列车纵向动力学分析
高速列车车体动力学特性分析及优化设计

高速列车车体动力学特性分析及优化设计高速列车是现代高速铁路的核心技术。
随着铁路技术的不断发展和进步,高速列车的速度也越来越快,加快了铁路交通的运行效率,创造出更好的社会经济效益。
但是,随着速度的提高,高速列车所带来的风险和安全问题也越来越突出。
这些问题往往与高速列车车体动力学特性有关。
因此,对高速列车车体动力学特性的分析和优化设计就显得尤为重要。
一、高速列车车体动力学特性分析高速列车车体动力学特性是指列车在运行过程中的各种物理参数与运动状态之间的关系。
它是影响列车运行效果和安全稳定性的重要因素。
在设计高速列车时,必须对其车体动力学特性进行详细的分析和研究。
车体动力学特性主要包括纵向动力学特性和横向动力学特性两个方面。
1. 纵向动力学特性纵向动力学特性主要是指列车在纵向方向上的运动和加速度的特性。
这些特性包括列车的加速度、制动距离、牵引力和制动力等。
为了实现高速列车的高速运行,列车在行驶过程中必须保持稳定的加速度和制动力。
因此,在设计高速列车时,必须对列车的加速度和制动力进行详细的分析和优化设计。
2. 横向动力学特性横向动力学特性主要是指列车在横向方向上的运动和加速度的特性。
这些特性包括列车的侧向位移、滚动角度和摆角等。
在高速列车的设计过程中,必须考虑到列车的侧向稳定性,以避免列车在高速运行中出现偏移和侧翻等安全问题。
二、高速列车车体动力学特性优化设计高速列车在设计过程中,必须考虑到列车的安全性、经济性和运行效率。
为了实现优异的性能,列车的车体动力学特性必须得到优化和改进。
1. 纵向动力学特性优化设计在纵向动力学特性的优化设计中,首先需要考虑列车的加速度和制动力的优化。
为了保证列车的平稳和安全运行,应该设计合理的牵引力和制动力曲线。
其次,应该优化列车的车重分布和载重率,以避免在高速运行中出现重心不稳的问题。
2. 横向动力学特性优化设计在横向动力学特性的优化设计中,需要优化车体的转向架结构和悬挂系统。
铁路旅客列车纵向动力学试验方法与评定指标

铁路旅客列车纵向动力学试验方法与评定指标铁路旅客列车纵向动力学试验方法与评定指标铁路旅客列车纵向动力学是指列车在行驶过程中,由于列车自身重量、牵引力、制动力等因素的影响,导致列车前后车厢之间产生的相对运动。
为了保证列车的安全性和舒适性,需要对列车的纵向动力学进行试验和评定。
试验方法:1. 列车加速试验:在平坦的轨道上,通过改变牵引力的大小,使列车加速到一定速度,记录列车前后车厢之间的相对运动情况。
2. 列车制动试验:在平坦的轨道上,通过改变制动力的大小,使列车减速到一定速度,记录列车前后车厢之间的相对运动情况。
3. 列车过曲线试验:在曲线轨道上,通过改变列车速度和曲线半径,记录列车前后车厢之间的相对运动情况。
4. 列车通过道岔试验:在道岔处,通过改变列车速度和道岔的位置,记录列车前后车厢之间的相对运动情况。
评定指标:1. 列车前后车厢之间的相对位移:列车前后车厢之间的相对位移越小,说明列车的稳定性越好,乘客的舒适性越高。
2. 列车前后车厢之间的相对速度:列车前后车厢之间的相对速度越小,说明列车的稳定性越好,乘客的舒适性越高。
3. 列车前后车厢之间的相对加速度:列车前后车厢之间的相对加速度越小,说明列车的稳定性越好,乘客的舒适性越高。
4. 列车制动距离:列车制动距离越短,说明列车的制动性能越好,乘客的安全性越高。
