高一数学子集和等集

合集下载

高一数学教案---子集

高一数学教案---子集

第三教时教材: 子集目的: 让学生初步了解子集的概念及其表示法,同时了解等集与真子集的有关概念.过程:一提出问题:现在开始研究集合与集合之间的关系.存在着两种关系:“包含”与“相等”两种关系.二“包含”关系—子集1. 实例: A={1,2,3} B={1,2,3,4,5} 引导观察.结论: 对于两个集合A和B,如果集合A的任何一个元素都是集合B的元素,则说:集合A包含于集合B,或集合B包含集合A,记作A⊆B (或B⊇A)也说: 集合A是集合B的子集.2. 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊄B (或B⊄A)注意: ⊆也可写成⊂;⊇也可写成⊃;⊆也可写成⊂;⊇也可写成⊃。

3. 规定: 空集是任何集合的子集 . φ⊆A三“相等”关系1.实例:设 A={x|x2-1=0} B={-1,1} “元素相同”结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即: A=B2.①任何一个集合是它本身的子集。

A⊆A⊂≠②真子集:如果A⊆B ,且A≠B那就说集合A是集合B的真子集,记作A B③空集是任何非空集合的真子集。

④如果 A⊆B, B⊆C ,那么 A⊆C证明:设x是A的任一元素,则 x∈AΘ A⊆B,∴x∈B 又ΘB⊆C ∴x∈C 从而 A⊆C 同样;如果 A⊆B, B⊆C ,那么 A⊆C⑤如果A⊆B 同时 B⊆A 那么A=B四例题: P8 例一,例二(略)练习 P9 补充例题《课课练》课时2 P3五小结:子集、真子集的概念,等集的概念及其符号几个性质: A⊆AA⊆B, B⊆C ⇒A⊆CA⊆B B⊆A⇒ A=B作业:P10 习题1.2 1,2,3 《课课练》课时中选择。

高一数学必修一第一章集合与函数的概念讲义(集合的关系与运算)

高一数学必修一第一章集合与函数的概念讲义(集合的关系与运算)

