实验二-农业生态系统的能流分析
农业生态系统的能量流动

(一)食物链(food chain) 1.定义:生态系统中生物组分通过吃与被吃的关 系彼此连接起来的一个序列,组成一个整体犹 如一条链索一样,这种链索关系被称为食物链。 2.食物链理论 1942年美国生态学家林德曼(Lindeman)提出的, 基本涵义是:生态系统中绿色植物转化固定的 食物通过一系列取食与被取食关系,使生物成 员紧密联系起来的营养序列称为食物链。
第三章 农业生态系统的能量流动
内容提要
• 能量的基本形态与来源; • 食物链与食物网 • 农业生态系统能量流动与转化途径 • 农业生态系统能量转化的的基本原理 • 农业生态系统的能量生产 • 农业生态系统的辅助能 • 农业生产系统的能流与能值分析。
第一节农业生态系统能量流动的途径
一、农业生态系统能量的来源
人 工 辅 助 能
太阳能(主要能量来源占90%以上) 包括地热能、潮汐能、 风能、水能等
自然辅助能 对生态系统中食物链能
量转化与传递起辅助作 用的能量
人类通过各种生产活动投入到农 业生态系统中的人力、畜力、燃 料、电力、机械、化肥、农药等 强化和辅助生态系统中生物对太 阳能的固定、转化与流动的能量
二、食物用转化固定在植物体的化学能;由食物链转化 到动物体和微生物提中的化学能;动植物体被埋藏在地 壳经长期的地质作用所形成的化学能。 (3)热能
是一种广泛见于不同能量作功过程中的能量转化形式。
(二)生态系统的能量来源
农业 生态 系统 能量 来源
生态 系统 能量 来源
第二节能量流动与转化的基本定律
一、热力学第一定律——能量守恒定律 二、热力学第二定律——能量衰变定律 三、熵定律 (一)熵含义(二)熵变化(三)熵定律 四、普里(利)高律的耗散结构理论 (一)耗散结构(二)耗散结构理论 五、生态金字塔 (一)生态金字塔概念(二)生态金字塔类(三)生态 金字塔理论意义 六、林德曼效率定律与生态效率定律 (一)林德曼效率定律及意义(二)生态效率定律
农业生态系统中的能量流动

农业生态系统中的能量流动能量的流动是生态系统存在与发展的动力,一切的生命活动都依赖生物与环境之间的能量流通和转换。
由于生物与生物、生物与环境之间不断进行进行物质循环和能量转换的过程,不但使生物得以维持生存、繁衍与发展.而且也使得生态系统保持平衡与稳定。
在生态系统中.能量流动主要是从初级生产者向次级生产者流动。
能量的流动渠道主要通过’‘食物链”与“食物网”来实现。
在农业生态系统中,能址流动的主要渠道通常有三种形式:在生态系统中.能量流动主要是从初级生产者向次级生产者流动。
能量的流动渠道主要通过’‘食物链”与“食物网”来实现。
在农业生态系统中,能址流动的主要渠道通常有三种形式:( 1 )捕食食物链从植物到草食动物再到肉食动物所联系的链条,如稻田中的“青草一昆虫一青蛙一蛇一人”。
( 2 )寄生食物链由大有机体到小有机体进行能址的流动,如’‘人体寄生虫”、“哺乳动物一跳蚤”。
( 3 )腐生食物链由利川死休的微生物组成,并通过腐烂分解,将有机体还原成无机物的食物链。
在生态系统中食物链不是唯一的,由于某一消费者不只吃一种食物(生物),每种食物(或生物)又被许多生物所食,因此形成相互交错、彼此联系的网状结构,故称食物网。
由于能量从一个营养级(水稻、杂草)到另一个营养级(如昆虫、老以)的流动过程中,有一部分被固定下来形成有机物的化学潜能.而另一部分通过多种途径被消耗,直到最后耗尽为止。
平均每个营养级的能量转化效率为10 % ,这就是著名的“十分之一定律”。
因此,营养级由低级到高级,依据个体数目、生物金与能址的分布,形成了底宽而顶尖的金字塔形,称之为生态金字塔或能量金字塔.即顺着营养级位序列(食物链)向上,能量急剧递减。
在每个营养级中将所有的生物量或活组织连起来,随若营养级的增加,其生物虽随着减少,形成生物量金字塔,这种金字塔在陆地生态系统和浅水生态系统中最为明显。
农业生态系统的能值分析与优化研究

