人防荷载在地下室结构设计中应用
建筑工程人防地下室结构设计分析

建筑工程人防地下室结构设计分析摘要:以《人民防空地下室设计规范(gb 50038-2005)》所提出的要求为准则,浅谈人防地下室结构的设计特点、原则以及具体内容。
关键词:等效静载法;围护结构;人防荷载0前言人民防空地下室(以下简称人防地下室)是人防工程的重要组成部分,是战时提供人员、车辆、物资等掩蔽的主要场所,在平时由于地下室的特殊性,也是作为防灾、减灾指挥所及避难所。
人防地下室和普通地下室有着很多相同点,这使很多人认为普通地下室就是人防地下室。
人民防空地下室在战时可对人员、车辆、物资等起到掩护的作用,是重要的人防工程。
1人防地下室结构设计特点(1)人防地下室结构可靠度比一般建筑结构要低。
《建筑结构可靠度设计统一标准(gb 50068-2001)》规定一般混凝土结构构件延性破坏时可靠指标β= 3.2,失效概率为pf = 0.069% ,脆性破坏可靠指标β= 3.7,失效概率为pf = 0.011%;《人民防空地下室设计规范(gb 50038-2005)》(以下简称《规范》)规定人防地下室结构构件延性破坏时可靠指标β= 1.55,失效概率为pf = 6.1% ,脆性破坏可靠指标β= 2.4,失效概率为pf = 0.8%。
(2)常规武器爆炸动荷载和核武器爆炸动荷载作用下,人防地下室结构动力分析可采用等效静荷载法,在等效静荷载和静荷载确定后按静力计算方法进行结构内力分析。
(3)由于核爆炸荷载和常规武器爆炸荷载均只按一次作用考虑,因此结构构件可考虑进入塑性工作状态,按弹塑性工作阶段计算结构内力,以便节约建筑材料,充分发挥结构的潜力。
(4)人防地下室结构设计时材料设计强度可以提高。
材料设计强度的提高在设计中是通过考虑材料强度综合调整系数来完成的,如钢材 = 1.15~1.5,混凝土= 1.5。
(5)一般钢筋混凝土结构,依其性能和使用要求,要进行两种极限状态的验算,即:承载能力极限状态(包括强度、稳定和疲劳验算)和正常使用极限状态(包括变形、裂缝出现和裂缝宽度等的验算)。
人防地下室结构设计要点

人防地下室结构设计要点摘要:人防地下室结构设计涉及的相关规范及图集较多,随着通用规范的推出,明确了逐步用全文强制性工程建设规范取代现行标准中分散的强制性条文的改革任务,逐步形成由法律、行政法规、部门规章中的技术性规定与全文强制性工程建设法规构成“的技术法规”体系,本文论述了人防地下室结构设计要点,以期为结构工程师在符合战时及平时的功能要求的前提下设计成果做到安全、适用、经济、合理做出参考。
关键词:人防等效静荷载,人防配筋率,人防构件截面尺寸引言:人防区域的划分要正确、密闭,人防构件与主体结构构件位置重合时,应以大值(砼强度、截面、配筋、构造要求等)设计施工。
一、人防地下室结构设计概述1人防地下室结构设计特点:相较于普通地下室,人防地下室的结构要求更高,在设计中需要考虑的问题更多,要充分考虑人防地下室战时防范作用,同时也要考虑其在平时的应用。
人防地下室暴露于空气中的部分,在发生爆炸时会受到空气冲击波的作用,而埋入土中的部分则会受到土带来的压缩波的作用。
对于人防地下室的墙以及柱等结构来讲,不仅会受到自身以及上部建筑和土带来的荷载,而且还会承受上部结构爆炸动荷载作用。
在设计过程中需要充分考虑爆炸动荷载问题。
孔口防护设计以及主体结构设计是人防地下室结构设计应关注的重点。
在人防地下室结构设计过程中,通常需要应用等效静荷载法进行动力分析,并且在为了保障计算结果的精确性,需要将整个结构进行拆分,拆分成单个构件进行计算。