知识点3、集合间的基本关系知识梳理1、子集的概念定义一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集图示(1)任何一个集合是它本身的子集,即A⊆A.如果集合A是集合B的子集(A⊆B),且集合B是集合A的子集(B⊆A),此时,集合A与集合B中的元素是一样的,因此,集合A与集合B相等,记作A=B.3、真子集的概念(1)A⊂B且B⊂C,则A⊂C;(2)A⊆B且A≠B,则A⊂B常考题型题型一、集合间关系的判断例1、(1)下列各式中,正确的个数是()①{0}∈{0,1,2};②{0,1,2}⊆{2,1,0};③∅⊆{0,1,2};④∅={0};⑤{0,1}={(0,1)};⑥0={0}A.1B.2 C.3 D.4①A={-1,1},B={(-1,-1),(-1,1),(1,-1),(1,1)};②A={x|x是等边三角形},B={x|x是等腰三角形};③M={x|x=2n-1,n∈N*},N={x|x=2n+1,n∈N*}.判断集合间关系的方法(1)用定义判断.首先,判断一个集合A中的任意元素是否属于另一集合B,若是,则A⊆B,否则A不是B的子集;其次,判断另一个集合B中的任意元素是否属于第一个集合A,若是,则B⊆A,否则B不是A的子集;若既有A⊆B,又有B⊆A,则A=B.(2)数形结合判断.对于不等式表示的数集,可在数轴上标出集合的元素,直观地进行判断,但要注意端点值的取舍.变式训练能正确表示集合M={x∈R|0≤x≤2}和集合N={x∈R|x2-x=0}关系的Venn图是()A. B. C. D.题型二、有限集合子集的确定例2、(1)集合M={1,2,3}的真子集个数是()A.6 B.7 C.8 D.9(2)满足{1,2}⊂≠M⊆{1,2,3,4,5}的集合M有________个.公式法求有限集合的子集个数(1)含n个元素的集合有2n个子集.(2)含n个元素的集合有(2n-1)个真子集.(3)含n个元素的集合有(2n-1)个非空子集.(4)含有n个元素的集合有(2n-2)个非空真子集.(5)若集合A有n(n≥1)个元素,集合C有m(m≥1)个元素,且A⊆B⊆C,则符合条件的集合B有2m-n个.变式训练非空集合S⊆{1,2,3,4,5}且满足“若a∈S,则6-a∈S”,则这样的集合S共有________个.题型三、集合间关系的应用例3、已知集合A={x|x<-1或x>4},B={x|2a≤x≤a+3},若B⊆A,求实数a的取值范围.变式训练已知集合A={x|1<ax<2},B={x|-1<x<1},求满足A⊆B的实数a的取值范围.课时小测1、给出下列四个判断:①∅={0};②空集没有子集;③任何一个集合必有两个或两个以上的子集;④空集是任何一个集合的子集.其中,正确的有()A.0个B.1个C.2个D.3个2、已知A={x|x是菱形},B={x|x是正方形},C={x|x是平行四边形},那么A,B,C之间的关系是()A.A⊆B⊆C B.B⊆A⊆C C.A⊂≠B⊆C D.A=B⊆C3、已知集合A={-1,3,m},B={3,4},若B⊆A,则实数m=________.4、集合A={x|0≤x<3且x∈N}的真子集的个数为________.5、已知集合A={x|1≤x≤2},B={x|1≤x≤a}.(1)若A是B的真子集,求a的取值范围;(2)若B是A的子集,求a的取值范围;(3)若A=B,求a的取值范围.同步练习一、选择题1.已知集合A,B,若A不是B的子集,则下列命题中正确的是A.对任意的a∈A,都有a∉B B.对任意的b∈B,都有b∉A2.如果{}|1A x x =>-,那么A .0A ⊆B .{}0A ∈C .A ∅∈D .{}0A ⊆ 3.下列各式中,正确的个数是(1){0}∈{0,1,2};(2){0,1,2}⊆{2,1,0};(3)∅⊆{0,1,2}. A .0 B .1 C .2 D .3 4.若集合{}|0A x x =≥,且B A ⊆,则集合B 可能是A .{}1,2B .{}|1x x ≤C .{}1,0,1-D .R 5.若2{|,}x x a a ⊂∅≤∈≠R ,则实数a 的取值范围是A .B .C .D . 6.已知全集U =R ,则正确表示集合{}1,0,1M =-和{}2|0N x x x =+=关系的韦恩(Venn)图是A B C D7.设集合{1,2}M =,2{}N a =,那么 A .若1a =,则N M ⊆B .若N M ⊆,则1a =C .若1a =,则N M ⊆,反之也成立D .1a =和N M ⊆成立没有关系8.已知集合{}4,5,6P =,,定义{},,P Q x x p q p P q Q ⊕==-∈∈,则集合P Q ⊕的所有非空真子集的个数为A .32B .31C .30D .以上都不对二、填空题9.设P ={x |x <4},Q ={x |-2<x <2},则P Q .10.已知集合,,则满足条件的集合C 的个数为_____.三、解答题11.写出集合{0,1,2}的所有子集,并指出其中哪些是它的真子集. (0,)+∞[0,)+∞(,0]-∞(,0)-∞{}1,2,3Q =2{|320,}A x x x x =-+=∈R {|05,}B x x x =<<∈N A C B ⊆⊆12.已知集合{}{}2,4,6,8,9,1,2,3,5,8A B ==,又知非空集合C 是这样一个集合:其各元素都加2后,就变为A 的一个子集;若各元素都减去2后,则变为B 的一个子集,求集合C .13.已知集合A ={x|2a −1<x <3a +1},集合B ={x|−1<x <4}.(1)若A ⊆B ,求实数a 的取值范围;(2)是否存在实数a ,使A =B ?若存在,求出a 的值;若不存在,说明理由.知识点4、集合的并集、交集知识梳理1、并集的概念、并集的性质(1)A ∪B =B ∪A ,即两个集合的并集满足交换律.(2)A ∪A =A ,即任何集合与其本身的并集等于这个集合本身. (3)A ∪∅=∅∪A =A ,即任何集合与空集的并集等于这个集合本身.(4)A ⊆(A ∪B),B ⊆ (A ∪B),即任何集合都是该集合与另一个集合并集的子集.