实验二 多项式插值法
讲解多项式插值(包含例题)

第三章多项式插值方法教学目的及要求:要求掌握基本的定理及各种插值方法。
插值方法是数学分析中很古老的一个分支.它有悠久的历史.等距结点内插公式是由我国隋朝数学家刘焯(公元544—610年)首先提出的;而不等距结点内插公式是由唐朝数学家张遂(公元683—727年) 提出的.这比西欧学者相应结果早一千年.插值方法在数值分析的许多分支(例如, 数值积分, 数值微分, 微分方程数值解,曲线曲面拟合,函数值近似计算,等等)均有应用.下面仅以近似计算函数值为例来说明设已知某个函数关系()x f y =的列表函数值nn y y y yx x x x110而()n i x x i ,1,0=≠问应该如何估值().x f y =对于函数关系()x f y =,我们所知道仅仅上述的表列值,它们常常是间接求得的.例如是由实验(观测)得来的,或者是从级数或微分方程求得的.我们可以使用插值方法估计y. 插值方法的目的是寻求简单的连续函数()x ϕ,使它在n+1个点n x x x ,,,10 处取给定值()()),,1,0(n i x f y x i i i ===ϕ,而在别处希望它也能近似地代表函数()x f .因为()x ϕ已是有解析表达式的简单函数,所以它在x x =处的值可以按表达式精确地计算出来.这样我们就可以将()x ϕ看成().x f y =的近似值了给定点n x x x ,,,10 为插值结点.称函数()x ϕ为函数()x f 的关于n x x x ,,,10 的插值函数.称()x f y =为被插函数.严格的说,插值方法一词只用于x 落在给定点n x x x ,,,10 之间的情形,所以也称它为内插法.如果x 落在给定点n x x x ,,,10 之外,并且仍以插值函数()x ϕ在x 处近似地代替().x f ,则一般称这种近似计算函数的方法为外插法.本章我只研究多项式插值,亦即()x ϕ是x 的多项式的情形.这不仅仅因为多项式是最简单的函数,而且因为在许多场合,函数()x f 容易用多项式近似地表示出来.此外,用多项式作插值函数可满意地解决一系列有应用价值的重要问题.特别是数值积分与数值微分的问题.本章讲不涉及三角插值法.其实,只要理解了代数多项式插值方法的实质读者就不难自行导出关于三角多项式插值方法的一系列相应与代数多项式插值方法的理论结果§1. Lagrange 插值公式设()x f y =是实变量x 得单值函数,且已知()x f 在给定的n+1个互异点n x x x ,,,10 处的值n y y y ,,,10 ,即().,,0,n i x f y i i ==插值的基本问题是,寻求多项式()x p ,使得 ()()1.1.,0,n i y x p i i ==设()x p 是一个m 次多项式()0,2210≠++++=m m m a x a x a x a a x p则插值问题是,如何确定()x p 中的系数m a a a ,,,10 ,使得(1.1)式得以满足.所以该问题等价于求解下述的线性方程组:()2.1,,,22101121211000202010⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++n m n m n n mm mm y x a x a x a a y x a x a x a a y x a x a x a a上述的线性方程组的系数矩阵为⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=m n m m nnx x x x x x x x x A102211200111 它是一个(n+1)×(m+1)矩阵.当m>n 时,A 的列数大于行数.不难证明矩阵A 的秩数为n+1.因为A 的前n+1列所组成的行列式为(称为Vandermonde 行列式)()mnmm n n n n x x x x x x x x x d e f x x x W10221120010111,.,-我们有()()()3.1,.,10∏>--=ij i j n n x x x x x W为证(1.3),考虑n 次多项式()nnnn n n n n n xx xx x x x x x x x x x x x W2121112110200101111,.,----= 显然110,,,-n x x x 均为它的零点,且它的n x 系数恰为()10.,-n x x W 即 ()()()()101010.,,.,-----=n n n x x x x x x W x x x W 从而有下述递推关系式()()()()101010.,,.,-----=n n n n n n x x W x x x x x x x W运用它即可证明(1.3)式根据(1.3),并注意到诸n x x x ,,,10 互异,从而线性方程组(1.2)的系数矩阵的秩数为n+1 .它表明(1.2)的解是不唯一的,即插值问题(1.1)的解不唯一。