5. 列车通过曲线和道岔时的侧向加速度:列车通过曲线和道岔时的侧向加速度越小,说明列车的稳定性越好,乘客的舒适性越高。
铁路旅客列车纵向动力学试验和评定是保证列车安全性和舒适性的重要手段。
通过科学的试验方法和评定指标,可以有效地提高列车的运行质量,为乘客提供更加安全、舒适的出行体验。
2万t重载列车纵向动力学及其曲线通过安全性研究

在 国民经济 飞速发 展 的今 天 , 高效 的铁 路பைடு நூலகம் 输是 经 济持续 发 展的 重 要保 障 。为 满 足我 国运 量 日益增 长 的
式 中[ M] 、 [ c ] 、 [ K] 分别为列车系统的质量、 阻 尼 和 刚
度矩阵 。
1 9 9 8对 各纵 向作 用 力 进 行 了计 算 处 理 ; 之 后 根 据 动
力学方 程在 S i mu l i n k仿 真 软件 中对列 车 的纵 向动力 学 模型进 行 了建模 和仿真 , 对列 车在 紧急 制动 工况 下 的车 辆 间纵 向力 进行 了仿真计 算 ; 同时 在多 体动 力学 仿 真软
摘 要 针 对 重 载 列 车 在平 直道 路 上 纵 向力 的作 用 情 况 及 各 个 力 的 特 征 进行 研究 , 提 供 了不 同 工 况 下 列 车 纵 向 车
钩 力 的计 算 方 法 , 计 算 了紧 急 制 动 工 况 下 的 车 辆 车 钩 力 。建 立 了 由 车 钩 连 接 的 3节 货 车 多 自由 度 动 力 学 计 算 模
第3 3卷 第 4期 2 0 1 3年 8 月
铁 道 机 车 车 辆
RAI L W AY L0C0M 0TI VE 8 乙CAR
Vo 1 . 3 3 NO . 4
Au g. 2 013
文章 编号 : 1 0 0 8 —7 8 4 2( 2 0 1 3 ) 0 4 —0 0 3 8 —0 5
快捷与普通货车混编列车纵向动力学仿真分析

快捷与普通货车混编列车纵向动力学仿真分析陈海啸;魏伟【摘要】快捷货车与普通货车在制动特性上存在较为明显差异,在混编列车制动过程中,由于不同车辆制动缸充气时间的差异,会导致车辆间制动效果的不同步性加剧,可能会出现车辆加速度、纵向冲击力过大等问题,影响列车运行平稳性,进而危害货物运输安全.由于在实际运用中,一般不进行快速列车解列,因此,在混合编组时将整列快捷货车分别编组在列车前、中、后部.使用列车空气制动和纵向动力学联合仿真系统对3种编组方式列车在紧急制动工况下的纵向动力学性能进行仿真计算及比较分析.计算结果表明:当快捷货车编组在列车前、后部时,车辆间分别会产生较大的压钩力和拉钩力,当快捷货车编组在列车中部时,列车车辆间纵向冲动较小,编组方式较为合理;列车制动力分布不均是影响列车纵向冲动的重要因素,当制动力较强车辆编组在列车前部和中部时,最大纵向力表现为压钩力,当编组在列车后部时,最大纵向力表现为拉钩力;3种编组方式下,列车最大纵向力出现车位均在快捷货车与普通货车连接位置.【期刊名称】《铁道机车车辆》【年(卷),期】2017(037)004【总页数】6页(P60-65)【关键词】快捷货车;混编列车;制动缸充气特性;紧急制动;纵向动力学【作者】陈海啸;魏伟【作者单位】大连交通大学交通运输工程学院,辽宁大连116028;大连交通大学交通运输工程学院,辽宁大连116028【正文语种】中文【中图分类】U272.11随着我国经济的发展及产业结构的优化升级,煤炭、钢铁等传统大宗货物的运输需求量相对减小,以时效性强、多样化、高附加值等为特征的货物运输需求急剧增长。
