TB飞机起落架机轮轴承失效的原因分析及维护(doc 8页)

合集下载

轴承失效原因及改善方法

轴承失效原因及改善方法

轴承失效原因及改善方法摘要轴承是机械设备中广泛应用的一个重要零件,它承受着机器运转时的载荷,使机器得以平稳运转。

然而,轴承在使用过程中由于诸多因素的影响,会出现失效的情况。

本文将详细介绍轴承失效的原因,并给出相应的改善措施,以帮助读者更好地维护和保养机械设备。

轴承失效原因1.磨损轴承是机器运转过程中承受载荷的零件,长时间的使用会导致轴承表面的磨损。

磨损会使得轴承的表面变得粗糙,摩擦系数增加,从而导致轴承的失效。

2.油膜破裂轴承在运转过程中,需要润滑油来形成一层薄膜来减小轴承表面之间的摩擦,防止磨损。

然而,如果润滑油的质量差,或者润滑油使用时间过长,润滑油的黏度和清洁度会降低,导致轴承失去润滑,油膜破裂,从而导致轴承失效。

3.腐蚀轴承在运作时,如果进入杂质或者液体,会导致轴承出现腐蚀。

腐蚀会引起焊死或者锈蚀,使得轴承卡住不能动了或者磨损严重。

4.过载如果轴承所承受的载荷超过了轴承设计的最大承载能力,会导致轴承过载,从而导致轴承失效。

5.温度过高轴承在长时间的运作中会产生大量的热量,轴承的温度过高会导致轴承变形,从而导致轴承失效。

轴承失效改善方法1.清洗轴承在运行过程中会积累大量的污垢,清洗轴承可以有效地去除污垢,保证轴承的正常工作。

2.润滑轴承需要适量的润滑油或者润滑脂来形成一层润滑膜,减少轴承表面的摩擦。

根据轴承的规格要求,选择适当的润滑油或者润滑脂,并周期性地更换润滑油或者润滑脂,可以有效地延长轴承的寿命。

3.保持干燥轴承需要保持在相对干燥的环境中工作,因为水分和潮气会引起轴承的腐蚀。

在储存和使用轴承时,应尽量避免轴承与潮湿的物体接触。

4.控制负载轴承在使用时,要根据轴承的承载能力,对机器进行合理的负载控制,避免轴承的过载,减小轴承的磨损,从而延长轴承的使用寿命。

5.控制温度轴承在运作过程中,应保持合适的温度,避免轴承过热。

在设备运行过程中,可以采取冷却、通风等措施来降低轴承温度,保持轴承的正常工作状态。

浅谈轴承失效原因分析

浅谈轴承失效原因分析

轴承失效原因分析滚动轴承在使用过程中,由于很多原因造成其性能指标达不到使用要求时就产生了失效或损坏.常见的失效形式有疲劳剥落、磨损、塑性变形、腐蚀、烧伤、电腐蚀、保持架损坏等。

一,疲劳剥落疲劳有许多类型,对于滚动轴承来说主要是指接触疲劳。

滚动轴承套圈各滚动体表面在接触应力的反复作用下,其滚动表面金属从金属基体呈点状或片状剥落下来的现象称为疲劳剥落。

点蚀也是由于材料疲劳引起一种疲劳现象,但形状尺寸很小,点蚀扩展后将形成疲劳剥落。

疲劳剥落的形态特征一般具有一定的深度和面积,使滚动表面呈凹凸不平的鳞状,有尖锐的沟角.通常呈显疲劳扩展特征的海滩装纹路.产生部位主要出现在套圈和滚动体的滚动表面.轴承疲劳失效的机理很复杂,也出现了多种分析理论,如最大静态剪应力理论、最大动态剪应力理论、切向力理论、表面微小裂纹理论、油膜剥落理论、沟道表面弯曲理论、热应力理论等。

这些理论中没有一个理论能够全面解释疲劳的各种现象,只能对其中的部分现象作出解释。

目前对疲劳失效机理比较统一的观点有:1、次表面起源型次表面起源型认为轴承在滚动接触部位形成油膜的条件下运转时,滚动表面是以内部(次表面)为起源产生的疲劳剥落。

2、表面起源型表面起源型认为轴承在滚动接触部位未形成油膜或在边界润滑状态下运转时,滚动表面是以表面为起源产生的疲劳剥落。

3、工程模型工程模型认为在一般工作条件下,轴承的疲劳是次表面起源型和表面起源型共同作用的结果。

疲劳产生的原因错综复杂,影响因素也很多,有与轴承制造有关的因素,如产品设计、材料选用、制造工艺和制造质量等;也有与轴承使用有关的因素,如轴承选型、安装、配合、润滑、密封、维护等。