多项式的插值多项式与Newton插值知识点

多项式的插值多项式与Newton插值知识点多项式的插值多项式是数值分析中的一个重要概念,它用于将给定的一组数据点拟合为一个多项式函数。
在多项式的插值问题中,给定n + 1个数据点(x0, y0), (x1, y1), ... , (xn, yn),其中xi不相等,yi可以是任意实数,要求找到一个n次多项式P(x),使得P(xi) = yi,i = 0, 1, ..., n。
插值多项式的目的是通过已知的数据点,找到一个多项式函数,从而能够在这些数据点上精确地插值。
Newton插值是一种常用的插值方法,它采用了差商的概念。
差商是一种用于表示多项式系数的方法,通过递推关系可以快速计算出插值多项式的系数。
为了使用Newton插值,首先需要计算出差商表。
差商表的第一列是给定的数据点的纵坐标值,第二列是相邻数据点的差商,第三列是相邻差商的差商,以此类推。
差商表的对角线上的元素即为插值多项式的系数。
插值多项式的计算过程可以通过以下步骤来完成:1. 根据给定的数据点,构建差商表。
2. 根据差商表的对角线上的元素,计算插值多项式的系数。
3. 根据插值多项式的系数,构建插值多项式。
在实际应用中,多项式的插值多项式可以用于数据的拟合和插值计算。
通过插值多项式,我们可以通过已知数据点推断出未知数据点的值,从而实现对数据的预测和估计。
总结起来,多项式的插值多项式与Newton插值是数值分析中常用的方法。
它们通过利用已知的数据点,构建插值多项式来拟合数据,从而实现数据的预测和插值计算。
在实际应用中,我们可以根据具体的问题和数据特点选择适合的插值方法,并利用插值多项式进行数据的分析和处理。
数值分析实验报告--实验2--插值法

1 / 21数值分析实验二:插值法1 多项式插值的震荡现象1.1 问题描述考虑一个固定的区间上用插值逼近一个函数。
显然拉格朗日插值中使用的节点越多,插值多项式的次数就越高。
我们自然关心插值多项式的次数增加时, 是否也更加靠近被逼近的函数。
龙格(Runge )给出一个例子是极著名并富有启发性的。
设区间[-1,1]上函数21()125f x x=+ (1)考虑区间[-1,1]的一个等距划分,分点为n i nix i ,,2,1,0,21 =+-= 则拉格朗日插值多项式为201()()125nn ii iL x l x x ==+∑(2)其中的(),0,1,2,,i l x i n =是n 次拉格朗日插值基函数。
实验要求:(1) 选择不断增大的分点数目n=2, 3 …. ,画出原函数f(x)及插值多项式函数()n L x 在[-1,1]上的图像,比较并分析实验结果。
(2) 选择其他的函数,例如定义在区间[-5,5]上的函数x x g xxx h arctan )(,1)(4=+=重复上述的实验看其结果如何。
(3) 区间[a,b]上切比雪夫点的定义为 (21)cos ,1,2,,1222(1)k b a b ak x k n n π⎛⎫+--=+=+ ⎪+⎝⎭(3)以121,,n x x x +为插值节点构造上述各函数的拉格朗日插值多项式,比较其结果,试分析2 / 21原因。
1.2 算法设计使用Matlab 函数进行实验, 在理解了插值法的基础上,根据拉格朗日插值多项式编写Matlab 脚本,其中把拉格朗日插值部分单独编写为f_lagrange.m 函数,方便调用。
1.3 实验结果1.3.1 f(x)在[-1,1]上的拉格朗日插值函数依次取n=2、3、4、5、6、7、10、15、20,画出原函数和拉格朗日插值函数的图像,如图1所示。
Matlab 脚本文件为Experiment2_1_1fx.m 。
可以看出,当n 较小时,拉格朗日多项式插值的函数图像随着次数n 的增加而更加接近于f(x),即插值效果越来越好。
数值计算方法实验之Hermite多项式插值(Python代码)