尤其是近年来网络经济迅速占据主导地位,对货物运输的便捷性、经济性、时效性、安全性等要求越来越高。
而我国传统货运列车具有载重量大、编组长、运行速度慢的特点,且不能够有效保证日常用品运输的安全性,为适应当今国内货物运输需求的变化,提升铁路运输竞争力,提高铁路运输经济效益,开行160 km/h速度等级快捷货物运输势在必行。
基于制动系统仿真的两万吨列车纵向动力学分析的开题报告

基于制动系统仿真的两万吨列车纵向动力学分析的开题报告一、选题背景随着我国高铁网络的不断发展,列车的速度不断提升,纵向动力学问题随之出现,特别是在制动过程中,车辆之间的距离不断缩短,冲击力会逐渐增大,严重影响乘客的安全和舒适性。
因此,对于高速列车纵向动力学的研究显得尤为重要。
本文将以制动系统仿真为基础,探究两万吨列车在制动过程中纵向动力学的规律,为相关领域的研究提供参考。
二、选题意义1. 分析列车制动过程中的纵向动力学规律,对于提升列车的制动安全性、保障列车正常运行具有重要意义;2. 通过仿真研究,可以在较短时间内得到准确的研究结果,为实际制动系统的优化提供有力支持;3. 本课题的研究成果可以为高铁及其他列车制动系统的设计和改进提供重要参考,具有一定的应用价值。
三、研究内容和方法本文将以两万吨列车的制动系统为研究对象,采用仿真分析的方法,结合列车动力学的理论,分析列车制动过程中的纵向动力学规律。
具体研究内容如下:1. 制动系统的建模与仿真,包括制动盘、制动鞋、气缸等关键部件的模型建立;2. 利用列车动力学理论,建立纵向动力学模型,并分析列车的制动制动距离、制动时间、制动力等;3. 根据仿真结果,分析列车在制动过程中的纵向振动规律,以及车辆间的冲击力和应力分布等。
四、预期成果通过本研究,预计可以得到以下成果:1. 两万吨列车的制动系统仿真模型建立和仿真结果;2. 对列车制动系统纵向动力学的分析结果,包括制动距离、制动时间、制动力等参数,可以为制动系统的优化提供理论支持;3. 纵向振动规律分析结果和冲击力的分布,有助于评估列车制动系统在不同运行状态下的稳定性;4. 研究成果可以为高速列车制动安全的提升和相关领域的研究提供参考。
五、研究计划(1)制备阶段(1-2周)研究相关文献,了解列车制动系统的发展和制动过程的基本原理,确定研究目标和方法。
(2)建模仿真阶段(3-4周)根据制备阶段的研究结果,建立两万吨列车的制动系统仿真模型,进行仿真分析。
219447156_制动工况下旅客列车纵向动力学分析

运营管理2023/06CHINA RAILWAY 制动工况下旅客列车纵向动力学分析陈然(中国铁路西安局集团有限公司 西安机务段,陕西 西安 710000)摘要:以单节和谐型机车加挂19节25G 型旅客列车为计算模型,运用多体系统动力学分析软件Universal Mechanism ,对采用“大劈叉”制动方式时,制动初速、列车管减压量对旅客列车纵向动力学指标的影响进行研究,并对比分析常用与紧急制动工况下的动力学特性差异。
研究结果表明,制动初速越低、列车管减压量越大,车钩力及纵向加速度越大、冲动越大;在100 kPa 和170 kPa 两种列车管减压量下,列车纵向动力学特性差异不大;相对于常用制动,紧急制动时全列车产生很大的压钩力,车辆间的拉钩力作用较小。
在西康铁路青岔—营镇下行区段11.9‰下坡道分相处,19节编组列车断电通过时有明显冲动,且冲动发生在机后15位车。