农业生态系统的能值分析与优化研究摘要:农业生态系统是人们利用生态系统理念和方法进行设计和管理的生态系统,其目的是实现农业生产的可持续性和生态保护的平衡。
能值分析是一种新型的系统分析方法,可以用于农业生态系统的能量和物质流的定量分析,从而实现农业生态系统的优化管理。
本文将首先介绍农业生态系统的概念和特点,然后阐述能值分析的理论和方法,最后探讨农业生态系统的能值分析和优化管理的实现。
一、农业生态系统农业生态系统是指在一定的时间和空间范围内,由农业生物、非生物和人类活动相互作用而形成的生态系统。
农业生态系统是人类利用农业土地、农作物和动物等生物资源和太阳能、水能等非生物资源进行生产的生态系统。
农业生态系统具有以下特点:1.人工干预:农业生态系统是人类利用农业土地、农作物和动物等生物资源和太阳能、水能等非生物资源进行生产的生态系统。
在农业生态系统中,人类需要进行土地整理、种植、养殖等生产活动,对生态系统进行人工干预。
2.能量流动:在农业生态系统中,能量的流动是生产的重要环节。
太阳能是农业生态系统的主要能量来源,通过光合作用转化为生物能,驱动农业生产的过程。
3.物质循环:在农业生态系统中,物质的循环也是生产的重要环节。
通过土壤、水和气体的循环,各种元素和物质被反复利用,实现了资源的最大化利用。
4.物种多样性:农业生态系统中的物种多样性包括农作物、动物、微生物等。
保持物种多样性可以促进生态系统的平衡和稳定,提高农产品的产量和质量。
二、能值分析能值分析是一种新型的系统分析方法,可以用于定量分析一个系统中各种能量和物质的转化和流动情况。
能值分析的基本概念包括能值、能值转换率和能值密度等。
以下为能值分析的基本理论和方法:1.能值转换率:能值转换率是指一个系统中不同类型能量之间的转换率,通常用能量单位来表示。
例如,太阳能能值转换率是指光能转换为生物能的比率,可以用每单位光能的生物能来表示。
2.能值密度:能值密度是指一个系统中单位面积或单位体积内的能量流动量,通常用能量单位来表示。
农业生态系统能流分析实例

农业生态系统能流分析实例
摘要
农业生态系统的能量流分析是评估农业生态系统的重要方法。
本文将描述一个实际的农业生态系统能量流分析实例,总结不同类型组件的能量流情况并分析了该生态系统的结构特点。
实例案例发现,全部组件的能量不平衡,能量输入量高于输出量,人类活动是农业生态系统的能量源,而植物微量元素的利用率和土壤有机碳的储存量有着负相关性,有利于城市农业可持续发展。
引言
农业生态系统是生态系统中丰富多样的组织,它以人类社会和养殖动物之间的关系为重点,包括植物、气候、土壤、海洋、水资源和其他生物等。
农业生态系统的能量流分析是评估农业生态系统的重要方法。
它可以反映农田的综合质量,帮助我们了解农业生态系统中由复合组件提供的物质和能量流向,从而有效分析农业生态系统完整性的变化情况。
实例研究
本文为了更好地评估农业生态系统,以山东省市场型土地改造示范区为例,将介绍农业生态系统能量流分析的一个实例研究。
该实例研究采用案例法,包括现场调查、能量流分析等。
农业生态系统的能量流动

我国不同地区能量产投比
400 200 0 低产田
投入无机能
中产田
产出能量 能量产投比
投入能量
投能结构与产投比关系示意
目前我国多 数地区有机能与 无机能比例为 1.35至8.83之间。
投能结构(有 机能/无机能)与 产投比(能量转 化效率)之间呈 二次函数关系。
Y=0.5324+0.5767X-0.059X
• 我国生物质能资源原料多样量大,包括能源植物、 作物秸秆、人畜粪便等。 • 农作物秸秆是数量最大的农业废弃物,每公顷耕地 年产量可达9-10吨。 • 地球上光合作用产生的生物质约1500亿吨/年,可作 为人类食物或动物饲料占其中1/4,每年产生的废物 (包括收获和加工过程中的)约135亿吨。
自然辅助能
辅助能
人工辅助能
生物辅助能 工业辅助能
能量分类的作用和意义
• 生物辅助能一般是农业系统内部能量的再利用,表 示归还率,是有限的;封闭形式的投入。 • 工业辅助能表示对该系统能量的补充。开放形式的 投入。(资源量、形式、成本、环境影响不同)