数值计算⽅法实验之Hermite多项式插值(Python代码)⼀、实验⽬的在已知f(x),x∈[a,b]的表达式,但函数值不便计算,或不知f(x),x∈[a,b]⽽⼜需要给出其在[a,b]上的值时,按插值原则f(x i)= y i(i= 0,1…….,n)求出简单函数P(x)(常是多项式),使其在插值基点x i,处成⽴P(x i)= y i(i=0,1,……,n),⽽在[a,b]上的其它点处成⽴f(x)≈P(x).⼆、实验原理三、实验内容求f(x)=x4在[0,2]上按5个等距节点确定的Hermite插值多项式.四、实验程序1import numpy as np2from sympy import *3import matplotlib.pyplot as plt456def f(x):7return x ** 48910def ff(x): # f[x0, x1, ..., xk]11 ans = 012for i in range(len(x)):13 temp = 114for j in range(len(x)):15if i != j:16 temp *= (x[i] - x[j])17 ans += f(x[i]) / temp18return ans192021def draw(L, newlabel= 'Lagrange插值函数'):22 plt.rcParams['font.sans-serif'] = ['SimHei']23 plt.rcParams['axes.unicode_minus'] = False24 x = np.linspace(0, 2, 100)25 y = f(x)26 Ly = []27for xx in x:28 Ly.append(L.subs(n, xx))29 plt.plot(x, y, label='原函数')30 plt.plot(x, Ly, label=newlabel)31 plt.xlabel('x')32 plt.ylabel('y')33 plt.legend()3435 plt.savefig('1.png')36 plt.show()373839def lossCal(L):40 x = np.linspace(0, 2, 101)41 y = f(x)42 Ly = []43for xx in x:44 Ly.append(L.subs(n, xx))45 Ly = np.array(Ly)46 temp = Ly - y47 temp = abs(temp)48print(temp.mean())495051def calM(P, x):52 Y = n ** 453 dfP = diff(P, n)54return solve(Y.subs(n, x[0]) - dfP.subs(n, x[0]), [m,])[0] 555657if__name__ == '__main__':58 x = np.array(range(11)) - 559 y = f(x)6061 n, m = symbols('n m')62 init_printing(use_unicode=True)6364 P = f(x[0])65for i in range(len(x)):66if i != len(x) - 1:67 temp = ff(x[0:i + 2])68else:69 temp = m70for j in x[0:i + 1]:71 temp *= (n - j)72 P += temp73 P = expand(P)7475 P = P.subs(m, calM(P, x))76 draw(P, newlabel='Hermite插值多项式')77 lossCal(P)五、运算结果。
第二章插值法多项式插值的存在性

第二章 插值法⏹ 多项式插值的存在性 ⏹ Lagrange 插值 ⏹ Newton 插值 ⏹ Hermit 插值 ⏹ 分段低次插值 ⏹ 三次样条插值在生产实践和科学研究所遇到的大量函数中,相当一部分是通过测量或实验得到的。
虽然其函数关系)(x f y =在某个区间[]b a ,是客观存在的,但是却不知道具体的解析表达式,只能通过观察、测量或实验得到函数在区间a ,b]上一些离散点上的函数值、导数值等,因此,希望对这样的函数用一个比较简单的函数表达式来近似地给出整体上的描述。
还有些函数,虽然有明确的解析表达式,但却过于复杂而不便于进行理论分析和数值计算,同样希望构造一个既能反映函数的特性又便于计算的简单函数,近似代替原来的函数。
插值法就是寻求近似函数的方法之一.在用插值法寻求近似函数的过程中,根据所讨论问题的特点,对简单函数的类型可有不同的选取,如多项式、有理式、三角函数等,其中多项式结构简单,并有良好的性质,便于数值计算和理论分析,因此被广泛采用。