具体因素如下:A、制造因素1、产品结构设计的影响产品的结构设计是根据使用性能目标值来确定的,这些目标值如载荷容量、寿命、精度、可靠性、振动、磨损、摩擦力矩等。

在设计时,由于各种原因,会造成产品设计与使用的不适用或脱节,甚至偏离了目标值,这种情况很容易造成产品的早期失效。

探讨滚动轴承失效的原因以及维护方法

探讨滚动轴承失效的原因以及维护方法

探讨滚动轴承失效的原因以及维护方法摘要:本文作者结合自己的工作经验,针对滚动轴承失效的原因进行仔细研究分析,最终提出了具体的维护方法,希望能够对同行研究和使用者有所帮助。

关键词:滚动轴承失效原因维护方法关于滚动轴承,其属于机械之中一种普遍使用的标准零部件,通常情况下是由内圈、外圈、滚动体以及保持架共同构成的[1]。

具有效率高、润滑方便、摩擦阻力小以及良好的互换性等优点,在机械工作中发挥着十分重要的作用。

然而,在实际的工作应用之中,因为种种原因,滚动轴承失效的情况时常发生,多次出现机械故障。

一、关于滚动轴承失效的几种形式1.滚动轴承发生疲劳点蚀通常情况下,如果滚动轴承的各种工作条件良好,安装、维护以及润滑均没有问题,那么它在工作的过程中,承载元件可能会因为需要承受脉动循环变应力的作用,而导致各接触表面的金属材料局部剥落,进而产生疲劳点蚀[2]。

而且,当滚动轴承发生疲劳点蚀的时候,在其进行运转的过程之中,往往会产生振动和噪声,并且它的旋转精度也会出现下降,导致机器无法正常工作。

2.滚动轴承发生塑性变形另外,如果滚动轴承的转速很低,而且发生间歇摆动,这样通常是不会产生疲劳点蚀情况。

然而,滚动轴承却可能因为受到太大的静载荷或者是冲击载荷,引发内外圈滚道和滚动体这两者之间的接触处产生局部应力,并且这种局部应力直接超过材料的屈服极限,进而最终导致滚动轴承产生塑性变形。

这样就能够形成不均匀的凹坑,最终使得滚动轴承在工作的过程中发出剧烈的振动以及噪声。

3.滚动轴承发生磨损在滚动轴承高速运转的过程中,可能会因为使用方法不正确,没有进行科学合理的维护,或者是因为密封问题以及润滑不良等问题,最终引起滚动轴承发生磨粒磨损或者是胶合磨损的现象。

二、关于滚动轴承失效的具体原因分析1.因为载荷问题造成滚动轴承失效通常情况下,人们在进行滚动轴承的分类时,往往根据滚动轴承所承受载荷的方向,把其分为三大类:第一类,向心轴承。

它主要是承受径向载荷。

常见滚动轴承的失效形式及原因分析

常见滚动轴承的失效形式及原因分析

常见滚动轴承的失效形式及原因分析滚动轴承可以有效地减少轴承各零部件之间的摩擦,从而更加流畅地运转,可以有效帮助提高机械设备的使用性能。

但滚动轴承在长时间使用后有时会出现失效的现象,那么,大家知道常见滚动轴承的失效形式及原因具体都有哪些吗?又该如何处理解决轴承失效呢?小编为大家进行了详细的总结,下面一起来了解一下吧。