(5)若A ⊆B ,则A ∪B =B ,反之也成立,即任何集合同它的子集的并集,等于这个集合本身. 3、交集的概念4、交集的性质(1)A∩B=B∩A,即两个集合的交集满足交换律.(2)A∩A=A,即任何集合与其本身的交集等于这个集合本身.(3)A∩∅=∅∩A=∅,即任何集合与空集的交集等于空集.(4)A∩B⊆A,A∩B⊆B,即两个集合的交集是其中任一集合的子集.(5)若A⊆B,则A∩B=A,反之也成立,即若A是B的子集,则A,B的公共部分是A.常考题型题型一、并集的运算例1、(1)设集合M={4,5,6,8},集合N={3,5,7,8},那么M∪N等于()A.{3,4,5,6,7,8}B.{5,8} C.{3,5,7,8} D.{4,5,6,8} (2)若集合A={x|x>-1},B={x|-2<x<2},则A∪B等于()A.{x|x>-2} B.{x|x>-1} C.{x|-2<x<-1} D.{x|-1<x<2}变式训练若集合A={1,4,x},B={1,x2},A∪B={1,4,x},则满足条件的实数x有()A.1个B.2个C.3个D.4个题型二、交集的运算例2、(1)若A={0,1,2,3},B={x|x=3a,a∈A},则A∩B等于()A.{1,2} B.{0,1} C.{0,3} D.{3}(2)设集合A={x|-1≤x≤2},B={x|0≤x≤4},则A∩B等于()A.{x|0≤x≤2} B.{x|1≤x≤2} C.{x|0≤x≤4} D.{x|1≤x≤4}求交集运算应关注两点(1)求交集就是求两集合的所有公共元素形成的集合.(2)利用集合的并、交求参数的值时,要检验集合元素的互异性.变式训练已知M={1,2,a2-3a-1},N={-1,a,3},M∩N={3},求实数a的值.题型三、交集、并集的性质及应用例3、已知集合A={x|-3<x≤4},集合B={x|k+1≤x≤2k-1},且A∪B=A,试求k的取值范围.变式训练已知集合A={x|-3<x≤4},集合B={x|k+1≤x≤2k-1},且A∩B=A,试求k的取值范围.课时小测1、设集合M={m∈Z|-3<m<2},N={n∈Z|-1≤n≤3},则M∩N=()A.{0,1}B.{-1,0,1}C.{0,1,2} D.{-1,0,1,2}2、已知S={(x,y)|y=1,x∈R},T={(x,y)|x=1,y∈R},则S∩T=()A.空集B.{1}C.(1,1) D.{(1,1)}3、若集合A={x|-1<x<5},B={x|x≤-1,或x≥4},则A∪B=________,A∩B=________.4、已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是________.5、设集合A={2,-1,x2-x+1},B={2y,-4,x+4},C={-1,7},且A∩B=C,求实数x,y的值及A∪B.知识点5、补集及综合应用知识梳理1、全集的定义及表示(1)定义:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集.(2)符号表示:全集通常记作U.2、补集的概念及性质的补集,记作U=∅,U∅U U(U(U U常考题型题型一、补集的运算例1、(1)设全集U=R,集合A={x|2<x≤5},则U A=________.(2)设U={x|-5≤x<-2,或2<x≤5,x∈Z},A={x|x2-2x-15=0},B={-3,3,4},则U A=________,U B=________.变式训练设全集U={1,3,5,7,9},A={1,|a-5|,9),U A={5,7},则a的值为________.题型二、集合的交、并、补的综合运算例2、已知全集U={x|x≤4},集合A={x|-2<x<3},B={x|-3≤x≤2},求A∩B,(U A)∪B,A∩(U B),U(A∪B).变式训练已知全集U={x|x<10,x∈N*},A={2,4,5,8},B={1,3,5,8},求U(A∪B),U(A∩B),(U A)∩(U B),(U A)∪(U B).题型三、补集的综合应用例3、设全集U=R,M={x|3a<x<2a+5},P={x|-2≤x≤1},若M⊂≠U P,求实数a的取值范围.变式训练已知集合A={x|x<a},B={x<-1,或x>0},若A∩(R B)=∅,求实数a的取值范围.课时小测2、已知全集U =R ,集合A ={x |-2≤x ≤3},B ={x |x <-1,或x >4},那么集合A ∩(U B )等于( )A .{x |-2≤x <4}B .{x |x ≤3,或x ≥4}C .{x |-2≤x <-1}D .{x |-1≤x ≤3}3、已知集合A ={3,4,m },集合B ={3,4},若A B ={5},则实数m =________. 4、已知全集U =R ,M ={x |-1<x <1},U N ={x |0<x <2},那么集合M ∪N =________.5、设U =R ,已知集合A ={x|-5<x<5},B ={x|0≤x<7},求(1)A∩B ;(2)A ∪B ;(3)A ∪(U B);(4)B∩(U A);(5)(U A )∩(U B ).同步练习一、选择题1、已知集合{1,2,3,4,5,6}U =,{1,3,4}A =,则UA =A .{5,6}B .{1,2,3,4}C .{2,5,6}D .{2,3,4,5,6} 2、已知集合{}|1A x x =>,{|1}B x x =≤,则 A .AB ≠∅ B .A B =RC .B A ⊆D .A B ⊆3、若集合{}{}1,2,3,4,2A B x x ==∈≤N ,则AB 中的元素个数是A .4B .6C .2D .34、已知全集U ={1,2,3,4,5,6},集合P ={1,3,5},Q ={1,2,4},则U P Q ()= A .{1}B .{3,5}C .{1,2,4,6}D .{1,2,3,4,5}5、设集合{},A a b =,集合{}1,5B a =+,若{}2A B =,则A B =A .{}1,2B .{}1,5C .{}2,5D .{}1,2,5 6、若集合AB BC =,则集合A,B,C 的关系下列表示正确的是。