如果人防地下室存在地面建筑,则需将其作为人防地下室结构的一部分来考虑,既要保证地上建筑战时的抗力要求,也要保证地面建筑结构能够满足平时的使用要求,以便提升地上建筑的使用率。
因此在设计时需要采用平战兼顾的方法,使其能够同时满足平时与战时的应用需求。
但是由于地面建筑在平时使用与战时使用过程中的要求存在较大的差异,因此在设计时应确保地面建筑能够进行功能转换。
除此之外,在人防地下室结构设计过程中应做好各部件的协调,保证设计标准的一致性。
人防地下室结构设计

防早期核辐射的钢筋混凝土顶板厚度(mm)
类别
顶板
6级
5级
战时医疗救护站 ⁄
460
专业队队员掩蔽部 ⁄
460
二等人员掩蔽部 250
360
注 : a. 当 顶 板 上 有 复 土 时 , 可 以 折 算 成 混 凝 土 厚 度 (÷1.4);
b. 顶板上方的找平层及刚性面层可以计入厚度; c. 顶板上方有夹层或普通地下室时,夹层及普通地 下室的顶板厚度可以计入。
2.2 内力计算与截面设计中应注意的有关问题 ① 人防板或无梁楼盖的计算弯矩可以折减,按规范 条;
② 人防梁板可以考虑内力重分布(即进行弯矩调幅),建 议在25%以内;
③ 人防无梁楼盖的正负弯矩调幅按附录C; ④ 进行抗剪计算及受压验算时,混凝土的材料强度提高系
数要降低,即1.5×0.8=1.2。 ⑤ 为保证受弯构件不出现脆性破坏,必须满足规范的构造
④ 门框墙:按表查取 注意一:门框墙比同一面临空墙的荷载取高,原因是: 临空墙[β]=2,门框墙[β]=1; 注意二:门框墙的范围:一般限于人防门所在的一个跨 间或暗柱暗梁范围内。
⑤ 人防单元间的隔墙:按表,查取 ⑥ 平时设备房间与人防区之间的隔墙:当前可以参照第③
条取,但可以作为建议向规范编写组提出。
3.6 作为主要出入口的室内出入口(仅用于6级,新增条文): 该处的荷载与结构比较复杂; 要加强至二层的楼面,形成内嵌的防倒塌棚架; 各部位荷载按第确定。 荷载点包括: ① 首层楼梯间的墙体上; ② 或首层楼梯间的框架柱梁上; ③ 首层至二层楼面的梯段板、平台板上;
④ 地下室至首层的梯段板、平台板上; ⑤ 首层出口门洞上方的挑檐上。 3.7 各部位封堵构件上的等效静载(新增条文): 各部位封堵构件上的荷载种类较多,设计中一般直接选用 通用的封堵构件,不再单独设计。 3.8 室外主要出入口上开敞式防塌棚架的等效静载:按表 查取。下一步要出通用图,直接选用,不再单独设计。但 现在起要在出入口封口圈梁上预埋件。
人防地下室结构设计经验总结 人防地下室结构设计规范

人防地下室结构设计经验总结人防地下室结构设计规范广东建材2009年第11期建筑设计与装饰人防地下室结构设计经验卓毅刚摘(广州市人防建筑设计研究院有限公司)要:本文较系统的结合规范介绍了人防地下事结构设计特点和设计原则,对人防地下室结构设计中的主要构件进行了设计分析,并对设计中应注意的几个问题进行了探讨,供同行参考。
关键词:人防地下室;结构设计;经验;经济性随着经济建设的迅速发展,高层、超高层建筑在全国各大中等城市拔地而起,地下停车库、地下商场等地下建筑物的大量兴建,人防工程建设逐步走向与城市建设相结合的道路。
特别在经济发达的地区和城市,繁华的商业地段成为地下空间开发的热点和焦点,其地下空间的利用离不了以防灾救灾为目的的人防工程。
本文就人防工程中最常见的低抗力等级人防地下室(核5,常5级以下)为例子,进行结构设计经验总结。
