不等式易错易混点
不等式易错点

易错07 不等式易错点1 分式不等式【例1】(1)(2020·江苏)不等式2302x x +≥-的解集为 。
(2)(2020·福建省永泰县城关中学)不等式2312x x +≤+的解集为 。
【答案】(1)32x x ⎧≤-⎨⎩或}2x >(2){}|21x x -<≤- 【解析】(1)分式不等式2302x x +≥-等价于230x +=或()()2320x x +->,即32x =-或32x <-或2x >, 故解集为32x x ⎧≤-⎨⎩或}2x >.(2)2312x x +≤+可得102x x +≤+,从而()()12020x x x ⎧++≤⎨+≠⎩,解得21x -<≤-, 【举一反三】易错导图易错详讲【易错总结】解分式不等式的步骤:(1)移项,把分式不等式一边化为0;(2)通分,化不等式为()0()f xg x >或()0()f x g x ≥形式,转化时应使得(),()f x g x 中最高次项系数为正, (3)转化,化为()()0f x g x >或()()0()0f x g x g x ≥⎧⎨≠⎩,(4)得解.1.(2020·利辛县阚疃金石中学)不等式13x x-≤的解集为______________. 【答案】{0x x 或1}2x ≤-【解析】不等式13x x -≤移项通分可得:120x x --≤,即120xx +≥,所以(12)00x x x +≥⎧⎨≠⎩,解得0x >或12x ≤-,故答案为:{0x x 或1}2x ≤-.2.不等式2115x x +≥--的解集为________.【答案】4{|3x x ≤或5}x > 【解析】原不等式移项得21105x x ++≥-,通分整理得3405x x -≥-, 等价于(34)(5)050x x x --≥⎧⎨-≠⎩,解得43x ≤或5x >.故答案为:4{|3x x ≤或5}x > 3.(2020·北京市昌平区前锋学校)不等式2112x x +≥-的解集为________ 【答案】(,3](2,)-∞-+∞【解析】原不等式等价于21102x x +-≥-,即302x x +≥-,即(3)(2)0,2,x x x +-≥⎧⎨≠⎩因此,原不等式的解集为(,3](2,)-∞-+∞.故答案为:(,3](2,)-∞-+∞易错点2 穿根引线【例2】(2020·吴起高级中学)不等式()()()21120x x x +-->的解集为______________.【答案】()()(),11,12,-∞--+∞【解析】不等式()()()21120x x x +-->等价于()()10120x x x +≠⎧⎨-->⎩,解得()()(),11,12,x ∈-∞--+∞.故答案为:()()(),11,12,-∞--+∞.【举一反三】1.(2020·上海普陀·曹杨二中)不等式()()()()2321120x x x x++--≤的解集为________【答案】(]{}[],211,2-∞--【解析】如下图所示:根据图象可知:当2x-≤或1x=-或12x≤≤时,()()()()2321120x x x x++--≤,所以不等式的解集为:(]{}[],211,2-∞--,故答案为:(]{}[],211,2-∞--.2.(2020·云南省保山第九中学)不等式(2)3x xx+<-的解集为()A.{|2x x<-,或03}x<<B.{|22x x-<<,或3}x>C.{|2x x<-,或0}x>D.{|0x x<,或3}x<【答案】A原不等式可转化为()()230x x x+-<,结合数轴标根法可得,2x<-或03x<<.即不等式的解集为{|2x x<-,或03}x<<.故选:A.3.(2020·江苏省响水中学)不等式2(1)0x x-<的解集为()A.{|0x x<或01}x<<B.{|1x x<-或01}x<<【易错总结】利用“穿针引线法”求解高次不等式的解集时,注意从数轴的右上方开始,每经过一个因式对应的数轴上点,要判断该因式是奇次还是偶次,如果是奇次,则穿过该点,如果是偶次,则选择穿而不过.C .{|10x x -<<或1}x >D .{|1x x <-或1}x >【答案】B【解析】2(1)0x x -<等价于(1)(1)0x x x -+<,根据穿根法可得1x <-或01x <<.故选:B.易错点3 基本不等式取“=”【例3】已知a ,b >0且a +b =1,给出下列不等式: ①ab ≤14;②1174ab ab +≥≤;④112a b+≥. 其中正确的序号是( )A .①②B .②③④C .①②③D .①③④ 【答案】C【解析】∵a ,b ∈R +,a +b =1,∴ab ≤2a b +⎛⎫⎪⎝⎭2=14,当且仅当12a b ==时,等号成立,故①正确; 令y=ab +1ab ,设t ab =由①可知104t <≤ ,则1y t t =+在104t <≤上单调递减,故当14t =时,y 有最小值117444+=,故②正确;)2=a +b +a +b +a +b =2,故③正确;112a b + ()11332222b a a b a b a b ⎛⎫=++=++≥ ⎪⎝⎭332222=⨯+=, 当且仅当2b aa b= 时,等号成立,故④不正确.故选:C【举一反三】1.(2020·平遥县综合职业技术学校)已知0x >,0y >,且10xy =,则下列说法正确的是( )A .当x y ==25x y+取得最小值B .当x y ==25x y+取得最大值C .当2x =,5y =时,25x y+取得最小值 D .当2x =,5y =时,25x y+取得最大值 【答案】C 【解析】0x ,0y >,且10xy =,20x∴>,50y >,101xy =,252x y ∴+≥==, 当且仅当25x y=即2x =,5y =时,等号成立, 所以当2x =,5y =时,25x y+取得最小值,最小值为2. 