关键词:旅客列车;制动工况;制动初速;列车管减压量;纵向加速度;冲动中图分类号:U268 文献标识码:A 文章编号:1001-683X (2023)06-0095-10DOI :10.19549/j.issn.1001-683x.2022.12.29.0020 引言列车是由机车和车辆编成的车列,机车与车辆间以及车辆与车辆间通过车钩缓冲装置连接。
在列车运行过程中,由于车钩间隙的存在,线路纵断面变化、机车工况转变都在一定程度上造成列车冲动。
对于旅客列车而言,抑制冲动产生保持列车平稳运行,对确保行车安全和提升旅客乘坐舒适度具有极为重要的意义[1-6]。
针对旅客列车开展纵向动力学分析,探索旅客列车在不同运行工况下的纵向动力学特性,不仅能掌握列车冲动的产生机理,也能为优化旅客列车平稳操纵办法提供一定的理论依据[7-8]。
西安—安康铁路(简称西康铁路)线路条件较复杂,全线坡度大、曲线半径小,列车操纵要求较高。
以西康铁路实际图定开行旅客列车编组情况为依据,选取既有国产某和谐型电力机车和120 km/h 速度等级25G 型旅客列车,利用多体系统动力学分析软件Universal Mechanism (简称UM ),通过构建一维列车纵向动力学计算模型,对常用和紧急制动工况下的旅客列车纵向动力学指标进行对比分析,同时选取该线路青岔—营镇下行区段作为研究区段,考虑其实际线路纵断面作者简介:陈然(1994—),男,助理工程师。
考虑列车纵向作用的高架车站动力分析

列车纵向动力学分析

第一部分开行重载列车,就机车车辆本身来讲,重载列车技术涵盖牵引性能、制动系统性能、列车纵向动力学性能、机车车辆动力学性能、机车车辆及其零部件强度以及合理操纵方法等众多方面。
而重载列车的通信、纵向冲击力和长大下坡道的循环制动问题是开行重载列车的三大关键技术。
而这三大技术其实就是制动系统的三大难题。
下面就以制动系统来分析。
1.重载列车制动系统的关键技术制动系统对列车运行安全具有举足轻重的重要作用,随着铁道技术的不断进步,已出现了多种制动方式,但对货物列车而言,空气制动仍是最基本的制动作用方式。
众所周知,货物列车空气制动作用的制约因素甚多,列车长度就是主要影响因素之一。
我国重载列车的发展始于20世纪80年代,至今列车编组重量已由5 000t级提高到2万t以上,编组辆数从62辆增加到210辆之多,列车最大长度已达2·6 km以上,导致空气制动作用条件严重恶化。
1.1制动空走时间和制动距离影响货物列车紧急制动距离的主要因素除制动初速、线路条件(坡道)、列车制动率(每百吨重量换算闸压瓦力)和闸瓦性能以外,还有影响空走距离的空走时间,后者主要与列车长度或编组辆数有关。
笔者在根据上述因素编制我国《铁路技术管理规程》中的制动限速表时,对货物列车考虑的列车编组条件为5000t级以下,由于重载列车编组辆数的增加,必然导致制动空走时间和距离相应增加,加上长大列车压力梯度对后部车辆制动力的影响,因此该限速表不适用于重载列车。
对于重载列车,其制动力应比普通列车高,以保持和普通列车同等的制动距离。
1.2充气作用和长大下坡道的运行安全列车空气制动后的再充气时间随编组辆数的增加而呈非线性的增加。
重载列车需要有比普通列车长得多的再充气时间,因此,在长大下坡道多次循环制动作用时对司机操纵方法特别是再充气时间的要求更高。
1.3减轻列车纵向动力作用货物列车在纵向非稳态运动过程中产生的纵向动力作用不仅是导致断钩、脱轨等重大事故的主要原因,也是破坏货物完整性和加速机车车辆装置疲劳破坏的重要因素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一部分开行重载列车,就机车车辆本身来讲,重载列车技术涵盖牵引性能、制动系统性能、列车纵向动力学性能、机车车辆动力学性能、机车车辆及其零部件强度以及合理操纵方法等众多方面。