高一数学集合与简易逻辑综合知识精讲

高一数学集合与简易逻辑综合知识精讲

高一数学集合与简易逻辑综合【本讲主要内容】集合与简易逻辑综合集合、子集、交集、并集、补集等概念,绝对值不等式、一元二次不等式的解法,简易逻辑。

【知识掌握】 【知识点精析】1. 集合:一般地,某些指定的对象集在一起就成为一个集合;2. 子集:一般地,对于两个集合A 与B ,如果集合A 的任何..一个元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合;3. 交集:一般地,由所有属于A 且属于B 的元素所组成的集合,叫做A ,B 的交集;4. 并集:一般地,由所有属于集合A 或属于集合B 的元素所组成的集合,叫做A ,B 的并集;5. 补集:一般地,设S 是一个集合,A 是S 的一个子集(即S A ⊆),由S 中所有不属于A 的元素组成的集合,叫做S 中子集A 的补集(或余集);6. )0a (a x ><的解集是。

{}a x x |x <<-;)0a (a |x |>>的解集是{}a x a x |x -<>或;7. 一元二次不等式的解法;8. 简易逻辑:命题:可以判断真假的语句叫做命题。

逻辑联结词:“或”、“且”、“非”这些词叫做逻辑联结词。

简单命题和复合命题不含逻辑联结词的命题叫做简单命题。

简单命题是不含其他命题作为其组成部分(在结构上不能再分解成其他命题)的命题。

由简单命题和逻辑联结词构成的命题叫做复合命题。

四种命题及它们的关系【解题方法指导】例1. 已知全集{}的质数不大于20U ,A ,B 是U 的两个子集,且满足{}5,3B C A U =I ,{}19,7A C B U =I ,(U C A )I (U C B)= {}17,2。