故选:C .2.已知27101x x y x ++=+(1x ≠-),则y 的取值范围为( )A .(,2][2,)-∞-+∞B .(,1][3,)-∞-⋃+∞C .(,1][7,)-∞-⋃+∞D .(,1][9,)-∞⋃+∞【答案】D【解析】由题意,22710(1)5(1)44(1)5111x x x x y x x x x ++++++===++++++,当10x +>即1x >-时,4(1)5591y x x =+++≥=+,当且仅当411x x +=+即1x =时,等号成立; 当10x +<即1x <-时,4(1)5511y x x ⎡⎤=--+-+≤-=⎢⎥+⎣⎦, 当且仅当()411x x -+=-+即3x =-时,等号成立; ∴y 的取值范围为(,1][9,)-∞⋃+∞. 故选:D.易错点4 分类讨论【例4】(2020·北京八中月考)解关于x 的不等式(m 为任意实数):()2220mx m x +--<【答案】答案见解析【解析】当0m =时,原不等式化为220x -<,解得1x <; 当0m ≠时,原不等式可化为()()120x mx -+<,即11x =,22x m=-. 当0m >时,20x <,则原不等式的解集为21x x m ⎧⎫-<<⎨⎬⎩⎭当0m <时,20x >,当21m-=,即2m =-时,有121x x ==,则原不等式的解集为{}1x x ≠; 当21m -<,即2m <-时,则原不等式的解集为2x x m ⎧<-⎨⎩或}1x >当21m ->,即20m -<<时,则原不等式的解集为.2x x m ⎧>-⎨⎩或}1x <【举一反三】1.(2020·云南昆明二十三中)解关于x 不等式2325()ax x ax a R -+>-∈.【答案】答案见解析【解析】不等式化为()2330ax a x +-->,即()()310ax x -+>当0a =时,不等式为330x -->,解得1x <-,当0a >时,31a >-,解得不等式为1x <-或3x a >, 当0a <时,若31a >-,即3a <-时,解得不等式为31x a-<<,若31a =-,即3a =-时,不等式无解, 若31a <-,即30a -<<时,解得不等式为31x a<<-, 综上,3a <-时,不等式的解集为31,⎛⎫- ⎪⎝⎭a ;3a =-时,不等式无解;30a -<<时,不等式的解集为3,1⎛⎫- ⎪⎝⎭a ;0a =时,不等式的解集为(),1-∞-;0a >时,不等式的解集为()3,1,⎛⎫-∞-⋃+∞ ⎪⎝⎭a .2.解不等式:2(2)10ax a x +++>. 【答案】答案见解析.【解析】①当0a =时,不等式为210x +>,解集为12x x ⎧⎫>-⎨⎬⎩⎭,②当0a ≠时,22(2)440a a a ∆=+-=+>,恒有两个实根1x =2x =当0a ><解集为22a x x a ⎧--⎪<⎨⎪⎩或22a x a --+>⎪⎭;当0a <时,222424a a a a ,解集为x ⎧⎪<<⎨⎪⎪⎩⎭,综上所述:0a =时,解集为12x x ⎧⎫>-⎨⎬⎩⎭;0a >时,解集为22a x x a ⎧--⎪<⎨⎪⎩或x >⎪⎭; 0a <时,解集为22a x a ⎧--⎪<<⎨⎪⎪⎩⎭.3.(2020·安徽省亳州市第一中学)解关于x 的不等式:()21220ax a x +-->.【答案】当0a =时,解集为()2,+∞,当0a >时,解集为:()1(,)2,a -∞-⋃+∞,当102a -<<时,不等式的解集为:12,a ⎛⎫-⎪⎝⎭,当12a <-时,不等式的解集为:1,2a ⎛⎫- ⎪⎝⎭, 当12a =-时,不等式的解集为:∅. 【解析】①当0a =时,原不等式可化为:20x ->,可得不等式的解集为()2,+∞, ②当0a >时,原不等式可化为:1(2)0x x a ⎛⎫-+> ⎪⎝⎭, 不等式的解集为:()1(,)2,a-∞-⋃+∞; ③当0a <时,原不等式可化为:1(2)0x x a ⎛⎫-+< ⎪⎝⎭, 当102a -<<时,不等式的解集为:12,a ⎛⎫- ⎪⎝⎭,当12a <-时,不等式的解集为:1,2a ⎛⎫- ⎪⎝⎭, 当12a =-时,不等式的解集为:∅. 易错点5 恒成立和存在问题【例5】(1)设函数()222f x ax x =-+,对任意的()1,4x ∈都有()0f x >,则实数a 的取值范围是( )A .[)1,+∞B .1,12⎛⎫ ⎪⎝⎭C .1,2⎡⎫+∞⎪⎢⎣⎭D .1,2⎛⎫+∞⎪⎝⎭(2)(2020·吉林汽车区第三中学)若“R x ∃∈,22390x ax -+<”,则实数a 的取值范围是( )A .(),22,⎡-∞-+∞⎣ B .(-C .((),-∞-⋃+∞D .-⎡⎣【答案】(1)D (2)C【解析】(1)∵对任意的()1,4x ∈,都有()2220f x ax x =-+>恒成立,∴()2221111242x a x x ⎡⎤-⎛⎫>=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦对任意的()1,4x ∈恒成立, ∵1114x <<,∴2111120,422x ⎡⎤⎛⎫⎛⎤--∈⎢⎥ ⎪ ⎥⎝⎭⎝⎦⎢⎥⎣⎦,∴实数a 的取值范围是1,2⎛⎫+∞ ⎪⎝⎭.故选:D. (2)因为R x ∃∈,22390x ax -+<,所以()234290a ∆=--⨯⨯>,解得a >a <-.故选:C.【举一反三】1.