一、轴承的正常疲劳失效失效产生原因:轴承在其运转总小时数或总转数超过轴承计算寿命后,所发生的疲劳剥落为正常疲劳失效。

产生正常疲劳失效的原因是滚动表面的金属由于运转时的应力循环数超过材料的疲劳极限,从次表层开始萌生疲劳裂纹,并向表面层开裂而落下金属碎片———剥落。

失效表现特征:疲劳裂纹的萌生在次表层,故看不见,用普通仪器也无法侦听到。

剥落的屑片表面粗糙而不规则,原滚动表面留下疤痕状小坑,称为点蚀。

点蚀一旦出现,即迅速扩展,短时间内即引起全面疲劳剥落,宜及早更换轴承,否则将引起轴承的事故性报废,可能对安装部位甚至对整机带来严重的后果。

失效处理办法:超过计算寿命的疲劳剥落,实际上是不可避免的终必然发生的现象,这时材料的潜力已被充分利用。

如用户在工作寿命方面的要求仍不满足,可在轴承的润滑剂中加添合适的极压添加剂,改用性能更高或尺寸更大的轴承,或选用真空冶炼、多次真空重炼等钢材所制轴承。

二、轴承的正常磨损失效失效产生原因:轴承在其运转总小时数或总转数超过轴承的计算寿命,或超过磨损寿命后的过度磨损,为正常磨损失效。

滚动轴承的运动都伴有微小滑动,所受负荷也总有一定波动,因而润滑可延缓磨损但实际不能避免两界面的固体接触,即不能完全避免磨损。

失效表现特征:滚动表面沿运动方向发生较光滑的磨损条纹,新条纹有较显著的金属光泽。

滚动轴承的正常磨损也有三个阶段,即短期的“跑合”磨损,很长时间的平缓磨损,以及短期的剧烈磨损,终使轴承的精度丧失,或引起振动和噪声而不能继续使用。

失效处理办法:超过额定寿命或磨损寿命的磨损失效,在现有技术水平条件下实际上也是不可避免的。

轴承故障原因分析及解决方案

轴承故障原因分析及解决方案

分析轴承故障的原因及解决方案轴承的失效原因很多除了正常的疲劳剥落以外象失效的密封、过紧配合导致的过小轴承间隙或润滑不良等因素都能留下特殊的失效痕迹和失效形式.因此检查失效的轴承在大多数时候可以发现导致轴承失效的原因从而及时采取对策.一般来讲轴承的失效有1/3是因为轴承已经到了疲劳剥落期属于正常失效;1/3 因为润滑不良导致提前失效1/3 因为污染物进入轴承或安装不正确而造成轴承提前失效. 一般来讲轴承运转不正常时有如下七种常见症状:轴承过热、轴承噪音过大、轴承寿命过低、振动大、达不到机器性能要求、轴承在轴上松动、轴转动困难.形成七种常见症状典型原因:润滑脂、润滑油过期失效或选型错误; 润滑脂太满或油位太高; 轴承游隙过小; 轴承箱内孔不圆、轴承箱扭曲变形、支撑面不平、轴承箱孔内径过小;接触油封过盈量太大或弹簧太紧;一根轴上有两个被固定轴承,由于轴膨胀导致轴承间隙变小;紧定套筒过分锁紧;轴承箱孔太大、受力不平衡;两个或多个轴承同轴度不好;防松卡环接触到轴承;接触油封磨损严重,导致润滑油泄露;轴的直径过大.导致轴承内圈膨胀严重,减少了轴承游隙;由于箱孔的材料材质太软,受力后孔径变大,致使外圈在箱孔内打滑; 油位太低、轴承箱内润滑脂不足;杂物、砂粒、炭粉或其它污染物进入轴承箱内;水、酸、油漆或其它污染物进入轴承箱内;安装轴承前轴承箱内的碎片等杂物没有清除干净;轴径太小、紧定套筒锁紧不够;由于打滑作用(由于急速启动)致使滚动体上有擦痕;由于轴肩尺寸不合理致使轴弯曲;轴肩摩擦到轴承密封盖;轴肩在轴承箱内接处面积过小致使轴承外环扭曲;轴承密封盖发生扭曲;轴和轴承内套扭曲; 轴和轴承外套扭曲; 不正确的安装方式,用锤子直接敲击轴承; 机器中的转动件与静止件接触; 接触油封磨损严重,导致润滑油泄漏;轴承游隙过大致使轴发生振动.1. 轴承的滚动声4. 润滑剂2. 轴承的振动通常轴承的温度随着运转开始慢慢升高1 至2小时后达到稳定状态.轴承的正常温度因机器的热容量、散热量、转速和负载而不同.如果润滑、安装不合适则轴承温度会急骤上升会出现异常高温这时必须停机并采取必要的防范措施.滚动轴承噪音一种是轴承本身产生的,即轴承固有的噪声;另一种是轴承装机后才产生的噪声,与轴承本身的噪声无关.通过听声音可以分析出一些问题.a )固有噪声:滚道声『各种轴承和滚动摩擦声(圆柱滚子轴承)是滚动轴承固有的声音.』滚道声是由滚动体与滚道接触时的弹性特性产生的,当轴承旋转时,滚动体在滚道上滚动而发出的一种连续而圆滑的声音;不正常的滚动摩擦声可发出“咯吱、咯吱”之类不舒服的金属摩擦异常声音,润滑良好时不会发出这样的声音.所以在一般情况下不成问题,只有噪声增大之后才需注意.b)与轴承制造有关的噪声:这里包括保持架噪声和颤音,保持架噪声主要发生在球轴承和圆锥滚子轴承中,当轴承旋转时由于保持架的振动以及保持架与滚动体发生撞击会发出声音.这种声音具有周期性.颤音(各种轴承)是有一定频率的声音,是由于滚道面上有较大的波纹度引起的振动而产生的.c)使用不当引起的噪声:对于各种轴承均存在.当轴承滚道表面或滚动体表面受到碰伤、压坑、锈蚀,那么就会产生有一定周期的噪声和振动.当轴承在运转中有尘埃侵入时就会产生污物噪声.这种噪声是非周期性的同样也伴有振动其声音大小不固定,时有时无.轴承的振动对轴承的失效影响很明显.例如:剥落、压痕、锈蚀、裂纹、磨损等都会在轴承振动检测中反映出来所以通过采用特殊的轴承振动测量装置(频率分析器和振动仪等)可测量出振动的大小通过频率分布可推断出异常振动的具体情况测得的数值因轴承的使用条件或传感器安装位置等而不同因此需要事先对每台机器的测量值进行分析比较后确定判定标准.润滑对滚动轴承的疲劳寿命和摩擦、磨损、温升、振动等有重要影响没有正常的润滑轴承就不能工作.分析轴承的损坏原因表明40%左右的轴承损坏都与润滑不良有关.因此轴承的良好润滑是减小轴承摩擦和磨损的有效措施.除此之外轴承的润滑还对散热、防锈、密封、缓和冲击等起作用.要保证润滑剂不能过期失效选型要正确.收割机轴承的润滑分油润滑和脂润滑两种大机型齿轮箱油润滑选择用GL-5 80W90齿轮油; 脂润滑一般用二硫化钼锂基润滑脂润滑增扭器无级变速下部装置必须用美孚XHP222或更好的脂润滑.3. 轴承的温度滚动轴承在使用过程中由于本身质量和外部条件的原因,其承载能力、旋转精度和耐磨性能等会发生变化.当轴承的性能指标低于使用要求而不能正常工作时,轴承就发生了故障甚至失效,轴承一旦发生失效等意外情况后,机器、设备将会停转,出现功能丧失等各种异常现象,因此需要在短期内查出发生的原因,并采取相应的措施.为使轴承在良好的条件下能够保持应有的性能并长期使用.必须对轴承进行检查和保养,检查与保养对预防故障是很重要的,在运转中要重点检查轴承的滚动声、振动、温度和润滑剂.。