–生物辅助能/工业辅助能,称人工辅助能的组成 (投能结 构) –产出生物能/投入人工辅助能,称人工辅助能的能效
2007年江苏省化肥施用量与施用强度区域差异
常 州 市 无 锡 市 苏 州 市 镇 江 市 南 京 市 扬 州 市 泰 州 市 南 通 连 市 云 港 市 宿 迁 市 淮 安 市 盐 城 市 徐 州 市
化肥施用强度 (kg/ha)
化肥施用量
化肥施用强度
化肥施用量 (万t)
1400 1200 1000 800
再生能源的开发利用
• • • • • • • • 自然界存无限的能源资源。 太阳能 水能 风能 地热能 海洋能 核能 氢能
实验二农业生态系统的能流分析

实验二农业生态系统的能流分析实验设备和材料:1.农田:包括水稻田和玉米田;2.量热仪:用于测量生物体的热量;3.光合作用仪:用于测量植物的光合作用速率;4.称量器:用于称量生物体的质量;5.网箱:用于捕捉生物体。
实验步骤:1.在水稻田和玉米田中选择相同大小的样方,将其分成若干个小格,并标记编号。
2.在每个格子中,使用网箱捕捉对应的生物体,如昆虫、藻类、小鱼等,并记录其数量。
3.将捕获的生物体进行称量,并记录质量。
4.使用量热仪将捕获的生物体进行热量测量,并记录结果。
5.使用光合作用仪测量样方中植物的光合作用速率,并记录结果。
6.计算每个格子中的生物体的平均质量和热量。
7.根据捕获的生物体数量、质量和热量,计算每个格子中的总生物体质量和总热量。
8.根据光合作用速率和每个格子中的总生物体质量,计算每个格子中的总生物体所吸收的总太阳能量。
9.根据每个格子中的总生物体质量和总生物体热量,计算每个格子中的总生物体所释放的总代谢能量。
10.将每个格子中的总太阳能量和总代谢能量进行比较,计算能量转化效率。
实验结果:通过以上实验步骤,可以得到每个格子中生物体的平均质量和热量,以及总生物体的质量、热量和太阳能量。
通过计算能量转化效率,可以比较不同格子之间的能量利用效率。
讨论和结论:能流分析实验结果显示,不同格子之间能量转化效率存在差异。
高能量转化效率的格子表示生态系统中能量转化和利用效率较高,而低能量转化效率的格子表示有能量损失和浪费。
这些差异可能受到多种因素的影响,如土壤质量、气候条件、生物种类和相互关系等。
通过能流分析,可以帮助我们了解农业生态系统中能量的流动和转化情况。
在农业生态系统管理和优化中,可以根据能流分析的结果,采取相应的措施来提高能量转化效率,减少能量损失和浪费,并优化农业生态系统的稳定性和生产力。
调查当地农田生态系统中的能量流动情况

6.人们通过什么方式来提高光能利用效率?
光能利用率一般是指单位土地面积上,农作物通过光合作用 所产生的有机物中所含有的能量,与这块土地所接受的太阳 能的比。 合理密植。
7.怎样才能使该生态系统中的能量得到更充分的利用?
通过稻田养鱼等措施,实现立体化生态农业;通过建造 沼气池,实现能量的多级利用。
这些玉米的含碳量折合成葡萄糖是6687.5 kg, 计算公式是(12+18)/12×2675, 这些葡萄糖储存的能量是1.07×108 kJ 计算公式是EG=MG×1.6×104;
生态农业是利用生态学的原理、系统工程的方法,遵 循自然规律建立起来的农业生产体系。
它的主要特点是结构协调,合理种养,全面发展,应 用现在技术,资源高效利用,内部良性循环,稳定持续发 展。如:桑基鱼塘生态系统、农作物秸秆利用生态系统等。
参考调查点:稻田生态系统
组成成分: (1) 非生物的物质和能量; (2) 生产者: 水稻、杂草、浮游植物等; (3)消费者:田螺、泥鳅、黄鳝、鱼、青蛙、浮游动物、 昆虫、鸟类等; (4)分解者:多种微生物。
调查当地农田生态系统中的能 量流动情况
பைடு நூலகம்
【调查】 调查当地农田生态系统中的能量流动情况
农田生态系统是人工建立的生态系统,其主要特点是人 的作用非常关键,人们种植的各种农作物是这一生态系统的 主要成员。