1材料人防地下室在有人防荷载参与结构计算过程中,应注意乘以材料强度综合调整系数Yd。
详见GB50038-2005《人民防空地下室设计规范》(以下简称《人防规范》)4.2条。
1.1混凝土人防地下室选用混凝土的强度等级一般为C30C35。
笔者不建议选用C40以上的混凝土,原因有二:(1)C40--一C55混凝土中受拉钢筋的最小配筋率为0.3,而C25~C35混凝土中受拉钢筋的最小配筋率为0.25。
由于人防地下室考虑防辐射及密闭防毒作用,墙体及顶板较厚,所以对于低抗力等级的人防地下室,结构设计计算中会出现较多构造钢筋就能满足受力要求的情况。
故在抗力等级及平时荷载不大的情况下,采用强度等级低于C40的混凝土,可降低工程的含钢量,其经济性是显而易见的。
(2)人防地下室的墙体及顶底板一般较厚,采用的混凝土强度登记越高,其水化热越大,就越容易开裂,增加混凝土养护难度。
1.2钢筋人防地下室可采用除了经过冷加工处理之类延性差的钢筋作为人防荷载参与计算过程中的受力钢筋(认防规渤4.2.2)。
此外,在核爆动荷载作用下,结构构件变形极限已采用允许延性比的控制。
有关地下室人防结构设计中重点问题分析与研究

有关地下室人防结构设计中的重点问题分析与研究摘要:人防地下室是为战时服务,具有预定战时防空功能的特殊地下建筑,与普通地下建筑相比较,其使用对象、条件、要求均有明显差别,从而在设计原则、设计标准和处理方法上,均与普通地下建筑不同。
本文首先概述了地下室人防结构设计的特点和设计原则,然后重点就地下室人防结构设计中的主要构件及孔口防护两方面进行了分析和探讨,希望同行业设计人员参考。
关键词:地下室;人防;结构设计;探讨;中图分类号:s611 文献标识码:a 文章编号:一、地下室人防结构设计的特点分析地下室人防结构结构设计具有以下特点:第一,结构设计的可靠性可以降低,一般建筑结构 pf ≈ 10,而人防结构 pf ≈ 6%。
第二,考虑结构的动力响应。
第三,结构构件可考虑进入塑性工作状态。
第四、材料设计强度可以提高。
实验表明,在快速加载的情况下,这时材料力学性能发生比较明显的变化,主要表现为强度提高,但变形性能包括塑性性能等基本不变,这对结构工作起到有利作用,例如钢材强度可提高 1 .15~1.5 倍,对砼强度可提高 1.5 倍,这是在设计中考虑材料强度综合调整系数来完成的。
第五,重视构造要求,人防设计的许多构造要求是与一般的建筑设计不同的,要求更为严格,故仅仅只考虑受力计算,不考虑构造措施是不合理的。
二、地下室人防结构设计的原则分析根据以上所述的结构设计的特点,可以确定地下室人防结构设计相应的原则:1、平战结合,取控制条件,在民用建筑的人防地下室的结构设计中,一般只涉及 5 级或6 级人防设计,结构的顶板基本上都由战时控制,而侧墙和底板则因地下室的结构型式的不同而由实际情况确定;2、只进行强度的验算,由于在核爆动荷载作用下,结构构件变形极限已用允许延性比的控制,且在确定各种构件允许延性比时,已考虑了对变形的限制,因而在地下室人防结构设计中,不必再单独对结构构件的变形与裂缝开展进行验算;3、只考虑一次核袭击;4、注意各部件的协调,以免因设计控制标准不一致而导致结构的局部先行破坏,失去整个防护建筑的作用;5、地面与地下承重结构体系要协调,不能出现两者强弱相差较大的情况。
浅谈地下室人防结构设计