轴承的失效分析

轴承的失效分析
产生原因——细微颗粒物进入轴承或润滑不良, 在滑动摩擦的作用下,零件接触处金属表面材料 被磨掉。
18
2024/6/22
电蚀——电流通过轴承时,击穿油膜, 产生高温,使金属表面局部熔融形成不
规则凹坑或沟蚀。
19
2024/6/22
电蚀
形貌特征——电蚀凹坑呈斑点状,有金属熔融 现象,深处蓝黑色,呈火山喷口状;轴承运行 中形成的电蚀沟蚀呈洗衣板状。
产生原因—— 润滑不良时,在滚动接触应力的 循环作用下,金属亚表层夹杂物或炭化物形成应 力集中,进而产生微观裂纹,并逐渐发展成凹坑 状的微小剥离。润滑剂含杂质,密封不良.
16
2024/6/22
磨耗——零件在摩擦作用下,金属表面 材料被去除的现象。
17
2024/6/22
磨耗
形貌特征——产生于滚动接触面上或引导面上, 呈磨合状的浅沟槽,表面光亮。随着滚动接触 表面的磨耗发展,轴承游隙增大。
分析)。
3
2024/6/22
轴承失效分析步骤(一)
一.收集轴承使用数据—这是进行分析的重要依 据,数据应尽可能全面。包括以下方面:
概述轴承使用情况。(现场人员的叙述及记录) 安装和拆卸轴承的方法。 轴承所承受的负荷。(负荷的类型、极限) 轴承工作时的转速。(恒定、变化、极限) 轴承润滑情况。(方式、润滑剂类型) 轴承工作时的温度。 (恒定、变化)
32
2024/6/22
压痕——在强大挤压力作用下,金属 表面产生的塑性凹陷。
33
2024/6/22
压痕
形貌特征——凹陷形状与挤压体的形状吻合, 有深度,边沿材料凸起光滑。
产生原因——在过载冲击力或过载压力的作用下, 滚道面受滚动体挤压而产生的凹陷痕迹。轴承受 到振动、颠簸,滚动体与滚道发生碰撞形成。