求集合A 和B 。

解法一:(直接解法)依题意,{}5,3B C A U =I ,则{}A 5,3⊆,且{}B C 5,3U ⊆。

从而知3,5A ∈,且∉B 。

同理,由B A C U I {}19,7,知7,19,且7,19∉A由(A C U )I (U C B ){}17,2,知2,17∉A ,且2,17 ∉B因为{}19,17,13,11,7,5,3,2U ,观察11和13这两个元素,不外乎下面几种情况:①若11 ,11 ,则A C U ,且 U CB ,这与(AC U )I (U C B )={}17,2矛盾;②若11∈A ,11B ∉,则 U C B ,这与A I U C B ={}5,3矛盾; ③若11 ∉A ,11∈B ,则A C U ,这与B I AC U = {}19,7矛盾;④若11 ∈A ,11 ∈B ,则11∈(A B I )。

集合数学知识点高一真子集

集合数学知识点高一真子集

集合数学知识点高一真子集集合是数学中的基础概念之一,对于高中数学而言,真子集是一个重要的概念。

真子集指的是一个集合中去掉自身元素后所得到的子集。

本文将围绕这个主题,详细讨论高一阶段的集合数学知识点。

一、集合的基本概念在开始讨论真子集之前,我们首先需要了解集合的基本概念。

集合是由一些确定的对象组成,这些对象被叫做集合的元素。

集合的表示方式有两种:列举法和描述法。

例如,集合A={1,2,3,4,5}可以用列举法表示,其中元素1、2、3、4、5属于集合A。

而集合B={x|x是正整数,且小于等于5}是用描述法表示的,它包含了小于等于5的所有正整数。

二、子集的概念在集合论中,子集是一个非常重要的概念。

给定两个集合A和B,如果A的所有元素都属于B,那么A就是B的子集。

用符号表示就是A⊆B。

特别地,空集∅是任何集合的子集。

三、真子集的定义真子集是集合论中的一个概念,指的是一个集合中去掉自身元素后所得到的子集。

简而言之,对于集合A和集合B,如果A是B的子集且A不等于B,那么A就是B的真子集。

用符号表示就是A⊂B。

例如,对于集合A={1,2,3},集合B={1,2,3,4},A是B 的真子集。

四、真子集的性质真子集具有一些重要的性质,我们接下来将逐一讨论。

1. 空集是任何集合的真子集。

对于任意集合A,空集是A的真子集,符号表示为∅⊂A。

2. 对于任意集合A,A是自身的真子集。

符号表示为A⊂A。

3. 对于任意集合A和B,如果A是B的真子集且B是A的真子集,则A和B相等。

符号表示为A⊂B且B⊂A,则A=B。

五、真子集的运用真子集的概念在高中数学中经常被用于证明数学问题。

以下是一些常见的运用实例。

1. 证明两个集合不相等:假设需要证明集合A和集合B不相等,可以通过构造真子集来证明。

如果能找到A的一个真子集B',且B'不等于B,那么可以得出结论A不等于B。

2. 证明两个集合相等:同样地,假设需要证明集合A和集合B相等,可以通过分别证明A是B的真子集且B是A的真子集来得出结论A等于B。

高一数学集合间的基本关系(一)

高一数学集合间的基本关系(一)