农田中的动植物种类较少,群落的结构单一。人们必须 不断地从事播种、施肥、灌溉、除草和治虫等活动,才能够 使农田生态系统朝着对人有益的方向发展。
这些玉米呼吸作用消耗的能量是3.272×107 kJ 计算公式为ΔE呼=ΔMG×1.6×104;
这些玉米在整个生长季节所固定的太阳能总量是1.3972×108 kJ
实验二农业生态系统的能流分析

实验二农业生态系统的能流分析一、目的意义1.学会农业生态系统投入能结构和产出能效率分析和计算,分析各种能量流之间的关系;2.从能量角度评价系统的基本情况,为改善系统投入能结构和建立新的农业生态系统提供依据;3.了解常用的能流分析方法:统计分析法、输入—输出法和过程分析法等。
二、实验性质和学时1. 实验性质:必修2. 实验学时:3学时三、方法和步骤1.确定研究对象和系统的边界根据研究目的不同,农业生态系统的研究对象可以是单独的一个农田系统、林木系统、畜禽系统或鱼塘系统。
也可以是一个由作物、畜禽、林木、桑园、茶园、果园、鱼塘等亚系统构成的完整的农业生态系统。
系统的边界可以是国家、省、地、县、乡、村的自然疆界(道路、田埂、沟渠、河流、分水岭等),或者是占有的田地、山场和边界,进入边界的能量和物质统称为输入,移出边界的物质和能量称为输出。
2.确定系统的组成成分及相互关系(1)明确系统的生产者、消费者和分解者农业生态系统的生产者包括各种大田作物、蔬菜、桑树、果树、竹木、水草、野草等。
消费者包括牛、羊、猪、兔、鸡、鸭、鹅、蚕、蜂、鱼类等,分解者主要是存在于土壤、有机肥、塘泥、河泥中的微小生物,以及可用于食物生产的食用菌类等。
在划分组分(即亚系统)时,根据研究工作的要求,可粗可细。
例如,生产者组分可以把性质相近的并在一起,如农作物、林果木和草类分别划分为三个组分。
(2)在组分确立后,分别确定各亚系统的输入和输出项目对于生产者亚系统的输入,包括太阳辐射能和燃油、电力、农业机械、化肥、农药、除草剂等各种工业辅助能以及人畜力、秸秆、有机肥料等可再生生物能;输出则包括主要目的产品—粮食和收获的秸杆等。
对于畜牧业亚系统来说,输入部分有饲料、饲草、畜牧机械、管理畜牧的人工、畜舍和棚圈等建筑物形式的能量输入部分;其输出部分则有肉、奶、蛋、皮、毛等畜产品以及畜力和粪便等。
在各亚系统中,有对系统外部的输出,也有其它系统的输出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二农业生态系统的能流分析
一、目的意义
1.学会农业生态系统投入能结构和产出能效率分析和计算,分析各种能量流之间的关系;
2.从能量角度评价系统的基本情况,为改善系统投入能结构和建立新的农业生态系统提供依据;
3.了解常用的能流分析方法:统计分析法、输入—输出法和过程分析法等。
二、实验性质和学时
1. 实验性质:必修
2. 实验学时:3学时
三、方法和步骤
1.确定研究对象和系统的边界
根据研究目的不同,农业生态系统的研究对象可以是单独的一个农田系统、林木系统、畜禽系统或鱼塘系统。
也可以是一个由作物、畜禽、林木、桑园、茶园、果园、鱼塘等亚系统构成的完整的农业生态系统。
系统的边界可以是国家、省、地、县、乡、村的自然疆界(道路、田埂、沟渠、河流、分水岭等),或者是占有的田地、山场和边界,进入边界的能量和物质统称为输入,移出边界的物质和能量称为输出。
2.确定系统的组成成分及相互关系
(1)明确系统的生产者、消费者和分解者
农业生态系统的生产者包括各种大田作物、蔬菜、桑树、果树、竹木、水草、野草等。
消费者包括牛、羊、猪、兔、鸡、鸭、鹅、蚕、蜂、鱼类等,分解者主要是存在于土壤、有机肥、塘泥、河泥中的微小生物,以及可用于食物生产的食用菌类等。
在划分组分(即亚系统)时,根据研究工作的要求,可粗可细。
例如,生产者组分可以把性质相近的并在一起,如农作物、林果木和草类分别划分为三个组分。
(2)在组分确立后,分别确定各亚系统的输入和输出项目