63科技资讯科技资讯S I N &T NOLOG Y I NFORM TI ON 2008N O.23SC I ENC E &TEC HNO LO GY I N FO RM A TI ON 建筑科学得试样破坏时的荷载值、作用半径和试样厚度,然后通过计算得到相当于标准立方体试块的抗压强度值。
这种方法是利用砂浆的点荷强度与抗压强度的关系提出的。
通过对砂浆片点荷法与立方体抗压法的实验数据的比较分析认为,当砂浆强度大于10.0M pa 时,点荷法的试验数据比立方体抗压法的实验数据明显偏大。
当砂浆强度小于10.0M pa 时,点荷法的试验数据与立方体抗压法的实验数据比较接近。
另外点荷法不适用于砂浆强度小于2.0M pa 的砂浆,跟回弹法相比,工序较为繁琐,但数据相对正确,比较适合房屋的司法鉴定。
2.6射钉法射钉法属原位无损检测,测区选择不受限制,射钉抢、子弹、射钉有配套定型产品,设备较轻便,墙体装修面层仅局部损伤。
检测时,采用射钉射入墙体水平灰缝中,根据射钉的射入量推定砂浆强度,宜与其他检测方法配合使用,砂浆强度不应小于2M pa ,检测前需要标准靶检校。
本方法适用于推定烧结普通砖和多孔砖砌体中的M 5~M 5范围内的砌体砂浆强度。
2.7原位检测法扁顶法、原位单剪法、原位单砖双剪法属原位检测,直接在墙体上测试,测定结果综合反映了材料质量和施工质量,具有较强的直观性、可比性,设备较轻。
但扁顶法存在一定的缺点,扁顶重复使用率较低,砌体强度较高或轴向变形较大时,难以测出抗压强度,检测部位存在局部损伤。
扁顶法适用于检测普通砖砌体的抗压强度,测试古建筑或重要建筑的实际应力,测试具体工程的砌体弹性模量。
槽间砌体每侧的墙体强度不应小于1.5m ,同一墙体上的测点数量不宜多于1个,测点数量不宜太多。
原位单剪法适用于检测各种砌体的抗剪强度,测定选在窗下墙部位,且承受反作用力的墙体应有足够长度。
原位单砖双剪法适用于检测烧结普通砖砌体的抗剪强度,当砂浆强度低于5M pa 时,误差较大。
建筑地下室结构设计要点分析

建筑地下室结构设计要点分析摘要:近年来,我国的经济快速发展,城市空间愈发紧张,较多的高层建筑在城市当中得到了建设。
在此当中,对于地下空间的利用也是现阶段城市建筑业发展的重要方向。
同时,为了能够满足国家在人防工程方面的要求,则需要在设计当中在做好地下室用处考虑的同时做好荷载问题的考虑,保证防空地下室能够充分发挥平战结合作用。
关键词:建筑;地下室;结构设计前言地下室结构设计复杂,为避免地下室建设质量受到影响,应在结构设计工作开展阶段,针对常见的问题,采取针对性解决措施,消除设计安全隐患与质量缺陷,为地下室项目整体建设奠定安全基础。
1地下室设计的具体要求在地下室内部结构设计时,需进行主体结构设计、孔口防护设计、出入口防护设计、顶部结构设计,以保证地下室整体建设可行性与有效性。
在主体结构设计工作开展过程中,应突出对地下室顶板、底板、外侧墙等结构的设计;在孔口防护设计时,应重点关注地下室孔口的防护设计,针对消防系统进行设计优化。
地下室出入口防护设计时,重点进行密闭性防护门、风井、通道、临空墙等设计,设计人员进行消防设备设计时,应考量消防设备的防爆破性能,合理应用消防防护门与防爆散热箱;在地下室结构开展顶部设计工作时,为保证设计工作开展的可行性与有效性,应对相关结构设计方案的数据进行计算,及时发现设计不足,对其进行完善优化。
在设计地下室底板结构时,设计人员应考量地基的反作用力,保证顶板与底板设计的可行性与安全性。
在设计地下室外侧墙结构时,应计算侧向建筑材料的组合作用力,及时对结构设计方案进行完善优化,保证地下室结构设计的可行性与有效性。