本章主要介绍多项式插值、分段多项式插值和样条插值. 2.1 插值多项式的存在唯一性 2.1.1 插值问题设函数)(x f y =在区间],[b a 上有定义,且已知函数在区间],[b a 上n+1个互异点n x x x ,,,10 处的函数值)(i i x f y = i=0,1,…,n ,若存在一个简单函数)(x p y =,使其经过)(x f y =上的这n+1个已知点),(,),,(),,(1100n n y x y x y x (图5-1),即n i y x p i i ,,1,0 ,)( == (2.1.1)那么,函数)(x p 称为插值函数,点n x x x ,,,10 称为插值节点,],[b a 称为插值区间,求)(x p 的方法称为插值法,)(x f 称为被插函数。
若)(x p 是次数不超过n 的多项式,记为)(x p n ,即n n n x a x a a x p +++= 10)(则称)(x p n 为n 次插值多项式,相应的插值法称为多项式插值;若)(x p 为分段多项式,称为分段插值,多项式插值和分段插值称为代数插值。
插值数值实验报告(3篇)

第1篇一、实验目的1. 理解并掌握插值法的基本原理和常用方法。
2. 学习使用拉格朗日插值法、牛顿插值法等数值插值方法进行函数逼近。
3. 分析不同插值方法的优缺点,并比较其精度和效率。
4. 通过实验加深对数值分析理论的理解和应用。
二、实验原理插值法是一种通过已知数据点来构造近似函数的方法。
它广泛应用于科学计算、工程设计和数据分析等领域。
常用的插值方法包括拉格朗日插值法、牛顿插值法、样条插值法等。
1. 拉格朗日插值法拉格朗日插值法是一种基于多项式的插值方法。
其基本思想是:给定一组数据点,构造一个次数不超过n的多项式,使得该多项式在这些数据点上的函数值与已知数据点的函数值相等。
2. 牛顿插值法牛顿插值法是一种基于插值多项式的差商的插值方法。
其基本思想是:给定一组数据点,构造一个次数不超过n的多项式,使得该多项式在这些数据点上的函数值与已知数据点的函数值相等,并且满足一定的差商条件。
三、实验内容1. 拉格朗日插值法(1)给定一组数据点,如:$$\begin{align}x_0 &= 0, & y_0 &= 1, \\x_1 &= 1, & y_1 &= 4, \\x_2 &= 2, & y_2 &= 9, \\x_3 &= 3, & y_3 &= 16.\end{align}$$(2)根据拉格朗日插值公式,构造插值多项式:$$P(x) = \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}y_0 + \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)}y_1 + \frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}y_2 + \frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)}y_3.$$(3)计算插值多项式在不同点的函数值,并与实际值进行比较。
数值分析实验报告 第二次

华中科技大学本科实验报告课程名称:数值分析姓名:姜福鑫学号:U201310044专业班级:应数1302指导老师:黄乘明实验题目:多项式的插值解法日期:2015-4-23实验成绩:1.实验目的1.理解插值的基本原理;2.掌握多项式插值的概念、存在唯一性;3.编写MATLAB 程序实现Lagrange 插值和Newton 插值,验证Runge 现象、分析插值多项式的收敛性。
2.实验题目4.1编制拉格朗日插值法MATLAB 程序,求ln0.53的近似值。
已知)(x f =ln x 的数值表如下所示:x0.40.50.60.7ln x -0.916291-0.693147-0.510826-0.3577654.2编制牛顿插值法MATLAB 程序,求)5.0(f 的近似值。
已知的数值如下表所示:ix 0.00.20.40.60.8)(i x f 0.19950.39650.28810.77210.94313.程序文本4.1function yy=malagr(x,y,xx)m=length(x);n=length(y);if m~=n,error('向量x与y的长度必须一致');ends=0;for i=1:nt=ones(1,length(xx));for j=1:nif j~=it=t.*(xx-x(j))/(x(i)-x(j));endends=s+t*y(i);endyy=s;4.2function yi=maNew(x,y,xi)n=length(x);m=length(y);if n~=merror('向量x与y的长度必须一致');endY=zeros(n);Y(:,1)=y';for k=1:n-1for i=1:n-kif abs(x(i+k)-x(i))<epserror('数据错误');endY(i,k+1)=(Y(i+1,k)-Y(i,k))/(x(i+k)-x(i));endendyi=0;for i=1:nz=1;for k=1:i-1z=z*(xi-x(k));endyi=yi+Y(1,i)*z;end4.