而重载列车的通信、纵向冲击力和长大下坡道的循环制动问题是开行重载列车的三大关键技术。
而这三大技术其实就是制动系统的三大难题。
下面就以制动系统来分析。
1.重载列车制动系统的关键技术制动系统对列车运行安全具有举足轻重的重要作用,随着铁道技术的不断进步,已出现了多种制动方式,但对货物列车而言,空气制动仍是最基本的制动作用方式。
众所周知,货物列车空气制动作用的制约因素甚多,列车长度就是主要影响因素之一。
我国重载列车的发展始于20世纪80年代,至今列车编组重量已由5 000t级提高到2万t以上,编组辆数从62辆增加到210辆之多,列车最大长度已达2·6 km以上,导致空气制动作用条件严重恶化。
1.1制动空走时间和制动距离影响货物列车紧急制动距离的主要因素除制动初速、线路条件(坡道)、列车制动率(每百吨重量换算闸压瓦力)和闸瓦性能以外,还有影响空走距离的空走时间,后者主要与列车长度或编组辆数有关。
笔者在根据上述因素编制我国《铁路技术管理规程》中的制动限速表时,对货物列车考虑的列车编组条件为5000t级以下,由于重载列车编组辆数的增加,必然导致制动空走时间和距离相应增加,加上长大列车压力梯度对后部车辆制动力的影响,因此该限速表不适用于重载列车。
对于重载列车,其制动力应比普通列车高,以保持和普通列车同等的制动距离。
1.2充气作用和长大下坡道的运行安全列车空气制动后的再充气时间随编组辆数的增加而呈非线性的增加。
重载列车需要有比普通列车长得多的再充气时间,因此,在长大下坡道多次循环制动作用时对司机操纵方法特别是再充气时间的要求更高。
1.3减轻列车纵向动力作用货物列车在纵向非稳态运动过程中产生的纵向动力作用不仅是导致断钩、脱轨等重大事故的主要原因,也是破坏货物完整性和加速机车车辆装置疲劳破坏的重要因素。
该纵向动力作用以空气制动时为甚,并基本上与列车的总制动力或辆数成正比。
在同样装置、线路和操纵工况等作用条件下,重载列车的纵向力通常比普通列车成倍增加,因此,如何减轻重载列车的纵向动力作用是需要研究的重要课题。
以上是提高列车重载的主要障碍。
制动空走时间和制动距离、充气作用和长大下坡道的运行安全在制动系统方案的设计中详细分析解决。
下面主要对减轻列车纵向动力作用单独做一详细介绍。
2.重载列车制动的纵向动力作用2.1纵向动力作用的产生对于空气制动机,在施行制动或缓解时所产生的空气波(列车管减压波或增压波)有一个沿列车管由前向后扩散或传播的过程;列车越长其前后部开始制动或缓解的时间差就越大。
这种“沿列车长度的制动或缓解作用的不同时性”是列车制动或缓解时发生强烈纵向冲动的主要原因。
对于重载(扩编)列车,这个问题尤其突出。
由于上述原因,在列车制动过程中的每一瞬间,各个机车车辆具有不同的单位制动力。
如果没有车钩的连接,各个机车车辆都要按各自的减速度运行,但这是不可能的。
如果机车车辆之间全部是刚性连接(车钩与车钩间没有自由间隙,也没有缓冲装置),则上述不同的单位制动力只能导致各个连接件中产生内应力,而不会引起各个机车车辆之间纵向冲动。
但是,为了使列车各机车车辆之间上下左右都具有一定的可折曲性,以适应坡道起伏和通过曲线的需要,车钩与车钩之间都有一定的自由间隙(每对车钩约为40 mm),所以,如果列车施行制动时是在拉伸状态,则制动之初首先要消除这些自由间隙,这就必然会产生强烈的纵向冲动,或者说,发生强烈的纵向动力作用。