2主要构件设计2.1局部地下室在局部地下室结构设计当中,作为设计人员可以在需要计算房间做好人防荷载的施加,而对于不需要计算荷载的房间,则可以通过人防荷载为零的方式进行处理。
相关程序在计算当中,构件将形成人防工况效应。
对于存在人防参与的组合,在实际设计配筋时,程序将自动实现材料强度综合调整系数的执行,调整最小配筋率。
人防工程附建式防空地下室结构设计研究

人防工程附建式防空地下室结构设计研究作者:曹佳莹来源:《建筑工程技术与设计》2014年第05期摘要:目前,防空地下室设计中,相当部分的设计单位对人防规范不熟悉,甚至专业人才配备不齐,使设计出来的防空地下室难以达到要求。
下面着重,就防空地下室结构设计的特点和相关注意事项以及主要设计内容和方法进行相关的研究与探讨,以供大家参考借鉴。
关键词:防空地下室;结构设计引言:防空地下室是国防的重要组成部分,它在提供突发事故的避难场所上发挥着重要的作用,维护了社会的稳定。
防空地下室是和地面修建在一起的,在战争爆发的时候,被应用为人民防空的建筑地下空间,可以躲避战争带来的核武器、生化武器及常规武器的危害,从而在最大程度上保证民众的生命安全。
1 防空地下室结构设计的主要特点1.1结构可采用按弹塑性体系设计静荷载作用下的钢筋混凝土构件,如果构件的变形进入了塑性阶段,此时构件就会在静载的持续作用下失去承载能力而破坏,而防空地下室的人防荷载是动荷载,具有瞬息和短暂作用的性质,并随时间而衰减,因此即使结构构件进入了塑性屈服状态,只要动荷载作用引起的构件最大变形不超过结构破坏的极限变形,在荷载作用消失以后,构件作有阻尼的自由振动,其振动变形将因阻尼的影响而不断衰减,最后恢复到一定的静止平衡状态,此时虽然会出现残余变形,但对防空地下室而言仍能达到承载能力和密闭性的要求。
1.2设计采用的材料强度值要提高人防结构承受的是瞬间作用的动荷载,在快速加载时,由于材料达到破坏的变形来不及展开,加载的数值已经达到最大并开始卸载,反映在材料试验加载的数值上,就表现为材料的强度的提高,对于地基的承载力,人防动荷载作用时,其承载力也是要提高的,能提高几倍到十几倍,甚至更高。
1.3设计目标可靠指标可适当降低一般的工业与民用建筑在使用时的静荷载,是其永久作用的主要荷载,一旦造成破坏,造成的后果非常严重,因此要求在民用工程设计中对结构构件承载能力极限状态的可靠指标要求很高,而对人防工程而言,由于炮航弹的冲击爆炸荷载或核爆炸冲击波荷载作用时间很短,而且是只分别考虑一次瞬时作用,所以可以允许防空地下室防护结构有相对较低的安全度,承载能力极限状态的可靠指标要低很多。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人防荷载在地下室结构设计中的应用摘要:文章首先针对地下室结构人防荷载进行了分析,介绍了综合反射系数法、不考虑压缩波反射作用的简化方法、一维波理论分析法三种计算方法,最后,阐述了等效静荷载的确定,主要包括等效静载、自振频率、动力系数。
关键词:人防地下室土中结构人防荷载压缩波
目前,由于土中压缩波作用下,结构动载的确定方法很复杂。
采用的方法可归纳为两类:一是首先确定作用于结构周边上的荷载,将荷载和结构脱离开来,如同地上结构那样去作动力分析;一是将结构视为岩土中孔洞的加固镶边,将土体和结构作为一个整体统一考虑,然后应用波动理论或动力理论的解析方法或应用有限元分析的数值方法,按无限(或半无限)平面(或空间)问题求解。