(2020·辽源市第五中学校)若不等式210x ax ++≥对于一切10,2x ⎛⎤∈ ⎥⎝⎦恒成立,则a 的最小值是( ) A .0 B .2- C .52-D .3-【答案】C【解析】因为不等式210x ax ++≥对于一切10,2x ⎛⎤∈ ⎥⎝⎦恒成立,所以1a x x ⎛⎫≥-+⎪⎝⎭对一切10,2x ⎛⎤∈ ⎥⎝⎦恒成立, 所以max 110,2a x x x ⎡⎤⎛⎫⎛⎫⎛⎤≥-+∈ ⎪ ⎪⎢⎥⎥⎝⎭⎝⎦⎣⎦⎝⎭, 又因为()1f x x x =+在10,2⎛⎤ ⎥⎝⎦上单调递减,所以()min 1522f x f ⎛⎫== ⎪⎝⎭,所以52a ≥-,所以a 的最小值为52-, 故选:C.2.(2020·浙江)已知关于x 的不等式2230ax x a -+<在(]0,2上有解,则实数a 的取值范围是( )A .⎛-∞ ⎝⎭B .4,7⎛⎫-∞ ⎪⎝⎭C .⎫∞⎪⎪⎝⎭D .4,7⎛⎫+∞⎪⎝⎭【答案】A 【解析】(]0,2x ∈时,不等式可化为32aax x+<; 当0a =时,不等式为02<,满足题意;当0a >时,不等式化为32x x a +<,则223x a x>=,当且仅当x所以a ,即0a <<;当0a <时,32x x a+>恒成立;综上所述,实数a 的取值范围是(,3-∞ 答案选A3.(2020·江苏省邗江中学)命题“2,2390x R x ax ∃∈-+<”为假命题,则实数a 的取值范围为( )A .)(⎡∞⋃-∞⎣+B .⎡⎣C .)⎡∞⎣ D .(-∞【答案】B【解析】“2,2390x R x ax ∃∈-+<”为假命题,等价于“2,2390x R x ax ∀∈-+≥”为真命题,所以()2=3890a ∆-⨯≤所以a ⎡∈⎣,则实数a 的取值范围为⎡⎣.故选:B.4.(2020·江苏周市高级中学)已知函数()24x x a f x x++=,若对于任意[)1,x ∈+∞,()0f x >恒成立,则实数a 的取值范围为( )A .[)5,+∞B .()5,-+∞C .()5,5-D .[]5,5-【答案】B【解析】因为对于任意[)1,x ∈+∞,()0f x >恒成立,所以240x x a ++>对[)1,x ∈+∞恒成立, 所以()2max4a x x>--,[)1,x ∈+∞,又因为24y x x =--的对称轴为2x =-,所以24y x x =--在[)1,+∞上单调递减, 所以()()2max4145x x --=--=-,所以5a >-,故选:B.1.(2020·湖南)若不等式212x mx +>在R 上恒成立,则实数m 的取值范围是( )A .()(),11,-∞-⋃+∞B .(][),11,-∞-+∞C .[]1,1-D .()1,1-【答案】D【解析】由题意,一元二次不等式2210x mx -+>在R 上恒成立, 所以()2240m ∆=--<,解得()1,1m ∈-.故选:D.2.(2020·云南昆明一中)不等式111x ≥-的解集为( ) A .(-∞,1)∪[2,+∞) B .(-∞,0]∪(1,+∞) C .(1,2]D .[2,+∞)【答案】C 【解析】不等式111x -等价于(1)(2)0x x --且10x -≠,解得12x <, ∴不等式的解集为(1,2].故选:C .3.(2020·江苏省响水中学)已知函数()()2221f x m x mx =+++R ,则实数m 的取值范围是( )A .[]22-,B .[]1,2-C .[][)2,12,--+∞D .(][),12,-∞-⋃+∞【答案】B【解析】因为函数()()2221f x m x mx =+++R ,避错强化所以()22210m x mx +++≥对任意x ∈R 恒成立,若20m +=,即2m =-时,则不等式可化为410x -+≥,解得14x ≤,不满足题意; 若20m +≠,即2m ≠-时,只需()2204420m m m +>⎧⎨∆=-+≤⎩,解得12m -≤≤. 故选:B.4.关于x 的不等式22(1)(1)10a x a x ----<的解集为R ,则实数a 的取值范围为( ) A .3,15⎛⎫- ⎪⎝⎭B .3,15⎡⎤-⎢⎥⎣⎦C .3,1{1}5⎛⎤-⋃- ⎥⎝⎦D .3,15⎛⎤- ⎥⎝⎦【答案】D【解析】当210a -=时,1a =±,若1a =,则原不等式可化为10-<,显然恒成立;若1a =-,则原不等式可化为210x -<,不恒成立,所以1a =-舍去; 当210a -≠时,因为22(1)(1)10a x a x ----<的解集为R , 所以只需210a -<且22[(1)]4(1)0a a ∆=--+-<,解得315a -<<. 综上,实数a 的取值范围为3,15⎛⎤- ⎥⎝⎦.故选:D.5.(2020·浙江温州)若关于x 的不等式220x ax +-<在区间[]1,5上有解,则实数a 的取值范围是( ) A .23,15⎛⎫-⎪⎝⎭B .23,5⎛⎤-∞-⎥⎝⎦C .(),1-∞D .(],1-∞【答案】C【解析】因为关于x 的不等式220x ax +-<在区间[]1,5上有解,所以222x a x x x-<=-在[1,5]上有解,易知2=-y x x 在[1,5]上是减函数,所以[1,5]x ∈时,max2211x x ⎛⎫-=-= ⎪⎝⎭, 所以1a <.故选:C6.(2020·山西)若关于x 的不等式22840x x a --+≤在13x ≤<内有解,则实数a 的取值范围是( ) A .12a ≥ B .10a ≤ C .12a ≤ D .10a ≥【答案】C【解析】由题意,可得2284a x x -≥--, 设()()222842212f x x x x =--=--, 若13x ≤<,则()1210f x -≤≤-,不等式22840x x a --+≤在13x ≤<内有解,则只需()min a f x -≥,即12a -≥-,解得12a ≤.故选:C7.(2020·北京人大附中高三月考)已知方程210x ax +-=在区间[]0,1上有解,则实数a 的取值范围是( ) A .[)0,+∞ B .(),0-∞C .(],2-∞D .