高一数学集合间的基本关系(一)高一数学集合间的基本关系1. 包含关系•定义:集合A包含集合B,表示为A ⊃ B。

•解释:如果B中的所有元素都属于A,则称A包含B。

2. 等于关系•定义:集合A等于集合B,表示为A = B。

•解释:如果A和B具有相同的元素,则称A等于B。

3. 不相交关系•定义:集合A与集合B不相交,表示为A ∩ B = ∅。

•解释:如果A和B没有相同的元素,则称A与B不相交。

4. 交集关系•定义:集合A与集合B的交集,表示为A ∩ B。

•解释:集合A与集合B的交集是包含A和B共有元素的新集合。

5. 并集关系•定义:集合A与集合B的并集,表示为A ∪ B。

•解释:集合A与集合B的并集是包含A和B所有元素的新集合。

6. 差集关系•定义:集合A与集合B的差集,表示为A - B。

•解释:集合A与集合B的差集是包含A中但不包含B中元素的新集合。

7. 互斥关系•定义:集合A与集合B互斥,表示为A ∩ B = ∅。

•解释:如果A和B没有相同的元素,则称A与B互斥。

8. 超集关系•定义:集合A是集合B的超集,表示为A ⊇ B。

•解释:如果B中的所有元素都属于A,则称A是B的超集。

9. 子集关系•定义:集合A是集合B的子集,表示为A ⊆ B。

•解释:如果A中的所有元素都属于B,则称A是B的子集。

以上是高一数学集合间的基本关系的简述和解释。

理解这些关系是数学学习的基础,也是解决相关问题的前提。

在实际应用中,通过运用这些集合关系,可以对数据进行分类、比较和分析,进而推导出更深层次的结论。

数学的集合理论对于求解实际问题非常重要。

高一数学集合间的基本关系

高一数学集合间的基本关系

第二节集合间的基本关系学习目标1、理解集合之间包含与相等的含义,能识别给定集合的子集2、在具体情境中,了解空集的含义知识框架1、子集定义:如果集合A中的任何一个元素都是集合B的元素,我们就说这两个集合有包含关系,称集合A是集合B的子集。

记作:BA⊆(或B⊇A)A⊆有两种可能B(1)A是B的一部分;(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B 或B⊇/A2、真子集如果集合BA⊆,但存在元素x∈B且x¢A,则称集合A是集合B 的真子集如果A⊆B,且A≠B,那就说集合A是集合B的真子集,记作A B(或B A)读作A真包含于B3、集合相等元素相同则两集合相等,如果A⊆B同时B⊆A,那么A=B4、空集不含有任何元素的集合叫做空集,记为∅规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

5、集合的性质①任何一个集合是它本身的子集。

A⊆A②如果 A⊆B, B⊆C ,那么 A⊆C③如果A B且B C,那么A C④有n个元素的集合,有2n个子集,1n个真子集2-随堂练习1、设{},62,8|=≤=a x x P 则下列关系中正确的是( )A.P a ⊆B.P a ∉C.{}P a ⊆D.{}P a ∈2、集合{}3,2,1=M 的真子集的个数是( )A.6B.7C.8D.93、设集合{}{},,|),(,,|22R x x y y x Q R x x y y P ∈==∈==则P 与Q 的关系是A.Q P ⊆B.Q P ⊇C.Q P =D.以上都不正确4、已知集合A {},7,3,2且A 中至多有一个奇数,则这样的集合A 有A.3个B.4个C.5个D.6个5、已知集合{},12,3,1--=m A 集合{},,32m B =若,A B ⊆则.________=m6、设集合{}{},1212|,23|+≤≤-=≤≤-=k x k x B x x A 且,B A ⊇则实数k 的取值范围是.____________7、已知集合{}{},,01|,0158|2A B ax x B x x x A ⊆=-==+-=求实数a 的不同取值组成的集合.8、已知集合{}{},0))(1(|,31|=--=≤≤=a x x x B x x A(1)当集合B 是A 的子集时,求实数a 的取值范围;(2)是否存在实数a 使得B A =成立?。

高一数学子集和等集

高一数学子集和等集

思考4:我们经常用平面上封闭曲线的内部代 表集合,这种图称为venn图,那么,集合A 是集合B的子集用图形如何表示?
AB
思考5:如果 A B,且 B C ,则集合A与
集合C的关系如何?
AC
思考6:怎样表述 a,{a},{a, b}两两之间的
关系? a {a}, a {a,b},{a} {a,b}
A B(或 B A),读作:“A含于B”
(或“B包含A”)
; https:///product-selection/dip/ 拨码开关生产厂家 ; https:///product-selection/pushbutton/ 瞬间按动开关 ; https:///product-selection/toggle/ ck钮子开关
思考1:上述各组集合中,集合A中的元素A与B有包含关系,我 们把集合A叫做集合B的子集. 一般地,如何 定义集合A是集合B的子集?
对于两个集合A,B,如果集合A中任意 一个元素都是集合B中的元素,则称集合A为 集合B的子集.
思考3:如果集合A是集合B的子集,我们怎样 用符号表示?
高一年级 数学 第一章 1.1.2 集合间的基本关系
课题: 子集和等集
授课者: 朱海棠
问题提出
1.集合有哪两种表示方法? 列举法,描述法 2.元素与集合有哪几种关系? 属于、不属于 3.集合与集合之间又存在哪些关系?
知识探究(一)
考察下列各组集合: (1)A={1,2,3}与B={1,2,3,4,5}; (2)A= {x | 0 x 1}与B= {x || x | 1, x R}. (3) A={x|x是正三角形}与B={x|x是等腰 三角形}.
知识探究(二)
考察下列各组集合:

