇异值定义如下[4]:设(r>0),且AHA的特征值为
(1)
则称(i=1,2,…,n)为A的奇异值。

设Σ=diag(σ1,σ2,…,σr),由式(1)可知,σi(i=1,2,…,r)为A 的非零奇异值。

科技论文。

U为m阶酉矩阵,V为n阶酉矩阵,若满足
(2)
则称式(2)为A的奇异值分解[4]。

若U写成U =[u1,u2,…,um]的形式,V写成V=[v1,v2,…,vn]的形式,则式(2)可写成如下形式:
(3)
由于大的奇异值对图像的贡献大,小的奇异值对图像的贡献小,所以可以从r个奇异值生成矩阵中选取前k个(k<r)近似表示图像A,即取:
(4)
近似表示图像A。

存储图像A需要mn个数值,存储图像Ak需(m+n+1)k个数值,若取
(5)
则可达到压缩图像的目的,比率
(6)
称为压缩率。

论文参考。

论文参考。

3.奇异值分解图像压缩的Matlab实现
Lena的图像矩阵共有512个非零奇异值,其奇异值特征曲线如图1所示,随着i的增加,σi迅速减小。

σ1=64519,当i≥36时,σi<1000。

图1 图像Lena的奇异值特征曲线(512×512)
采用奇异值分解对该图像进行压缩,Matlab代码如下:
infile='Lena.bmp';
outfile='Lena2.bmp';
k=40;
A=imread(infile);
A=double(A);
[u,s,v] = svds(A,k);
im = uint8(u * s* v');
imwrite(im,outfile);
figure;imshow(im);
原始图像的文件名为Lena.bmp,将压缩后的图像命名为Lena2.bmp,程序的第6行计算矩阵A的最大k个奇异值与相关的奇异向量,得到u=[u1,u2,…,uk],s=diag(σ1,σ2,…,σk),v=[v1,v2,…,vk]。

在使用svds函数时,需要先将A的数据类型转换为double型(程序第5行),这里k取40(程序第3行)。

程序第7行对应公式(4),变量im存放压缩后的图像A40,程序第8行将A40保存为文件Lena2.bmp.
4.结果与讨论
在公式(4)中,k的取值不同时,矩阵Ak表示的图像效果有所不同,如图2所示(a)为原始图像,(b)、(c)、(d)、(e)、(f)分别为A40、
A80、A120、A160、A200所表示的图像。

从图(2)可知,k的取值越大,压缩后的图像效果越好,但同时压缩率越小。

对图像Lena而言,k取80时,压缩后的图像A80已非常接近原图像。

(a)(b)(c)
(d)(e)(f)
图2 k取值不同时图像Lena基于奇异值分解压缩的效果
不同的k值下,Lena图像的压缩率和峰值信噪比(dB)如表1所示:表1 不同k值时Lena图像的压缩率和峰值信噪比(dB)
k=40 k=80 k=120 k=160 k=200 σk 891.7391 426.6649 248.6300 155.2197 108.4801 CR 6.3938 3.1969 2.1313 1.5984 1.2788 PSNR 33.8219 37.1038 40.5122 43.5443 46.1676 在对矩阵进行奇异值分解时,采用分块的方法可降低计算量[3]。

此外,若将奇异值分解与小波
变换相结合对图像进行压缩[5-6],可以在相同压缩率的情况下,得到更高的峰值信噪比。

参考文献[1]Rafael C. Gonzalez,Richard E. Woods. 数字图像处理(第二版)[M]. 阮秋琦, 阮宇智, 译. 北京: 电子工业出版社. 2005[2]胡乡峰, 卫金茂. 基于奇异值分解(SVD)的图像压缩[J].东北师大学报(自然科学版), 2006, 38(3):36-39[3]吴俊政. 一种基于奇异值分解的图像压缩方法[J]. 计算机与数字工程. 2009, 37(5):136-138[4]徐仲, 张凯院, 陆全, 等. 矩阵论简明教程(第二版)[M]. 北京:科学出版社, 2005[5]叶松, 戴才良, 于志强, 等. 基于小波域奇异值分解的图像压缩算法[J]. 计算机工程与应用. 2008, 44(18):183-185[6]刘汉强. 基于奇异值分解(SVD)和小波变换的图像压缩算法[J]. 福建电脑. 2008, (1):55-56。

相关文档
最新文档