[]2,0-【答案】A【解析】方程210x ax +-=在区间[]0,1上有解, 当0x =时,方程无解;当01x <≤时,则有211x a x x x-==-,令1()g x x x =-,2221(1)'()10x g x x x -+=--=<,即()g x 在01x <≤时为减函数,由于(1)0g =,所以,当01x <≤时,()0g x ≥,所以,只要0a ≥,方程210x ax +-=在区间[]0,1上有解故选:A8.(2020·湖北高三月考)若[]1,2x ∃∈-,使得不等式220x x a -+<成立,则实数a 的取值范围为( ) A .3a <- B .0a <C .1a <D .3a >-【答案】C【解析】因为[]1,2x ∃∈-,使得不等式220x x a -+<成立,所以[]1,2x ∃∈-,使得不等式2+2a x x<-成立,令2()2f x x x =-+,[]1,2x ∈-,因为对称轴为1x =,[]1,2x ∈-所以max ()(1)1f x f ==,所以1a <,故选:C9.(2020·福建厦门一中)(多选)使得2601x x x -->-成 立的充分非必要条件有( ) A .{}21x x -<< B .{}3x x >C .{}01x x <<D .{21x x -<<或}3x >【答案】ABC【解析】由2601x x x -->-可得()()()1320x x x --+>,如下图所示:所以,不等式2601x x x -->-的解集为{21x x -<<或}3x >, A 、B 、C 选项中的集合均为集合{21x x -<<或}3x >的真子集,因此,使得2601x x x -->-成 立的充分非必要条件有A 、B 、C 选项. 故选:ABC.10.(2020·江苏省太湖高级中学)(多选)已知命题2:,10p x R x ax ∃∈++>,则命题p 成立的一个充分不必要条件可以是下列选项中的( ) A .[1,1]a ∈- B .(2,2)a ∈- C .[2,2]a ∈-D .1{}2a ∈【答案】ABCD【解析】因为命题2:,10p x R x ax ∃∈++>,且函数21y x ax =++开口向上, 所以当命题p 为真命题时,a R ∈, 故命题p 的等价条件为a R ∈,故命题p 成立的一个充分不必要条件可以是a R ∈的真子集, 故ABCD 均满足,故选:ABCD.11.(2020·湖南)(多选)下列结论正确的是( )A .当x >02B .当x >3时,x +1x的最小值是2 C .当x <32时,2x -1+423x -的最小值是4D .设x >0,y >0,且2x +y =1,则21x y+的最小值是9【答案】AD【解析】对于选项A ,当0x >0>2≥=,当且仅当1x =时取等号,结论成立,故A 正确;对于选项B ,当3x >时,12x x +≥=,当且仅当1x =时取等号,但3x >,等号取不到,因此1x x +的最小值不是2,故B 错误; 对于选项C ,因为32x <,所以320x ->,则4421322222332y x x x x ⎛⎫=-+=--++≤-=- ⎪--⎝⎭,当且仅当43232x x -=-,即12x =时取等号,故C 错误;对于选项D ,因为0x >,0y >,则()222521512y x x y x y x y x y ⎛⎫+=++=++≥+ ⎪⎝⎭,当且仅当22y x x y =,即13x y ==时,等号成立,故D 正确. 故选:AD .12(2020·福建福州)(多选)若0,0m n >>,且111m n +=,则下列说法正确的是( ) A .mn 有最大值4 B .2211m n+有最小值12C .0,0m n ∀>>≤D .0,0m n ∃>>,使得2m n +=【答案】BC 【解析】因为111m n +=,所以111m n =+≥4mn ≥,故A 不正确; 又2221111221()142m n m n mn +=+-≥-=,故B 正确;211()12m n =+≤=≤,故C 正确;联立2111m n m m+=⎧⎪⎨+=⎪⎩,得22m n mn +=⎧⎨=⎩,所以,m n 是方程2220x x +=-的两根,又此方程无解,故不存在0,0m n >>使得2m n +=,故D 不正确.故选:BC13.(2020·江苏高一期中)(多选)下列函数中最小值为2的是( )A .1y x x=+B.y = C.y =D .4(2)2y x x x =+>-+ 【答案】BD【解析】0x <时,10y x x=+<,A 错;0>,2y =≥==,即1x =时等号成立,B 正确;同理2y =≥,=等号才能成立,=故2取不到,C 错;2x >-,则20x +>,14(2)22222y x x x x =+=++-≥=++,当且仅当422x x +=+,即0x =时等号成立,D 正确. 故选:BD .14.(2020·江苏常熟中学)不等式2411x x x --≥-的解集为______.【答案】[1,1)[3,)-+∞【解析】不等式2411x x x --≥-化为24101x x x ---≥-,22301x x x --≥-,(1)(3)(1)010x x x x +--≥⎧⎨-≠⎩, 解得3x ≥或11x -≤<. 故答案为:[1,1)[3,)-+∞.15.(2020·江苏省响水中学高一期中)设集合{}{}20215,0A x x B x x a =≤-≤=+< ,若A B =∅ ,则实数a 的取值围为_________. 【答案】14a ≥-【解析】因为{}{}20215,0A x x B x x a =≤-≤=+<,且A B =∅,所以{}21,302x x a ⎡⎤⋂+<=∅⎢⎥⎣⎦,即当132x ≤≤时,2≥-a x 恒成立,()2max 14a x ≥-=-,所以14a ≥-.故答案为: 14a ≥-16.