滚动轴承常见的失效形式及原因分析

滚动轴承常见的失效形式及原因分析

滚动轴承常见的失效形式及原因分析滚动轴承是一种用于支撑和减少摩擦的常用机械元件。

它们广泛应用于各种机械设备和领域,如汽车、风力发电、机械制造等。

然而,由于工作环境的恶劣条件或长期运行等原因,滚动轴承可能会出现各种故障和失效。

以下是滚动轴承常见的失效形式及其原因分析。

1.疲劳失效:疲劳失效是滚动轴承最常见的失效形式之一、它通常在长时间高速运转或载荷较大的情况下发生。

轴承在不断重复的载荷下产生微小的裂纹,最终导致轴承出现断裂。

这种失效通常与以下原因有关:-动载荷过大:轴承在长时间内承受过大的动载荷,超出了其额定负荷能力。

-轴承安装不当:安装不当会使轴向载荷分布不均匀,导致局部载荷过大。

-润滑不良:缺乏或过多的润滑剂都会导致轴承摩擦增加,使得轴承易于疲劳失效。

2.磨损失效:磨损是轴承常见的失效形式之一、它通常发生在轴承和周围部件之间的摩擦表面上。

常见的磨损形式包括:-磨粒磨损:当粉尘、金属碎屑等进入轴承内部时,会使滚动体、保持架等部件发生磨损。

-粘着磨损:当润滑不良时,摩擦表面出现直接接触,轴承可能会发生粘着磨损。

-磨料磨损:当轴承受污染物质时,如沙尘、水等,会导致轴承表面产生磨料磨损。

3.返现失效:轴承返现是指滚动体和滚道之间的剥离、严重滚道表面损伤或磨擦减小所引起的失效。

返现失效的原因主要有:-轴承清洗不当:清洗过程中使用的溶剂或清洁剂残留在轴承内部,导致润滑性能下降,滚动体容易返现。

-轴承热胀冷缩:当轴承受到温度变化时,轴承和轴承座之间的配合间隙有可能发生变化,导致轴承返现。

-润滑不良:缺乏或过多的润滑剂会导致轴承受到不均匀的载荷分布,容易引起轴承返现。

4.偏磨失效:偏磨是指轴承滚动体在滚道上发生偏磨,导致滚道表面形变或表面破坏。

-不均匀载荷:长期承受不均匀载荷会导致滚动体在滚道上的位置发生偏移,从而引起偏磨失效。

-润滑不良:过多或过少的润滑剂会导致轴承滚动体和滚道之间的摩擦增加,从而引起偏磨。

航空发动机主轴轴承失效模式分析

航空发动机主轴轴承失效模式分析

航空发动机主轴轴承失效模式分析摘要:经济的发展推动了航空业的发展,但与此同时,我国航空发动机出现的故障中,轴承失效导致的事故在不断增加。

但当前对轴承失效的分析工作,常常以某一套飞行事故发动机轴承的失效研究为主,而因其他原因造成的航空发动机滚动轴承的早期失效模式,受条件制约,未进行系统分类和深一步的研究。

航空发动机主轴轴承的主要损伤模式为剥落、微粒损伤、压延印痕、夹杂物损伤、打滑蹭伤、磨损、接触腐蚀、断裂和变色。

这些失效模式分类对于滚动轴承的设计、制造工作具有一定的指导意义,但分类后的失效模式缺乏相关失效案例和实验数据,实际现场中此类失效模式可能不太适用,因此采用多种实验手段对轴承失效模式分析就显得极为重要。

关键词:航空发动机;主轴轴承;失效模式引言航空发动机主轴钢质轴承的主要失效模式包括疲劳失效,磨损失效,过热,塑性变形以及蹭伤等。

航空发动机圆柱滚子轴承常规失效模式主要为滚子轻载打滑及保持架断裂等。

而某航空发动机主轴圆柱滚子轴承出现有异于常规失效模式的滚子端面严重磨损的非典型失效模式。

目前对航空发动机主轴圆柱滚子轴承失效机理分析一般都采用定性分析,很少从轴承动力学特性进行失效机理定量分析。

1圆柱滚子轴承非典型失效表征圆柱滚子轴承非典型失效表征主要体现在以下方面:某航空发动机主轴圆柱滚子轴承使用过程中出现的失效模式表现为滚子的端面与工作表面严重磨损,内圈的挡边与滚道表面和保持架的兜孔横梁存在严重的磨损变色。