高一数学集合间的基本关系

高一数学集合间的基本关系
空集是任何非空集合的真子集.
4.集合之间的基本关系.
(1)任何一个集合是它本身的子集,即 A A (2)对于集合A、B、C,如果A B,B C,那么 A C.
例3、写出集合{a, b}的所有子集,并指出哪些是它 的真子集.
5.反馈演练
1、下列命题:(1)空集没有子集;(2)任何集合至少有两个 子休;(3)空集是任何集合的真子集;(4)若 A,则A .其中正确的有( ) A.0个 B.1个 C.2个 D.3个
1.子集的概念
一般地,对于两个集合A、B, 如果集合A中任
意一个元素都是集合B中的元素,我们就说这两个
集合有包含关系,称集合A为集合B的子集.
记作
A B (或B A)
读作 “A含于B”(或“B包含A”)
BA
2.集合相等与真子集的概念
如果集合A是集合B的子集(A B),且集合B是 集合A的子集(B A),此时,集合A与集合B中 的元素是一样,因此,集合A与集合B相 等, 记作 A=B
2.设x, y R,A {(x,y) | y - 3 x - 2},B {(x,y) | y - 3 1}, x-2
则A,B的关系是______.
3.已知A {x | 2 x 5}, B {x | a 1 x 2a 1}, B A, 求实数a的取值范围.
本节小结
子集、真子集的定义 集合之间的关系 空集是任何集合的子集,是任何非空集合的
真子集
;/ 三体小说 ;
快一个小时了他们还没到.作为一名老实巴交の纳税人,我有权利知道自己供养の是人民公仆还是吃饱等死の猪,连个入村路口都找了一个多小时,到时让媒体过来一起见识见识.”最后一句像从牙缝里蹦出来の,这种效率,足够让报警人死几百次了.原本有些忧
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
母亲踩踏缝纫机的声音,坚定有序地行进着,就像环绕在我们身边的一条弯弯的小河,河水叮叮咚咚,从容不迫地流淌着,鸟语花香不时传来,宛如一首舒缓、宁静的家庭摇篮曲。不知道母亲是怎 样地在无师自通的路上挣扎,反正我们兄弟们在母亲反复弹奏的摇篮曲中,一天天地长大,过着吃得饱,穿得暖,饭来张口衣来伸手的神仙日子。澳门星际电子游艺ag街机
时而有夜晚,夜莺清脆的鸣叫,将我从睡梦中唤醒,汉水岸边的江风徐徐吹拂着,夜莺的歌唱顺着江风在峡谷回荡,如一把钥匙,扭开深邃、辽阔的星空。我看见皎洁的月光从窗口漫进来,母亲站 在裁缝案头,清亮的身影被月光拉剪子“嘎吱、嘎吱、嘎吱”裁剪布料的声音,这些声音沿着月光,干净、利落地敲打着沉沉的夜色,组成 一首专属于母亲的月夜交响曲。
人生的美好风景,总是倾向于那些立志拼搏、勇于攀登的智者。在我上中学的时候,母亲就成了工地上有名的裁缝,这在当时的工地是绝无仅有的事例。母亲缝纫案头上各类衣裤、裙装甚至于旗袍 的订单排着又高又长的队列,它们来自工地上的大人小孩,也来自于汉水两岸的父老乡亲,在简陋的牛毛毡房里,母亲还带上了自己的学徒。后来,我曾经在基地的服装厂学习过,小半年的时间,理论、 实际搞了个昏天黑地,到头来,我连一条完整的裤衩也做不出来,由此可见母亲成功的背后,都是付出了多少励志的汗水。
相关文档
最新文档