土中结构所受到的荷载和许多因素有关:(1)地面空气冲击波压力参数,它引起岩土压缩波向下传播;(2)压缩波在自由场中传播时的参数变化;(3)压缩波遇到结构时产生反射,这个反射压力取决于波与结构的相互作用。
1地下室结构荷载分析
1.1影响土中压缩波荷载的因素
1.1.1结构埋深
(1)随传播距离的增加,土中压缩波峰值压力近似按指数规律衰减,升压时间近似按线性比例增长,其效果是随深度的增加结构的动力作用逐渐降低。
(2)当压缩波遇到结构顶板时,将会产生反射压缩波并朝反向传播,当它达到自由表面时,因地表无阻挡面使土体趋向疏松,形成向下传播的拉伸波。
拉伸波所到之处压力将迅速降低,当拉伸波传到顶板时,顶板压力也将随之减小。
如果顶板埋置较深,拉伸波到达时间较晚,在此之前结构顶板可能已,达到最大变形,因而拉伸波不能起到卸载作用;如果埋深很浅,由于拉伸波产生的卸载作用,将会抵消大部分入射波在顶板上形成的反射作用。
根据以上多种影响因素综合考虑,承受压缩波作用的土中浅埋构件,会有一个顶板不利覆土厚度。
1.1.2顶盖尺寸
顶盖的横向尺寸对荷载也有影响。
顶盖的大小是有限的,它的二侧是上下连续的土壤介质。
压缩波遇到顶盖反射,但通过二侧的土壤时不存在反射。
因此在顶盖的边缘上将产生压力差。
顶盖上方的土壤因受较大的反射压力,有向二侧挤压的趋势,逐次向中间疏松,致使顶盖上的反射压力降低。
顶盖尺寸较小时,反射压力很快疏散,结构受到压缩波荷载的动力作用减弱。
此外,由于顶盖上面的土壤受阻不能与二侧土壤一起向下运动,并由于土壤内部的摩擦力和粘结力,使结构顶盖二侧边缘上的压力又有所增加。
由此可见,顶盖上的反射压力并非均匀分布,就其平均值来说,顶盖的横向尺寸越大,受到的平均反射压力也越大。
1.1.3介质与结构的相互作用
当压缩波作用于结构顶盖上时,结构将发生整体位移和变形,
这些又会反过来影响原来的压缩波荷载。
这种力学现象称为介质与结构之间的动态相互作用。
对平顶结构而言,压缩波作用下顶盖的变形是顺着波的传播方向的,所以结构变形使得压缩波荷载减小。
同理,柔性地基有较大沉降,使结构获得较大的整体位移,所以柔性地基结构的顶盖荷载比刚性地基时小。
1.1.4土含水量
压缩波荷载与土壤含水量关系极大。
当结构处于地下水位较高的地区,更要考虑地下水的影响。
压缩波在饱和土层中传播时很少衰减,同时因为饱和土的压缩性极小,使得结构所受的荷载大幅度增加。
1.1.5土体力学特性
压缩波荷载与土体力学特性密切有关。
如具有抗剪强度的非饱和土壤,当结构埋深较大时,一般使结构的荷载减小,而饱和土则不能。
1.2土中结构荷载的分析方法
1.2.1综合反射系数法(三系数法)
综合反射系数法是一种半经验性实用方法。
它考虑了压缩波在传播过程中的衰减,引入衰减系数α;在确定顶盖上的荷载时,综合考虑波与结构以及自由地表之间的相互作用影响,引入综合反射系数kf;并在最后采用等效静载法,引入动力系数kd或荷载系数kh,给出作用于结构上的等效静载。
1.2.2不考虑压缩波反射作用的简化方法
这种方法的观点是,如果结构的刚度不是很强、不处于饱和土中,则波的反射作用不明显,因而不必考虑压缩波的反射作用;如果结构埋深不大,也不必考虑波的衰减。
于是作用于顶盖上的动载就是地面冲击波超压,即作用于侧墙上的动载峰值取为地面冲击波超压峰值乘侧压系数,即作用于底板上的动载认为与顶盖上完全一致。
1.2.3一维波理论分析
按一维波理论分析土中结构顶盖的荷载时,假定结构上方的土体为互不联系的土柱。