经初步分析,滚子倒角在磨削加工中产生的动不平衡量较大以及内圈挡边轴向游隙超差导致滚子歪斜过大是引起该轴承失效的主要原因。

本文从圆柱滚子轴承动力学特性理论方面加以研究此失效机理。

2航空发动机主轴轴承失效模式分析明确各种失效模式间的转变,首先就要确定各种失效模式各自的具体表现形式,失效机理及描述轴承运转状态的参数。

(1)疲劳失效。

表现形式及失效机理:疲劳失效主要分为次表面初始疲劳和表面疲劳。

疲劳失效常表现为滚动体或滚道接触表面上由最初的不规则的剥落坑逐渐延伸,直至发展为大片剥落。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

TB飞机起落架机轮轴承失效的原因分析及维护(doc 8页)TB飞机起落架机轮轴承失效的原因分析及维护B8913号TB20飞机在执行本场起落训练过程中,飞行教员发现飞机着陆滑跑,起飞滑跑及起飞以后,飞机发生剧烈的抖动甚至于越来越剧烈,造成飞机滑跑困难。

几个起落以后,飞行教员果断采取措施,退出飞行训练。

经机务人员检查发现:前机轮轴承由于高温而熔化咬死,带动轮轴旋转,轮轴与轮叉发生滑动干摩擦,产生的热量将轮轴和轮叉部分熔化,产生巨大的变形,机轮组件几乎从轮叉上脱落。

由于飞行教员果断的抉择,才避免了一场安全事故的发生。

由此可见,机轮轴承不仅用来支承机轮,引导机轮的旋转方向,减小转动过程中的摩擦,并承受机轮和轮轴之间的各种载荷。

而且,轴承对飞机的工作性能、寿命、各项经济指标及可靠性都有很大影响,甚至在某些情况下也会造成飞行安全事故。

一、轴承的基本结构及受力分析TB飞机机轮轴承为铁姆肯(Timken)公司生产的圆锥形轴承,它由四部分组成:内滚道、外滚道、圆锥滚棒和保持架。

正常情况下,内滚道、外滚道和滚棒承受载荷,而保持架使滚棒相互均匀地隔开,以免互相碰撞和摩擦,并使每个滚棒均匀和轮流地承受相等的载荷。

内滚道、滚棒和保持架合称为滚道组件。

通常它和外滚道是可分的(外滚道固定在可分解的轮毂上的),使安装轴承比较方便。

轴承采用低碳钢,经表面渗碳处理,它使轴承有适合的硬度,抗疲劳、忍性的综合性能。

正常使用情况下,轴承的最大温度范围在120-150℃,短时温度可达175℃,最大周期接触应力在2100~3100MPa,而保持架通常用低碳钢制成。

由于圆锥轴承的几何特点及设计特点,它可以承受经向和轴向的综合载荷。

外滚道与轴承中心线的夹角越大,能承受的轴向推力和经向推力的比值越大,滚棒和滚道的接触线越长,那么承受载荷的能力越强。

飞机处于不同的工作状态,轴承的受力情况不同:1.飞机处于静止状态,轴承主要承受静止载荷。

飞机的重力产生的停机载荷—P通过轴承的滚棒传递给外滚道,即轮毂。

P可沿轴向分解为轴向力N和垂直于外滚道的力F。

如图所示,P所产生的对外滚道的压力远大于P在这个轮子上的分力,对滚道施加很大的压强。

2.飞机在地面滑行时,主要也承受垂直载荷。

由于地面的不绝对平整,飞机的上下震动的幅度大于飞机的重力。

3.着陆时,机轮接地的瞬间首先主要是受到巨大的静止垂直冲击载荷,继5.变形失效轴承由于过载包括局部过载而使接触面发生塑性屈服,称为塑性变形失效;轴承的塑性变形对轴承工作状况的主要影响实质上是几何变形。

