高等数学教材1_免费下载

合集下载

(完整版)高等数学教材word版(免费下载)

(完整版)高等数学教材word版(免费下载)

目录一、函数与极限 (2)1、集合的概念 (2)2、常量与变量 (3)2、函数 (4)3、函数的简单性态 (4)4、反函数 (5)5、复合函数 (6)6、初等函数 (6)7、双曲函数及反双曲函数 (7)8、数列的极限 (8)9、函数的极限 (10)10、函数极限的运算规则 (11)一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。

集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。

比如“身材较高的人”不能构成集合,因为它的元素不是确定的。

我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。

如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。

⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。

记作N⑵、所有正整数组成的集合叫做正整数集。

记作N+或N+。

⑶、全体整数组成的集合叫做整数集。

记作Z。

⑷、全体有理数组成的集合叫做有理数集。

记作Q。

⑸、全体实数组成的集合叫做实数集。

记作R。

集合的表示方法⑵、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。

集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。

⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。

⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。

⑷、空集:我们把不含任何元素的集合叫做空集。

记作,并规定,空集是任何集合的子集。

⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。

高等数学教材1

高等数学教材1

目录一、函数与极限 (2)1、集合的概念 (2)2、常量与变量 (3)2、函数 (4)3、函数的简单性态 (4)4、反函数 (5)5、复合函数 (6)6、初等函数 (6)7、双曲函数及反双曲函数 (7)8、数列的极限 (9)9、函数的极限 (10)10、函数极限的运算规则 (12)一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。

集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。

比如“身材较高的人”不能构成集合,因为它的元素不是确定的。

我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。

如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。

⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。

记作N⑵、所有正整数组成的集合叫做正整数集。

记作N+或N+。

⑶、全体整数组成的集合叫做整数集。

记作Z。

⑷、全体有理数组成的集合叫做有理数集。

记作Q。

⑸、全体实数组成的集合叫做实数集。

记作R。

集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。

集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。

⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。

⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。

⑷、空集:我们把不含任何元素的集合叫做空集。

记作,并规定,空集是任何集合的子集。

⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。

高等数学教材(免费下载)

高等数学教材(免费下载)

目录一、函数与极限 (2)1、集合的概念 (2)2、常量与变量 (3)2、函数 (4)3、函数的简单性态 (4)4、反函数 (5)5、复合函数 (6)6、初等函数 (6)7、双曲函数及反双曲函数 (7)8、数列的极限 (9)9、函数的极限 (10)10、函数极限的运算规则 (12)一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。

集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。

比如“身材较高的人”不能构成集合,因为它的元素不是确定的。

我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。

如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。

⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。

记作N⑵、所有正整数组成的集合叫做正整数集。

记作N+或N+。

⑶、全体整数组成的集合叫做整数集。

记作Z。

⑷、全体有理数组成的集合叫做有理数集。

记作Q。

⑸、全体实数组成的集合叫做实数集。

记作R。

集合的表示方法⑵、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。

集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。

⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。

⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。

⑷、空集:我们把不含任何元素的集合叫做空集。

记作,并规定,空集是任何集合的子集。

⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。

高等数学(同济,永久免费下载,吐血推荐!) ppt课件-文档资料

高等数学(同济,永久免费下载,吐血推荐!) ppt课件-文档资料

(2) 初等函数 由常数及基本初等函数 经过有限次四则运算和复合步
骤所构成 , 并可用一个式子表示的函数 , 称为初等函数 .
否则称为非初等函数 .
例如 ,
y xx, ,
x0 x0
可表为 y
x2 , 故为初等函数.
又如 , 双曲函数与反双曲函数也是初等函数 .
( 自学, P17 – P20 )

目录 上页 下页 返回 结束
定义 3 . 给定两个集合 A, B, 定义下列运算:
并集 A B x 交集 A B x
或 且
A B
B A
差集 A \ B x
且 xB
A\B AB
余集 BAc A \ B (其中B A)
直积 A B (x, y) x A, y B
目录 上页 下页 返回 结束
(3) 奇偶性
x D, 且有 x D,

则称 f (x) 为偶函数;
y

则称 f (x) 为奇函数.
说明: 若 f (x) 在 x = 0 有定义 , 则当 x O x x
f (x) 为奇函数时, 必有 f (0) 0.
例如,
y f (x) ex ex 偶函数
例如 ,
O
x
指数函数 y ex , x (, )
对数函数
互为反函数 ,
它们都单调递增, 其图形关于直线
对称 .
目录 上页 下页 返回 结束
(2) 复合函数
设有函数链
y f (u), u Df

且 Rg D f


称为由①, ②确定的复合函数 , u 称为中间变量.