关于x 的不等式240x x m --≥对任意[]1,1x ∈-恒成立,则实数m 的取值范围是_______. 【答案】3m ≤-【解析】∵22()4(2)4f x x x m x m =--=---在[]1,1-上为减函数,且不等式240x x m --≥对任意[]1,1x ∈-恒成立,则只需min ()(1)30f x f m ==--≥,即3m ≤-. 故答案为:3m ≤-.17.(2020·江苏镇江)已知命题“R x ∀∈,210x ax ++>”是假命题,则实数a 的取值范围为______. 【答案】(,2][2,)-∞-+∞【解析】∵命题“R x ∀∈,210x ax ++> ”是假命题, ∴R x ∃∈,210x ax ++≤是真命题, 即R x ∃∈使不等式210x ax ++≤有解;所以240a ∆=-≥,解得:2a ≤-或2a ≥. ∴实数a 的取值范围是(,2][2,)-∞-+∞. 故答案为:(,2][2,)-∞-+∞.18.(2020·浙江杭州·高三期中)已知0x >,0y >,且21x y +=,则2112y x y++的最小值为________.12【解析】因为21x y +=,0x >,0y >,则210y x =->,所以01x <<,所以2111121112111y x y x x x xx --+=+=-+++++- ()()()2112111111121211211x x x x x x x x -⎡⎤+⎛⎫=-++++-=-++++⎡⎤⎢⎥ ⎪⎣⎦+-+-⎝⎭⎣⎦()(2111111131313211222x x x x ⎡-⎡⎤+=-+++≥-++=-++=⎢⎢⎥+-⎢⎣⎦⎣当且仅当()21111x x x x-+=+-,即3x =-3+01x <<范围内,舍去)时,等号成立. 12. 19.(2020·江苏南京河西外国语学校)在实数范围内解下列不等式. (1)2340x x -->;(2)213x x-≤-. 【答案】(1){x 1x <-或43x >};(2)5,(3,)2⎛⎤-∞+∞ ⎥⎝⎦.【解析】(1)不等式2340x x -->可化为(1)(34)0x x +->, 解得1x <-或43x >, 所以该不等式的解集为{1x x <-或43x ⎫>⎬⎭;(2)∵213x x -≤-,∴2303x x x--+≤-, 即2503x x -≥-,所以(25)(3)0x x --≥且30x -≠ 解得:3x >或52x ≤, 故不等式的解集是5,(3,)2⎛⎤-∞+∞ ⎥⎝⎦.20.(2020·上海市崇明中学高三期中)解下列不等式: (1)212302x x -+-≤;(2)5331x x +-≤.【答案】(1)35,⎛⎡⎫+-∞+∞ ⎪⎢ ⎪⎝⎦⎣⎭;(2)[3,1)-. 【解析】(1)由212302x x -+-≤可得: 20461x x ≤-+,解得:x 或x ≥,故解集为:35,⎛⎡⎫+-∞+∞ ⎪⎢ ⎪⎝⎦⎣⎭(2)由5331x x +-≤化简为:531x x +--3≤0, 即261x x +-≤0,等价于(26)(1)010x x x +-≤⎧⎨-≠⎩, 解得31x -≤<,故解集为[3,1)-.218.(2020·黑龙江牡丹江一中高三开学考试(理))解下列不等式. (1)(1)(2)(3)0x x x x -+->; (2)2112x x +≥-. 【答案】(1)(,2)(0,1)(3,)-∞-+∞;(2)(,3](2,)-∞-+∞.【解析】(1)方程(1)(2)(3)0x x x x -+-=的根为:2,0,1,3-,利用数轴穿根法可得:21 / 22所以不等式的解集为(,2)(0,1)(3,)-∞-+∞; (2)()()212131*********x x x x x x x x +++≥⇒-≥⇒≥⇒+-≥---且2x ≠, 解得(,3](2,)x ∈-∞-+∞. 22.(2020·湖北武汉)解关于x 的不等式(ax -1)(x +1)>0.【答案】答案不唯一,具体见解析.【解析】若a =0,则原不等式为一元一次不等式()10x -+>,解得1x <-,故解集为(-∞,-1). 当a ≠0时,方程(ax -1)(x +1)=0的两根为x 1=1a ,x 2=-1. 当a >0时,12x x >,所以解集为(-∞,-1)∪1,a ⎛⎫+∞ ⎪⎝⎭; 当-1<a <0,即1a <-1时,所以解集为1,1a ⎛⎫- ⎪⎝⎭; 当a <-1,即0>1a >-1时,所以解集为11,a ⎛⎫- ⎪⎝⎭; 当a =-1时,不等式化为()210x -+>,所以解集为∅.23(2020·辽宁沈阳二中)解关于x 的不等式2(41)40ax a x -++>.【答案】答案见解析【解析】由题意可知,2(41)40ax a x -++>可化为(1)(4)0ax x --> (1)当0a =时,不等式化为40x -<,解得4x <,(2)当10a <时,不等式化为()140x x a ⎛⎫--< ⎪⎝⎭,解得14x a <<, (3)当104a <<时,不等式化为1(4)0x x a ⎛⎫--> ⎪⎝⎭,解得1x a <或4x >, (4)当14a=时,不等式化为2(4)0x ->,解得4x ≠,22 / 22 (5)当14a >时,不等式化为1(4)0x x a ⎛⎫--> ⎪⎝⎭,解得4x <或1x a >,综上所述,0a =时,不等式的解集为(,4)-∞ 0a <时,不等式的解集为1,4a ⎛⎫⎪⎝⎭;14a >时,不等式的解集为1,(4,)a ⎛⎫-∞⋃+∞ ⎪⎝⎭;14a =时,不等式的解集为(,4)(4,)-∞+∞; 104a <<时,不等式的解集为1(,4),a ⎛⎫-∞⋃+∞ ⎪⎝⎭.。
初一不等式经典易错题解析

初一不等式经典易错题解析初一不等式经典易错题解析初一学生在学习不等式时,难免会遇到一些经典易错题,这在一定程度上也给学习带来了一些困扰。