为了简化,在考虑界面的反射时,认为土壤的弹性极限应力非常低,土壤的应力应变曲线在加载时可以看成为一条斜率等于e1的直线。
1.2.4关于土中结构荷载确定方法的几点讨论
(1)综合反射系数方法是一种半经验性的实用方法,是《人民防空地下室设计规范》gb50038—2005和《人民防空工程设计规范》gb50225—2003计算核爆炸时地下结构荷载的方法。
(2)不考虑压缩波反射作用来确定结构荷载的方法最为简单。
由于不考虑反射,可能低估了加于结构的压力荷载峰值。
但另一方面,它不考虑压缩波在传播中的衰减以及升压时间增长,这却高估了压缩波对结构的动力作用。
最后的结果同别的方法得出的相比有时可能相差不多。
(3)按一维波理论考虑介质与结构相互作用的方法,用于定性的阐明土中结构荷载的规律是很有价值的,但用于定量分析还有不
少问题,主要是计算公式中的许多参数很难准确给定。
2等效静荷载的确定
2.1等效静载法
工程实际中为了便于解决问题,常把核爆动荷载变换为等效静荷载,所采用的方法称为等效静载法,是一种近似的动力分析方法。
等效静载法的优点在于计算简单,并能沿用静力计算的公式和图表,因此为广大人防工程设计人员所采用。
但它有一定的局限性,一般对于掘开式浅埋结构是适用的,对于大跨度和复杂的结构,宜采用有限自由度法求其动力解。
按等效静载法计算的误差为以下情况:
2.1.1挠度的计算误差最小,弯矩次之,剪力及轴向力最大;
2.1.2梁、板体系的计算误差较拱结构小;
2.1.3受分布荷载作用的结构计算误差较受集中荷载作用的结
构要小。
采用等效静载法的基本假定和原则为:
2.1.
3.1假定荷载同时作用在整个结构上;
2.1.
3.2假定结构或构件为单自由度体系,并按照某一假定的振型振动,不论在弹性或弹塑性阶段,认为振型的形状不变;
2.1.
3.3结构或构件在动载作用下的最大内力和反力是等效静
载作用下的内力和反力。
等效静载的数值按结构的工作状态可分为弹性阶段和弹塑性阶段两种动力计算方法。
通常确定等效静载时宜采用弹塑性阶段,即等效静载的数值是动载最大值与动力系数或荷载系数的乘积。
2.1.
3.4结构或构件的动力系数与荷载系数认为与同样自振频率的简单弹簧质点体系完全相同。
为了确定动力系数和荷载系数,需要计算结构或构件的自振频率。
首先选择合适的振型,然后用能量法求得自振频率,最后考虑覆土附加质量和附加刚度对自振频率的影响。
2.2自振频率的计算方法
在强迫振动下哪一种主振型占主要成分与动载的分布形式有很大关系。
一般来说与以动载作为静力作用时的挠曲线相接近的主振型起着主导作用,因此宜取将动载视为静力所产生的静挠曲线形状作为基本振型。
2.3动力系数
计算等效静载所涉及的动力系数,需要根据构件的延性比来确定。
结构构件的延性比是构件出现最大变位与弹性极限变位的比值。
3结束词
结构在弹性工作阶段,在荷载作用下构件产生的变形和位移随作用力增大而增大。
力和位移的比值为常数,并且当作用力消失由作用力所产生的变位也随之消失,构件恢复到原来的位置,没有任何残余变形存在;而构件在弹塑性工作阶段所产生的变位,在荷载停止作用和并不完全消除掉时,有残余变形存在,然而正是这种变位使得构件在弹塑性阶段比弹性工作阶段吸收更多的核爆炸的能量,这对结构抵抗核爆动荷载是十分有利的。
参考文献:
[1]杨林德,马险峰.冲击波荷载下大楼地下室的三维动力分析[j].同济大学学报,2003,26(5):488-491.
[2]张晓漪.人防工程结构设计中的等价等效静载法[j].地下空间,2004,12(2):105-109.。