运行结果与分析4.1xx=0.5300yy=malagr(x,y,xx)yy=-0.63474.2x=[0.00.20.40.60.8];>>y=[0.19950.39650.58810.77210.9461];xi=0.5;>>yi=maNew(x,y,xi)yi=0.6812分析:Lagrange插值法和Newton插值法解决实际问题中关于只提供复杂的离散数据的函数求值问题,通过将所考察的函数简单化,构造关于离散数据实际函数f(x)的近似函数P(x),从而可以计算未知点出的函数值,是插值法的基本思路。
数值分析实验报告1

p
得到m=(00)T
即M0=0 ;M1=;M2=;M3=;M4=0
则根据三次样条函数定义,可得:
S(x)=
接着,在Command Window里输入画图的程序代码,
下面是画牛顿插值以及三次样条插值图形的程序:
x=[ ];
y=[ ];
plot(x,y)
hold on
for i=1:1:5
y(i)= *(x(i)*(x(i)*(x(i)*(x(i)*(x(i)*(x(i)*(x(i)
Pn=f(x0)+f[x0,x1](x-x0)+ f[x0,x1,x2](x-x0) (x-x1)+···+ f[x0,x1,···xn](x-x0) ···(x-xn-1)
我们要知道牛顿插值多项式的系数,即均差表中得部分均差。
在MATLAB的Editor中输入程序代码,计算牛顿插值中多项式系数的程序如下:
【实验原理】
《数值分析》第二章“插值法”的相关内容,包括:牛顿多项式插值,三次样条插值,拉格朗日插值的相应算法和相关性质。
【实验环境】(使用的软硬件)
软件:
MATLAB 2012a
硬件:
电脑型号:联想 Lenovo 昭阳E46A笔记本电脑
操作系统:Windows 8 专业版
处理器:Intel(R)Core(TM)i3 CPU M 350 @
实验内容:
【实验方案设计】
第一步,将书上关于三种插值方法的内容转化成程序语言,用MATLAB实现;第二步,分别用牛顿多项式插值,三次样条插值,拉格朗日插值求解不同的问题。
【实验过程】(实验步骤、记录、数据、分析)
实验的主要步骤是:首先分析问题,根据分析设计MATLAB程序,利用程序算出问题答案,分析所得答案结果,再得出最后结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告——实验二 多项式插值法
一、实验要求
1、对[-5,5]作等分划x i =−5+iℎ,h =
10n
,i =0,1,…,n ,并对Runge 给出的函数f (x )=
1/(1+16x 2)作Lagrange 插值,观察Runge 现象的发生。
(a )分别取n=10、20作Lagrange 代数插值L 10(x)和L 20(x)
(b )给出f(x)、L 10(x)和L 20(x)在区间[-5,5]的函数图象,观察其不同。
(c )考察上述两个插值函数在x=4.8处的误差,并作分析。
2、已知直升飞机旋转机翼外形曲线部分坐标如下表:
及两端的一阶导数值为y 0’=1.86548,y n ’=−0.046115
利用第一类边界条件的三次样条插值函数计算翼型曲线在x =2,30,133,390,470,515各点上的函数值及一二阶导数近似值。
二、实验原理 1、Lagrange 插值
(1)已知n+1个节点x 0<x 1<⋯<x n ,若n 次多项式l j (x ) (j =0,1,…,n)满足:
就称这n+1个n 次多项式l j (x ) (j =0,1,…,n)为节点x 0, x 1,…, x n 上的n 次插值基函数。
那么就有l k (x )=w
n+1
(x )
(x−x k
)w n+1′
(x k )
,其中w n+1(x )=∏(x −x i )n i=0,w n+1′
(x k )=∏(x k −x i )n i=0i!=k
(2)于是可得Lagrange 插值多项式
L n (x )=∑y k n
k=0
l k (x )
2、三次样条插值
(1)已知n+1个节点(x j ,y j ),且x 0<x 1<⋯<x n ,若S (x )在每个小区间[x j ,x j+1]上是三次多项式,且同时满足连续性条件(3n-3个)、插值条件(n+1个)和边界条件(2个),则称其为三次样条插值函数。