所以轴承尤其不能承受过载,冲击载荷及振动(特别当轴承未运转时)。

如飞机在着陆过程中,过大的冲击载荷所产生的一种永久变形,这类压痕和凹陷在滚道上的分布必然与滚珠的分布有一定的对应关系,在轴承的分解过程中是可以观察到的现象。

软化则是在滚动轴承中另一种塑性变形现象。

由于轴承内部产生的热量大于放出的热量,从而导致不稳定的热平衡,工作温度的升高,将会导致润滑剂的变质失效,轴承咬合以及钢材的软化,使疲劳寿命降低。

构件严重的热软损坏,有时可根据变色和显著塑性变形的形貌加以辨认。

三、加强对轴承的科学维护(a)贯彻预防为主的方针对轴承的维护,关键是要采取预防为主的方针。

假如轴承在使用寿命期内发生失效,务必要找出失效的原因,并且提出消除与控制这种失效的措施,做好预防工作。

其次,在轴承的失效过程中,往往是一个组件失效后,或者一种失效模式发生后,轴承还在继续非正常工作运转并引发其他失效模式,使大量机件同时遭到破坏,在比较复杂的情况下容易引发更大的事故。

所以,对每一种失效模式都要重视。

一旦发现轴承的一种失效,要及时进行更换,以预防事故的发展。

(b)利用科学的管理手段,制定最优的维护方案维修管理是一个系统的工程,在这个过程中我们要贯策预防为主的方针和以可靠性为中心的维修思想。

维修管理是一动态的过程,在这个过程中,要把我们的丰富的维修经验与维修理论相结合,上升到一个更高的层次,制定出最优的维修方案。

这样才不仅使我们的每一架单机的维修质量提高,而且有益于整个机群的维护质量的提高。

例如8913飞机前轮轴承的问题。

由于机轮尺寸小,机轮轴承离地很近,在地面滑跑的过程中很容易吸附水气,杂质等物,再由于我院飞行计划的特点,如进厂维修,寒暑假等,使得飞机停厂时间较长,润滑脂更容易变硬,变质。

轴承在长期停止工作的过程中润滑状况较差,轴承的工作环境异常的恶劣。

我院的飞机主要用于飞行教学训练,起落次数多,受冲击载荷的频率高,机场环境差。

从对此飞机轴承的痕迹特征来分析,曾经产生多种失效模式。

每一种失效模式在其他轴承上都有过发生,只不过往往是以单一的形式发生,锈迹和红褐色的物质表明轴承过度磨损,产生Fe2O3微小颗粒,有疲劳剥落痕迹。

由于磨损以后间隙较大,滚棒发生严重歪斜,产生滑动摩擦,产生大量的热,并发生金属转移和粘着,外滚道上有滚棒分布一致的倾斜压痕表明,轴承在滚棒倾斜以后承受了较大的冲击载荷,发生塑性变形。