在本文中,我们将对初一不等式中一些经典易错题进行解析,希望对同学们的学习有所帮助。
一、乘方不等式易错点在不等式中,乘方往往是初一学生们考试时经常遇到的问题,其中特别容易发生的错误包括:1. 未进行“正负性”分析乘方在不等式中的作用是使变量的取值范围变广,但我们必须检查其“正负性”,否则就会出现错误的答案。
比如,当我们遇到以下不等式时:(1)x^2-6x+5>0(2)x^2+6x+5>0根据情况,我们可以把这两个不等式转化为因式分解的形式。
对于第一个式子,我们可以得到x在0到5之外或者在1到正无穷之间;而对于第二个式子,我们可以得到x在正无穷到-1或者在-5到正无穷之外。
在情况(1)中,我们需要特别注意的是,当x在1到5之间时,式子的取值就会变为负数,因此其“正负性”分析对于解题至关重要。
2. 公因数舍去的问题在乘方问题中,如果变量被约分后就会导致解题出现偏差。
例如:对于以下不等式而言:(3)2x^2+3x-2<0当我们对其进行因式分解,会得到2(x+1)(x-2)<0,但我们需要注意,当x=-1时,x+1=0,此时2(x+1)(x-2)的分子是0,不符合数学逻辑规律,我们需要忽略掉这种情况。
因此,正确的解题思路应该是用区间法将不等式的解空间分为三段,分别为x<-1、-1<x<2、2<x。
二、加减不等式易错点在初一不等式题型中,加减不等式也经常出现。
在处理这类问题中,需要注意以下问题:1. 未进行化简,直接求解很多时候,初一学生在解加减不等式时直接将式子简化,导致解题出现了较大偏差。
事实上,在处理不等式问题时,我们需要把含有常数的项先整合。
例如:对于以下不等式而言:(4)2x+1<3x-4如果我们直接拆方程,化简后得到x>5,但这种做法是错误的,因为我们在拆方程之前必须将常数加起来,然后再消元,即:(5)-x<-5x>5因此,式子的解空间是x>5。
不等式易错点

不等式易错点 【易错点 29】含参分式不等式的解法。
易对分类讨论的标准把握不准,分类讨论达不到不重不漏的目的。
例 29 解关于 x 的不等式 a ( x − 1) >1(a≠1)【易错点】不等式化为关于 x 的一元二次不等式后,忽视对二次项系数的正负的讨论 解:原不等式可化为: (a − 1) x + (2 − a) >0,即[(a-1)x+(2-a)](x-2)>0. x−2 a − 2 )(x-2)>0 同解.若 a − 2 ≥2,即 0≤a<1 时,原不等式无解;若 a − 2 <2,即 a<0 或 a>1,于是 当 a>1 时,原不等式与(x- a −1 a −1 a −1 a − 2 )∪(2,+∞). a>1 时原不等式的解为(-∞, 当 a<1 时,若 a<0,解集为( a − 2 ,2);若 0<a<1,解集为(2, a − 2 )a −1x−2a −1 a −1 a − 2 )∪(2,+∞);0<a<1 时,解集为(2, a − 2 );a=0 时, ∅ ;a<0 时,解集为( a − 2 ,2). 综上所述:a>1 时解集为(-∞, a −1 a −1 a −1【知识点分类点拔】解不等式对学生的运算化简等价转化能力有较高的要求,解不等式需要注意下面几个问题: (1)熟练掌握一元一次不等式(组)、一元二次不等式(组)的解法. (2)掌握用序轴标根法解高次不等式和分式不等式,特别要注意因式的处理方法. (3)掌握无理不等式的三种类型的等价形式,指数和对数不等式的几种基本类型的解法. (4)掌握含绝对值不等式的几种基本类型的解法. (5)在解不等式的过程中,要充分运用自己的分析能力,把原不等式等价地转化为易解的不等式.(6)对于含字母的不等式,要能按照正 确的分类标准,进行分类讨论. 【易错点 30】求函数的定义域与求函数值域错位 例 30、已知函数 f ( x ) = lg m 2 − 3m + 2 x 2 + 2 ( m − 1) x + 5 (1)如果函数 f ( x ) 的定义域为 R 求实数 m 的取值范围。
不等式及其基本性质易错点剖析

)
D. ①②④⑤
错解:因为 c2 是正数,所以③正确,故选 B. 错解分析: 本题的条件是 a>b, 变形是在不等式的两边同乘 (或除以) c 或 c2,变形正确与否的关键是看 c 或 c2 的取值情况.而本题中 c 为不确定大小的
有理数,故很容易判断①②⑤变形错误.因为 c2 大于等于零,而其在分母中, 故只能大于 0,所以④正确.故选 A. 例 5.已知 am>bm(m≠0) ,下面结论中,正确的是( A. a>b B. a<b C.
2a-b=7, a=5, 字母系数的取值范围,所以在解题时错误得出 解得 从而错 5b-a=10, b=3.
5
3 误得到 ax>b 的解集是 x> . 5 2a-b<0, 10 正解:由不等式(2a-b)x+a-5b>0 的解集是 x< ,得5b-a 10 解 7 = , 2a-b 7
A. ①④
错解:5<3 不成立,故选 B. 错解分析:不等式是指用“<” , “>” , “≤” , “≥”或“≠”来表示不等 关系的式子,不受其是否成立的影响.5<3 虽然不成立,但它仍然是不等式, 故选 D.
6
二、性质类错误 例 3.命题“若 a<b,c<d,则 ac<bd”是否成立? 错解:成立.因为两个较小数的积一定小于两个较大数的积,例如 2<3, 4<5,则有 2×4<3×5. 错解分析:此题的错误在于对概念的理解模糊不清,若 a,c 为负数,例如 -3<2,-4<1,显然(-3)×(-4)不小于 2×1,故该命题不成立. 例 4.若 a>b, c 为有理数,则下列式子中正确的是( ①ac>bc;②ac<bc;③ac2>bc2;④ A. ④ B. ③ C. ①②⑤
15. 不等式的常见错误有哪些?