在区间[x j ,x j+1]上,由于S (x )是三次多项式,故S“(x )是线性函数,记为
S”(x )=M j x j+1−x ℎj +M j+1x −x j
ℎj
(2)利用插值条件可得
S(x)=M j (x j+1−x)3
6ℎj
+M j+1
(x−x j)3
6ℎj
+(y j−
M jℎj2
6
)
x j+1−x
ℎj
+(y j+1−
M j+1ℎj2
6
)
x−x j
ℎj
对上式求导可得
S′(x)=−M j (x j+1−x)2
j
+M j+1
(x−x j)2
j
+
y j+1−y j
j
−
M j+1−M j
ℎj
(3)利用连续性条件可得
μj M j−1+2M j+λj M j+1=d j,j=1,2,…,n−1
其中,μj=ℎj−1
ℎj−1+ℎj ,λj=ℎj
ℎj−1+ℎj
,d j=6f[x j, x j+1]−f[x j−1, x j]
ℎj−1+ℎj
=6f[x j−1,x j,x j+1]
对于第一类边界条件(已知两端一阶导数值),
μn=1,λ0=1,d0=6
ℎ0
(f[x0, x1]−f0′),d n=
6
ℎn−1
(f n′−f[x n−1, x n])
(4)要求得M0,M1,…,M n,解线性方程组即可:
三、算法设计
1、Lagrange插值:
(1)定义函数L n(x),输入参数有f()、a、b、n和x,返回值为插值结果
(2)初始化,h = (b - a) / n,x[i]= a + i * h,k=0,ln=0
(3)ln += f(x[k]) * lk(x)
(4)k+1→ k,若k<n,转(3)继续计算;否则终止计算,返回插值结果ln。
(5)选定区间[a,b]上足够多的x进行上述运算,获得足够多的数据点(x,y),绘制图像。
2、三次样条插值:
(1)定义函数S(x),输入参数有x[n+1]、y[n+1]、y0’、yn‘,返回值为插值结果
(2)初始化,按公式依次求得ℎj=x j+1−x j,μj=ℎj−1
ℎj−1+ℎj ,λj=ℎj
ℎj−1+ℎj
,d j=6f[x j−1,x j,
x j+1]
(3)解线性方程组μj M j−1+2M j+λj M j+1=d j,j=1,2,…,n−1,求得M0,M1,…,M n
(4)得到三次样条插值函数S(x),求导,再求导。
(5)对给定的x值进行插值,绘制散点图比较结果。
四、预习计算
无。
五、实验结果及分析
1、Lagrange插值:
(1)对插值得到的数据绘制图像,f(x)、L10(x)和L20(x)在区间[-5,5]的函数图象依次如下:
(2)分析:上述函数中,红色曲线是龙格函数,黄色曲线是10阶多项式,绿色曲线是20阶多项式,从图中可以很直观的看出,随着阶次的增加,误差逐渐变大。
(3)计算两个插值函数在x=4.8处的误差可得:
|L10(4.8)-f(4.8)|=129.05044880234433 |L20(4.8)-f(4.8)|=27088.933172143297
我们可以看出,两个插值函数在x=4.8处的误差非常大,原因是,插值多项式的阶数增多时插值误差甚至会趋向无限大:
这个现象表明高阶多项式通常不适合用于插值。
要避免这个问题,可以使用分段多项式样条,而且构成样条的多项式的数目越多(阶次不变),误差越小。
第2题就是一个很好的例子。
2、三次样条插值:
(1)求得的插值函数S(x)及其一阶导数、二阶导数:
(2)对给定的x=2, 30, 133, 390, 470, 515的插值结果:
(3)已知n+1个节点的散点图和插值结果的散点图
(4)上述图中黑点为原始数据,红点为通过三次样条插值得到的结果,可以看出,两个数据集很契合,说明插值效果很好。
这也印证了第1题中的分析结论,使用分段多项式样条可以避免Runge现象,能够有效减小误差。
六、体会与问题
1、通过对实验原理的重新推导,对理论有了更深的理解和掌握。
2、对编程能力也能得到一定加强,不至于太生疏。
3、本次实验原理不难,但是推导及编程过程很繁琐,需要耐心和细心。
附件:
Exp2.java 源码
results-Lagrange/x-f.txt 函数f(x)在区间[-5, 5]上的样本点集
results-Lagrange/x-L10.txt 函数L10(x)在区间[-5, 5]上的样本点集
results-Lagrange/x-L20.txt 函数L20(x)在区间[-5, 5]上的样本点集
results-Intsplin/x-y.txt 原始数据点集
results-Intsplin/x-S(x).txt 三次样条插值函数的样本点集。