高等数学第I层次教材

高等数学第I层次教材

高等数学第I层次教材高等数学是大学数学的重要组成部分,它作为一门基础课程,为学生提供了解决实际问题的数学方法和工具。

高等数学第I层次教材是高等数学学习的起点,本文将从教材内容、教学方法和学习建议三个方面来探讨这一教材的特点和重要性。

一、教材内容高等数学第I层次教材通常包括微积分和线性代数两个部分,这些内容是学习高等数学的基础。

微积分部分主要讲述了极限、导数和积分等概念和技巧,对于理解变化率和曲线的性质具有重要作用。

而线性代数部分则介绍了矩阵、向量空间和线性方程组等内容,为学生打下了代数基础。

二、教学方法在高等数学第I层次教学中,教师可以采用多种方法来引导学生进行学习。

首先,应注重理论与实践相结合,通过真实世界中的问题引出数学理论知识,使学生能够将知识应用于实际情境中。

其次,教师应该关注学生的思维习惯和解题方法,帮助他们建立正确的数学思维方式。

此外,合理运用多媒体教学工具和互动性教学形式,可以激发学生的学习兴趣,提高学习效果。

三、学习建议对于学生而言,高等数学第I层次教材的学习是建立后续学习的基础,因此需要充分投入时间和精力。

首先,学生应该摒弃死记硬背的学习方式,而要注重理解和应用。

理解概念和原理的基础上,通过大量的练习来巩固知识点,培养解决问题的能力。

此外,积极参加讨论和课堂互动,与同学和教师共同交流学习心得和问题,也是提高学习效果的重要途径。

总结起来,高等数学第I层次教材对于学生的数学学习具有重要作用。

通过学习这些教材,学生可以建立起数学思维的基础,掌握基本的微积分和线性代数知识。

在教学过程中,教师应注重培养学生的实际应用能力和数学思维方式,提高学习效果。

而学生则应树立正确的学习态度,注重理解和应用,通过练习和讨论来提升自己的数学水平。

只有这样,才能在高等数学学习中奠定坚实的基础,为后续学习打下良好的基础。

高等数学教材1完整版本

高等数学教材1完整版本

目录一、函数与极限 (2)1、集合的概念 (2)2、常量与变量 (3)2、函数 (3)3、函数的简单性态 (4)4、反函数 (4)5、复合函数 (5)6、初等函数 (5)7、双曲函数及反双曲函数 (6)8、数列的极限 (7)9、函数的极限 (8)10、函数极限的运算规则 (9)一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。

集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。

比如“身材较高的人”不能构成集合,因为它的元素不是确定的。

我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。

如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。

⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。

记作N⑵、所有正整数组成的集合叫做正整数集。

记作N+或N+。

⑶、全体整数组成的集合叫做整数集。

记作Z。

⑷、全体有理数组成的集合叫做有理数集。

记作Q。

⑸、全体实数组成的集合叫做实数集。

记作R。

集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。

集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。

⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。

⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。

⑷、空集:我们把不含任何元素的集合叫做空集。

记作,并规定,空集是任何集合的子集。

⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。

自考高等数学一教材pdf

自考高等数学一教材pdf

自考高等数学一教材pdf高等数学一教材PDF高等数学一是一门重要的学科,对于理工科学生来说尤为重要。

而自考学生也需要学习高等数学一,以便更好地应对考试。

在学习的过程中,教材是必不可少的学习资料。

本文将为大家介绍自考高等数学一教材PDF的相关内容。

一、高等数学一教材PDF的意义教材是学习的基础和指导,对于自学者尤为重要。

通过自考高等数学一教材PDF,学生可以在自己的时间和空间内自由学习。

PDF格式可以在电脑、手机、平板等多种设备上进行阅读,方便学生进行学习。

另外,教材的格式一般较为规范,内容丰富,可以很好地帮助学生掌握高等数学一的知识点。

二、如何获取高等数学一教材PDF目前,网络上有很多网站提供高等数学一教材PDF的下载。

学生可以通过搜索引擎,输入关键词"高等数学一教材PDF下载",即可找到相关的下载链接。

在选择下载网站时,需要注意以下几点:1. 网站的可信度:选择知名度较高或者被广泛推荐的网站进行下载,以确保教材的质量和准确性。

2. 版本的选择:根据自考高等数学一的考纲,选择对应的教材版本进行下载。

如果有多个版本可以选择,建议选择最新的版本,以保持内容的及时性。

3. 文件的格式:确认下载的文件是PDF格式的,以便于学生进行阅读和打印。

三、如何有效地使用高等数学一教材PDF获取到高等数学一教材PDF后,学生需要合理利用教材进行学习。

以下是几点建议:1. 制定学习计划:根据自己的学习进度和时间安排,制定一个合理的学习计划。

将教材的内容分成小块,每天安排一定的时间进行学习,确保学习进度的推进。

2. 注重基础知识:高等数学一是数学学科的基础,学好基础知识对于后续学习和应用至关重要。

在学习过程中,要注重基础知识的理解和掌握,打牢基础。

3. 制作笔记:在学习过程中,可以适当地做一些笔记,记录一些关键点和重要知识,以便于日后复习和回顾。

4. 多做习题:高等数学一是一门需要通过练习来掌握的学科,因此,学生需要多做习题。

高等数学教材1完整版本

高等数学教材1完整版本

目录一、函数与极限 (2)1、集合的概念 (2)2、常量与变量 (3)2、函数 (3)3、函数的简单性态 (4)4、反函数 (4)5、复合函数 (5)6、初等函数 (5)7、双曲函数及反双曲函数 (6)8、数列的极限 (7)9、函数的极限 (8)10、函数极限的运算规则 (9)一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。

集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。

比如“身材较高的人”不能构成集合,因为它的元素不是确定的。

我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。

如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。

⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。

记作N⑵、所有正整数组成的集合叫做正整数集。

记作N+或N+。

⑶、全体整数组成的集合叫做整数集。

记作Z。

⑷、全体有理数组成的集合叫做有理数集。

记作Q。

⑸、全体实数组成的集合叫做实数集。

记作R。

集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。

集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。

⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。

⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。

⑷、空集:我们把不含任何元素的集合叫做空集。

记作,并规定,空集是任何集合的子集。

⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档