下面利用空气制动系统与纵向动力学联合仿真系统测得的一些实验数据,来分析单编万吨列车(机车+100车辆)的冲动机理。
以此更清楚的了解和掌握列车的冲动原理。
进而,掌握其影响因素,以利于优化重载列车的系统参数,更好的解决重载列车的纵向冲动问题。
制动特性对于列车纵向动力学性能的好坏起着决定性的作用,本文制动特性是采用基于气体流动理论的制动仿真系统获得,图1为单编万吨列车,列车管定压600 kPa ,常用制动最大减压量170 kPa时3个典型位置车辆的制动缸压力曲线。
图1 前、中、后车制动缸压力曲线由图1 的制动缸压力曲线可以看出,第1车制动缸压力上升曲线的斜率明显比第5 0 辆车和第 1 0 0辆车的,说明不同位置车辆的制动缸压力上升速度不同,这是因为制动缸充气速度受列车管减压速度的影响,列车管减压速度越快,制动缸升压速度越快。
由于处于不同位置的车辆上的列车管减压速度不同,越靠近机车,减压速度越快,所以,第1车制动缸压力上升速度最快,第1 0 0辆车制动缸升压速度最慢,第5 0辆车位于列车中问位置,其制动缸升压速度与尾车相近。
这便是“沿列车长度的制动或缓解作用的不同时性”。
也是导致列车纵向冲动的主要原因。
具体以制动初速80km/h,平道常用去制动工况,分析列车第30、50、100辆这三个典型车位的车钩力。
图2 单编万吨列车车钩力仿真曲线由图 2可知,在常用全制动过程中,车钩力曲线在初始阶段出现一个小尖峰( 3 0辆车约在1 0 s处,5 0辆车在约 1 2 .5 s ,1 0 0辆车在约 1 7.4 S ) ,车钩力瞬间增大后减小,尖峰过后,车钩力缓慢增大,在约 2 0 s 几乎所有车辆达到最大值,达到最大值后逐渐减小,如此反复震荡,直到车钩力为零。
经过分析发现,车钩力短时尖峰是由于后部车辆不受阻力的走完间隙行程后撞击前部车辆而形成,为了区分,此处称为冲击力。
冲击力过后,前方车辆制动作用较强,车速明显降低,后部车辆涌向前部车辆,造成后部车辆挤压前部车辆,这种挤压过程持续时间较长,对应的车钩力峰值持续时间也较长,此处称这种车钩力称为挤压车钩力。
列车最大压钩力就是由上述最大冲击力或最大挤压力构成。
图3 单编万吨列车冲击力和挤压力曲线图 3为列车中每个车辆的最大冲击力和最大挤压力沿车长分布曲线。
由图 3可知,冲击力随着车位数的增加而不断增大,最大值发生在列车尾部,而最大挤压力发生在列车中部附近;每个车辆的最大车钩力由该车辆承受的最大冲击力或最大挤压力决定,最大车钩力就是两者中较大的一个。
2.2系统参数对列车冲动的影响影响列车纵向冲动的因素很多,而各因素对于列车纵向冲动的影响又不尽相同,因而研究各因素的影响作用是优化列车纵向动力学性能的必要条件。
下面将分析车钩间隙、闸瓦摩擦系数对于制动过程中列车的冲击力和挤压力的影响,继而得出最大车钩力的变化规律,以便寻求改善列车纵向动力学性能的有效方法。
2.2.1车钩间隙的影响图4 不同车钩间隙的最大冲击力曲线图5 不同车钩间隙的最大挤压力曲线车钩间隙的存在,是为了满足列车通过曲线和牵引时逐步启动的需要。
车钩间隙的大小对于列车纵向冲动具有很大的影响,图 4和图 5分别为单编万吨列车制动初速为8 0 km /h,平道常用全制动,车钩间隙由1 0 mm增大到6 0mm 时对冲击力和挤压力的影响曲线。