15. 不等式的常见错误有哪些?15、不等式的常见错误有哪些?在数学学习中,不等式是一个重要的知识点,但在解决不等式问题时,同学们常常会出现一些错误。
下面我们就来详细探讨一下不等式中常见的错误类型。
一、符号问题在不等式的运算中,符号的处理是最容易出错的地方之一。
例如,当不等式两边同时乘以或除以一个负数时,不等号的方向需要改变,但很多同学会忽略这一点。
比如,对于不等式-2x > 6 ,在求解时,两边同时除以-2 ,不等号方向应该改变,得到 x <-3 。
如果忽略了不等号方向的改变,就会得出错误的结果 x >-3 。
还有在移项时,符号也容易出错。
例如,从 3x + 5 < 2x 1 到 3x 2x <-1 5 ,如果移项时没有改变符号,就会导致错误。
二、不等式性质运用错误不等式具有一些基本性质,如传递性、加法和乘法法则等。
但在实际运用中,如果对这些性质理解不透彻,就容易犯错。
比如,对于不等式 a > b , b > c ,那么可以得出 a > c ,这是传递性。
但如果错误地认为 a > b , c > d ,就能得出 a + c > b + d ,这就是对性质的错误运用。
再比如,对于不等式 a > b , c > 0 ,则 ac > bc ;但如果 c < 0 ,那么 ac < bc 。
如果忽略了 c 的正负性,就会得出错误的结论。
三、解集表示错误求出不等式的解集后,在表示解集时也可能出现错误。
例如,对于不等式组的解集,应该是两个不等式解集的交集。
但有些同学可能会错误地将其表示为并集。
另外,在表示区间时,开闭区间的使用也容易出错。
比如,x ≥ 2应该表示为 2, +∞),如果写成(2, +∞)就是错误的。
四、忽略定义域有些不等式问题中,变量可能存在定义域的限制,如果忽略了这一点,也会导致错误。
例如,对于分式不等式,分母不能为 0 。
在求解(x 1)/(x +2)> 0 时,不仅要考虑分子分母的正负性,还要注意 x +2 ≠ 0 ,即x ≠ -2 。
初中数学:不等式的最常见易错点是它

初中数学:不等式的最常见易错点是它
今天的笑老师跟大家分享一下不等式的性质的话题。
不等式的性质有三条:
基本性质1:不等式两边都加上(或减去)同一个数(或式子),不等号方向不变.
基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变.
基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向改变.
这三条性质的例子,大家可以看一下下面的图示:
当然,我们也可以通俗的理解一下,对于性质1不等式的两边同
时加或减去同一个数或一个式子,不等号的方向改变。
这个可以理解成,假如说一架天平左边儿重,右边儿轻,那么在两边同时放上或者去掉相同重量的物体,天平的倾斜方向还是不变的。
对于性质2,我们也可以做一下图。
还是这座天平,比如说还是左边重,右边轻。
那么,天平左右两边的物体,同时重量都乘2,也就是说左边依然放一个重的物体,右边依然放一个轻的物体。
最后,左重右轻倾斜的方向还是不改变的。
对于第三条性质,和第二条性质也是类似的。
两边都乘2,也可以将左右两边同时都放上相同的物体。
但是这里边是乘或除以一个负数,就是说要在天平的左右两边同时都添一个负号。
我们知道,一个大正数添一个负号就会变成一个小的负数,所以说这种情况之下天平倾斜的方向是改变的,所以也就说明了不等号的方向也要改变。
好了,那么大家请看一下第52天的题目,判断一下下列不等式变形正确的是哪一个。
这里面需要注意的问题是,不等式两边都乘以(或除以)同一个负数,不等号的方向改变,这个性质要多加注意。
好的,那么下面同学们请对考点自测题,看看谁能抢到沙发哦,
请大家开启狂飙模式!。
备战2024年高考数学考试易错题专题03 不等式(3大易错点分析)(原卷版)

专题03不等式易错点一:忽略不等式变号的前提条件(等式与不等式性质的应用)1.比较大小基本方法关系方法做差法与0比较做商法与1比较b a 0 b a )0(1 b a b a ,或)0(1 b a b a ,b a 0 b a )0(1 b baba 0b a )0(1 b a b a ,或)0(1 b a ba ,2..等式的性质(1)基本性质性质性质内容对称性ab b a a b b a ;传递性c a c b b a c a c b b a ,;,可加性cb c a b a 可乘性b ac c b a bc ac c b a 00,;,同向可加性db c a d c c a ,同向同正可乘性bdac d c b a 00,可乘方性nn b a N n b a *0,类型1.应用不等式的基本性质,不能忽视其性质成立的条件,解题时要做到言必有据,特别提醒的是在解决有关不等式的判断题时,有时可用特殊值验证法,以提高解题的效率.类型2.比较数(式)的大小常用的方法有比较法、直接应用不等式的性质、基本不等式、利用函数的单调性.比较法又分为作差比较法和作商比较法.作差法比较大小的步骤是:(1)作差;(2)变形;(3)判断差式与0的大小;(4)下结论.作商比较大小(一般用来比较两个正数的大小)的步骤是:(1)作商;(2)变形;(3)判断商式与1的大小;(4)下结论.其中变形是关键,变形的方法主要有通分、因式分解和配方等,变形要彻底,要有利于0或1比较大小.作差法是比较两数(式)大小最为常用的方法,如果要比较的两数(式)均为正数,且是幂或者因式乘积的形式,也可考虑使用作商法.易错提醒:(1)一般数学结论都有前提,不等式性质也是如此.在运用不等式性质之前,一定要准确把握前提条件,一定要注意不可随意放宽其成立的前提条件.(2)不等式性质包括“充分条件(或者是必要条件)”和“充要条件”两种,前者一般是证明不等式的理论基础,后者一般是解不等式的理论基础.A .若a b ,则20242024a bB .若a b ,则20242024a bC .若20242024ax bx ,则a bD .若a b ,则20242024ax bx ,b ,,若,则下列不等式成立的是()A .11a bB .3311a bC .2222a bc cD .22ac bc 2.