根据这一情况制定了合理的维修方案。

①定时报废润滑脂,时间间隔为日历时间半年这种方法,最低限度地保证了机群内所有飞机轮轴的润滑和清洁状况良好,也同时对轴承的状况进行检查。

实践证明,这是很有效,成本最低的方法。

②加强飞机停放期间的维护保养工作。

把停放期间对轴承的保养作为运转飞机的一个重要项目。

在运转飞机时,拖动飞机,使轴承的润滑状况良好。

③对轴承定期制定了更全面的检查项目,统一检查的标准,一旦发现轴承失效,及时更换。

重点对常见故障模式的检查。

飞机寿命已经进入老年阶段,疲劳失效变的很明显,很容易地发现外滚道上出现了疲劳剥落。

由前面的分析我们可知,外滚道的疲劳寿命比内滚道大,如果外滚道也出现疲劳剥落,说明已经完全达到了轴承的疲劳寿命,要及时更换轴承及轮毂。

还例如,加强对外圈座的检查。

虽然它不属于轴承,但是它与轮毂一体是由铝合金制造,受润滑脂氧化的酸性物质影响,腐蚀比其他地方严重得多。

由于受着陆,突然加速等冲击载荷的作用,容易破裂,使轴承外滚道松脱,造成中心线失调,对轴承工作的影响很大。

再例如,由于飞行中起落频率高,加强对变形失效的检查也是一个重点,尤其飞机发生重着落以后。

(c)实践工作中的注意事项。

实践工作中除了要按维护工作单的内容完成对轴承的检查和维护以外,还有一些特别要注意的事项:①对轴承在润滑前要进行彻底的清洁,不要留下残留物。

由于轴承离地很近,轴承很容易有外来的杂质,还有磨损的产物及润滑脂氧化的酸性物质,以及水分都必须要清除干净。

由于轴承在易挥发的溶剂中清洗后,水分会很快地凝结在表面,抹上油脂后很难挥发掉,而且导致对钢的腐蚀,所以在润滑前要吹除水分。

②防止污染物。

轴承的检查和维护要在洁净的工作台上进行,不要在地面进行,防止外界物质进入。

同时还要防止轴承经受摔打。

③正确的润滑。

使用飞机厂家规定牌号和等级的润滑脂,润滑脂的量要占壳体空间的1/3—1/2。

④正确安装轴承,不要强装。

安装不要过紧,但也不要太松,以免轴向游隙过大。

⑤作好飞机的减震系统的维护,保证飞机有良好的减震性能。

飞机在着陆,滑跑过程中都会受到冲击载荷和振动。

保证处于适合的减震工作条件是很重要的。

⑤正确的使用飞机,培养学生的安全意识,避免飞机重着落。

总之,只要我们用认真的态度,科学的方法,对轴承故障进行分析,不断提高维修技术和管理水平,能极大地保证我们飞行训练机群的质量,确保飞行安全。

一、起落架的布置型式起落架按机轮支点数目和位置来分,一般有以下三种型式。

1.前三点式(图8.7)前三点式起落架的两组主乾布置在飞机重心的稍后处,另一(或一组)前轮布置在飞机头部。

这种型式在现代喷气式和涡轮螺桨式飞机上桩广泛采用,主要原因有以下几点。

(1)飞机在地面运动的方向稳定性好.两主轮上的摩擦力合力户,绕飞机重心的力矩将减小偏向,使飞机转回到原来方向滑跑(图8.8(a))。

(2)飞机着陆时可猛烈刹车而不致使飞机向前翻倒(图8.8(b)),从而可采用高效刹车装置以大大缩短着陆滑跑距离,这对高速飞机很有利,着陆操纵也比较简单。

(3)飞机的纵轴线接近水平位置,因此乘员较舒适,驾驶员的前方视界好,飞机滑跑阻力小,起飞加速快;喷气发动机的喷流对机场的影响也较小。

前三点式起落架的缺点是前起落架比较长,受力大,重量也较大,因而起飞时飞机抬头难一些。

有时布置稍困难(在战斗机上飞机头部常装有雷达、电气、无线电设备和武器,当飞机头部装有发动机时,则前起落架的布置和收藏就更困难些)。

另外,前轮在高速滑跑中还会出现摆振现象,须加装减摆eS,使前起落架结构复杂(参见图8.38,图8.42).现代的大型运输机重量较大,囡此起落架一般都采用多轮小车式起落架。

一些重量很大的飞机,例如c—5A(重330t)、波音—747(351t),为了提高漂浮性主起落架采用了四组多轮小车式起落架。

此时从排列上看,沿机身轴线方向两侧的各两组主起落架比较靠近,因此从总体上说,一般仍作为前三点式布置(图8.2)。

2.后三点式(图8.9)对于小型低速装有活塞式发动机的飞机一般采用后三点式起落架,即将起落架的两个主轮布置在飞机重心的稍前处,另一尾轮布置在飞机尾部。

后三点式起落架安装处的空间容易保证。

尾部起落架受载小,重量较轻,又短又小,故容易布置和收藏。

但飞机在地面上运动的方向稳定性较差。

当有偏向时,两主轮上的摩擦力合力Pf绕飞机重心的力矩M。

,将使飞机的偏向增大。

另外,在着陆过程中猛烈刹车时P,会使飞机有“翻倒”的僵向,不能与高效率的刹车装置配合使用(图8.10)。

因此,随着飞机速度的增大.为保证着陆安全,现代高速飞机广泛采用前三点式。

3.自行车式(田8.11)这种飞机的前、主起落架均安装并收藏在机身内.为防止飞机在滑行和停放时旧斜,通常在翼尖处还装有辅助轮.这种形式基本上具备前三点式的优点,但由于前起落架比前三点式更靠近重心,因此要承担约40%的总载荷,起飞时抬头困难,有时要安装自动增大起飞迎角的装置。

此外,因其不能采用左、右轮刹车力不同的方式来帮助飞机转弯,因此要在前轮上安装转弯机构。

为使前、主起范架都收藏在机身内所需的开口一般会使结构增重较多(与其他型式比)。

因而这种型式仅在个别飞机上应用,如英国的垂直—短距起落战斗机“猎兔狗”。

二、机轮的布置美国的空、海军还将起落架按机轮数和布置型式来分类.以s表示单轮:T表示双轮,TT表示双串列;ST表示单串列;DTT表示双双串列等。

例如规定某一机场跑道的强度为T-50/TT—100,即表明这个机场可接受装有双轮起落架,重为50 000磅印22.7t)的飞机,或装有双轮串列式起落架,重为100 000磅(卸45.4t)的飞机。

相关文档
最新文档