由图4和图 5可知,随着车钩间隙的增大,冲击力和挤压力都明显增大,但是由图 6可以看到,当车钩间隙由1 0 m m增大到 6 0 m m时,最大冲击力由3 40 kN增大到 1 1 2 3 kN增加了2 3 0 %,最大挤压力由5 3 5 kN增大到 7 4 5 kN ,增加了3 9 %,由此可知,车钩间隙对于冲击力的影响远大于对挤压力的影响;由图 4和图 5中前半部曲线密度大于后半部曲线可知,车钩间隙对于后部车辆冲击力和挤压力的影响明显大于对前部车辆的影响。
在小车钩间隙范围内( 小于3 0 m m ),车钩间隙增大,冲击力和挤压力明显增大;当车钩间隙增大到3 0 m m以后,车钩间隙影响略有减弱。
图6 不同车钩间隙最大冲击力与最大挤压力比较图综合图4、图 5和图 6可知,当车钩间隙小于 3 0 m m时,最大车钩力为最大挤压力,发生在中部车位。
随着车钩间隙的增大,最大车钩力发生车位不断后移。
当车钩间隙大于或等于 3 0 m m 时,最大车钩力是最大冲击力,发生在列车尾部。
由此可知,如果最大车钩力发生在列车尾部,即最大车钩力由冲击产生,则通过减小车钩间隙可明显减小最大车钩力。
2.2.2闸瓦摩擦系数的影响在闸瓦压强、列车运行速度和制动初速度相同的条件下,不同类型闸瓦的摩擦系数有很大的差别,而制动力的大小取决于闸瓦摩擦系数,因此不同类型闸瓦会引起制动力大小不同,继而影响列车纵向冲动的大小。
图 7和图 8是单编万吨列,平道常用全制动,制动初速度为 8 0 k m / h,不同闸瓦类型的列车冲击力和挤压力曲线。
图7 不同闸瓦摩擦系数的最大冲击力曲线图8 不同闸瓦摩擦系数的最大挤压力曲线由图 7和图 8可以看出,闸瓦摩擦系数大小,对于冲击力大小的影响不大,对于挤压力大小有着很大的影响。
闸瓦摩擦系数越大,列车纵向挤压力越大,这是因为摩擦系数越大,制动力越大,停车越快,导致挤压力越大。
在小摩擦系数范围内( 小于或等于中磷闸瓦摩擦系数 ),最大车钩力为最大冲击力,此时,闸瓦摩擦系数对于最大车钩力的影响不大;当摩擦系数较大时( 大于或等于高磷闸瓦摩擦系数),最大车钩力为最大挤压力,闸瓦摩擦系数对于最大车钩力有很大的影响。
同时闸瓦摩擦系数对最大车钩力发生车位有影响,摩擦系数越大,最大车钩力的发生车位越向前移。
由摩擦系数对冲击和挤压车钩力的影响可知,如果最大车钩力由挤压力产生,则在满足制动距离的前提下可以适当减小摩擦系数,则最大车 钩力会明显减小。
2.2.3列车制动时的纵向冲击力计算公式及其他影响因素根据前苏联勃·勒·卡洛瓦茨基和沃·莫·卡赞林诺夫的理论研究,列车制动时的纵向冲击力(最大静压缩力和最大动压缩力的总和)R 可按下列公式计算:ZC ZB K t w n l K A R •••••=2max )(ϕ式中 A —反映试行制动时的车钩状态和制动缸充气特性系数,制动时车钩在压 缩状态下A ≈0.42,车钩在拉伸状态、制动缸变速充气时A 为0.75(无变速充气时为1.5);K — 一辆车的闸瓦压力总和;K ϕ— 闸瓦摩擦系数;l — 一辆车的长度;n — 列车编组量数;ZB w — l 列车制动波速;ZC t — 一辆车制动缸充气时间。
2.3结论(1) 列车制动过程中的纵向冲动是由车辆间的冲击作用和挤压作用共同形成的,列车中最大车钩力是最大挤压力或最大冲击力;(2)列车制动时的纵向冲击力或总压缩力R 均与制动波速ZB w 和制动缸充气时间ZC t 成反比。
所以,提高制动波速和延长制动缸充气时间都可以减轻列车制动时的纵向冲动。
但是,提高制动波速还可以缩短制动距离,而延长制动缸充气时间却会导致制动距离延长。