若0b a ,则下列结论不正确的是()A .11a bB .2ab a C .33a bD .a b a b3.已知a b ,c d ,则下列不等式一定成立的是()A .ac bdB .e e c da b C .e e e e a c b d D . ln ln a c d b c d 4.若110a b,则下列不等式中正确的是()A .a b B .a b C .a b ab D .2b a a b5.若a 、b 、c R ,且a b ,则下列不等式一定成立的是()A .a c b cB . 2a b c C .ac bcD .2c a b6.下列命题中正确的是()A .若a b ,则22ac bc B .若a b ,c d ,则a b c dC .若a b ,c d ,则a c b dD .若0ab ,a b ,则11a b7.设x R ,则“1x ”是“x x ”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件集问题)解一元二次不等式的步骤:第一步:将二次项系数化为正数;第二步:解相应的一元二次方程;第三步:根据一元二次方程的根,结合不等号的方向画图;第四步:写出不等式的解集.容易出现的错误有:①未将二次项系数化正,对应错标准形式;②解方程出错;③结果未按要求写成集合.对含参的不等式,应对参数进行分类讨论具体模型解题方案:1、已知关于x 的不等式02 c bx ax 的解集为)(n m ,(其中0 mn ),解关于x 的不等式02 a bx cx .由02 c bx ax 的解集为)(n m ,,得:01)1(2 c x b x a 的解集为)11(m n ,,即关于x 的不等式02 a bx cx 的解集为11(mn ,.已知关于x 的不等式02 c bx ax 的解集为)(n m ,,解关于x 的不等式02 a bx cx .由02 c bx ax 的解集为)(n m ,,得:011(2 c x b x a 的解集为)1[]1( ,,m n 即关于x 的不等式02 a bx cx 的解集为)1[]1( ,,mn .2、已知关于x 的不等式02 c bx ax 的解集为)(n m ,(其中0 m n ),解关于x 的不等式02 a bx cx .由02 c bx ax 的解集为)(n m ,,得:01)1(2 c x b x a 的解集为11(n m ,即关于x 的不等式02 a bx cx 的解集为)11(nm,.3.已知关于x 的不等式02 c bx ax 的解集为)(n m ,,解关于x 的不等式02 a bx cx .由02 c bx ax 的解集为)(n m ,,得:01)1(2 c x b x a 的解集为)1[1( ,,nm 即关于x 的不等式02 a bx cx 的解集为)1[]1(,,nm ,以此类推.4、已知关于x 的一元二次不等式02 c bx ax 的解集为R ,则一定满足00a ;5、已知关于x 的一元二次不等式02 c bx ax 的解集为 ,则一定满足00a ;6、已知关于x 的一元二次不等式02 c bx ax 的解集为R ,则一定满足00a ;7、已知关于x 的一元二次不等式02 c bx ax 的解集为 ,则一定满足0a .易错提醒:一元二次不等式一元二次不等式20(0)ax bx c a ,其中24b ac ,12,x x 是方程20(0)ax bx c a 的两个根,且12x x (1)当0a 时,二次函数图象开口向上.(2)①若0 ,解集为21|x x x x x 或.②若0 ,解集为|2b x x R x a且.③若0 ,解集为R .(2)当0a 时,二次函数图象开口向下.①若0 ,解集为 12|x x x x ②若0 ,解集为 。
高中数学66个易错点:基本不等式,奇偶性,充分必要性

高中数学66个易错点:基本不等式,奇偶性,充分必要性
【易错点4】应用重要不等式确定最值时,忽视应用的前提条件特别是易忘判断不等式取得等号时的变量值是否在定义域限制范围之内
【易错点5】判断函数的奇偶性忽视函数具有奇偶性的必要条件:定义域关于原点对称
【易错点6】在解题中误将必要条件作充分条件或将既不充分与不必要条件误作充要条件使用,导致错误结论。
每日积累三个易错点,各个击破。
松懈如磨刀之石,不见其损,日有所亏勤勉如初起之苗,不见其增,日有所长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
易错易混点
(1)不能正确理解不等号的作用; (2) 在运用不等式的基本性质时,忽略字母取0的特殊情况,造成错误。
;(3)在运用不等式的性质时,必须明确不等式两边是同乘以(或除以)一个正数还是负数,确定不等号的变化;(4) 对不等式的解和不等式的解集概念不理解.
例 下列式子是不等式的是( )
①x ≠0; ② 5≤8 ;③ a <2 ; ④ a ≥b
A. ①②③④
B. ③④
C. ①②③
D. ①②③④ 例 若a <b ,c 为实数,则ac 2_______bc 2.
例 若a <1时,则下列各式错误的是( )
A. –a >-1
B. a -1<0
C. a +1>0
D. 2a <2
典型例题
【例1】 已知关于x ,y 的方程组⎩⎨⎧+-=-+=+1
152m y x m y x ,
(1) 试列出使x ≤y 成立的m 的不等式; (2) 运用不等式的基本性质将此不等式化为“m >a ”或“m <a ”的形式。
【例2】 不等式ax >b 的解集为a
b x <,那么a 的取值范围是( ) A. a ≤0 B. a <0 C. a ≥0 D. a >0
【例3】 已知不等式5x +a <3的解集为x <2,试求a 的值。
相关题型:ax >-2与2x -3<5的解集相同,则a =________。
【例4】 试比较代数式3x 2-2x+7与4x 2-2x+7大小。
相关题型:a 取什么值时,代数式645+a 的值不小于3
187a --的值?并且求出a 的最小值。
【例5】 求不等式x x 219175+<--的最小整数解。
相关题型: 不等式()452
42+--
x x ≥0的正整数解。
【例6】 已知关于x 的方程2415435m m x =+-的解是非正数,求m 为何正整数?。