对于生产者亚系统的输入,包括太阳辐射能和燃油、电力、农业机械、化肥、农药、除草剂等各种工业辅助能以及人畜力、秸秆、有机肥料等可再生生物能;输出则包括主要目的产品—粮食和收获的秸杆等。
对于畜牧业亚系统来说,输入部分有饲料、饲草、畜牧机械、管理畜牧的人工、畜舍和棚圈等建筑物形式的能量输入部分;其输出部分则有肉、奶、蛋、皮、毛等畜产品以及畜力和粪便等。
在各亚系统中,有对系统外部的输出,也有其它系统的输出。
例如,作物亚系统的粮食和秸秆输出,通常可作为畜牧亚系统的饲料输入。
畜牧业系统的畜力和粪便输出,可做为作物亚系统的动力和肥料输入。
3.搜集资料,确定各种实物的流量或输入、输出量
(1)详细测定和记录(试验);(2)统计资料;(3)实地调查,抽样调查;(4)间接估算(如畜禽饲料、粪便、人粪尿、秸秆等的数量)
4.将各种不同质的实物流量转换为能流量
系统的实物流量计量单位各不相同,只有将它们转换为统一的计量单位—能量之后,才能进行比较分析。
各种实物的折能系数除实测外,在实践中多数是依据不同学者的研究结果,制定折能系数表,以便于根据不同类型的能量折算标准进行换算。
5.绘出能流图*
将农业生态系统各亚系统输入、输出及其相互流动的能量确定后,即可绘制能流图。
目前应用最普遍的是著名的生态家Odum(1967、1972)的能流符号图(课本)。
用这些符号按能量流动过程编绘出设计区的能流图,就可以比较直观地看出设计区能量流动合理与否。
6.对所得的结果进行分析
通过所计算的结果和综合能流图,进一步对农业生态系统进行综合分析。
分析一般包括以下几个方面:
(1) 确定该系统总能量输入水平及各种输入能量占总输入能量的比例
总能量输入是指从所研究的系统或亚系统外输入到该系统或亚系统中的各能量流的总和,通常为太阳能以外的各种辅助能的总量。
各种能量输入占总能量
输入的比例,说明一个农业生态系统的能量输入结构,由此可进一步分析各种能量投入与产出关系。
(2)确定总能量输出及各种能量输出所占的比例
总能量输出,是指输出到系统或亚系统以外的各种产物所含的能量总和。
总能量输出的大小表示系统的生产力水平和开放程度。
各种能量输出占总能量输出的比例,主要是指各亚系统输出能量占总输出能量的比例以及各种主要产品、副产品所含能量占总输出能量的比例。
(3)确定各种形式的能量输出与输入比
通常用各种形式的能量输出与输入比说明一个农业生态系统的能量转换效率和特征。
作物亚系统常用的几个输出与输入比值是:
A、太阳能转化率= 总生物能量/太阳辐射能输入;
B、系统的能量转化效率= 输出的总生物能量/输入总能量,若此比值小于1,说明该系统所消耗的能量超过了所产生的生物能量;
C、工业能量的利用效率= 总产出能/ 输入总工业能,此比值越大,说明工业能源的利用效果越好;
D、系统的劳动生产率= 总产出能量/输入总劳力;
E、饲料的转化效率= 输出的畜产品总能量/输入饲料总能量
(4)与其它系统的能量分析结果进行比较
将某一个农业生态系统的能量分析结果与其他同类系统的分析结果进行比较,有利于说明所研究系统特征。
在进行比较时,要注意两者之间的可比性。
四、实习资料
黄土高原某地张家山村年降水量660mm,除川道外的农田无灌溉条件,长期以来种植小麦、玉米为主,生产结构单一,加之山区缺乏燃料砍树毁草现象较为严重,生产水平低而不稳。
2001某科技项目选择农户20个,进行生态农业模式示范。
示范涉及土地面积200亩,奶牛20头,猪94头,人口89人。
生态农业示范包含的具体要素是:户均8m3的沼气池一个、一头奶牛、4—5头猪、一个温室大棚(0.8亩/个,20个共占地20亩),1.0亩青贮玉米,1.0亩辣椒、1.5亩苹果园,2.5亩小麦田,1亩草地(旱地)、2亩林地。
2001年起在大棚栽植矮化油桃,果园种植三叶草,旱地种草栽树。
由于引入沼气系统,强化了农牧结合,
加强了物质循环,不断培肥地力,提高了自然资源的转化效率,农产品品质持续提高,取得了较好的经济、生态和社会效益。
一、张家山农业生产条件
二、张家山农业生产水平
第一性生产投入能表
第一性生产产出能表。