半导体PN结_图文

合集下载

半导体pn结异质结和异质结构ppt课件

半导体pn结异质结和异质结构ppt课件

“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
PN结的正向导电性
在PN结上外加一电压 ,如果P 型一边接正极 ,N型一边接负极,电流便 从P型一边流向N型一边,空穴和电子都向 界面运动,使空间电荷区变窄,甚至消失,
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
若干半导体杂质掺杂的一些考虑
杂质半导体ni,电子浓度n,空穴浓度p 之间的关系
n = ni e^(Ef-Ei)/kT, P = ni e^(Ei-Ef)/kT, ni^2 = n p Ei本征费米能级 Ef杂质费米能, 在n型半导体中,n>p,因此, Ef>Ei 在p型半导体中, p>n,因此, Ei>Ef
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
几个重要参数和概念 • 接触电位差:
由于空间电荷区存在电场,方向由N到P,因 此N区电位比P区高,用V表示,称作接触电位 差,它与半导体的类型(禁带宽度),杂质掺杂 浓度,环境温度等密切相关,一般为0.几V到 1.几V • 势垒高度:

半导体物理_第六章_pn结

半导体物理_第六章_pn结

Jn dEF dx n n
qDp dEF J p p0 kT dx
电流密度与费米能级的关系 对于平衡的pn结,Jn, Jp均为零,因此,
Jp dEF dx p p
EF=常数
qDp dEF J p p0 kT dx
当电流密度一定时,载流子浓度大的地方, EF随 位置变化小,而载流子浓度小的地方, EF随位置 变化较大。
非平衡载流子的电注入:正向偏压使非平衡载流子进入半导 体的过程。
注入到p区的电子断与空穴复合,电子流不断转化 为空穴流,直到全部复合为止。
扩散电流〉漂移电流
根据电流连续性原理,通过pp’(或nn’)任何一个界 面的总电流是相等的。只是电子电流和空穴电流 的比例不同。 总电流=扩散电流+漂移电流
反向偏移下,非平衡状态 外加反向电场与内建势场方向一致。
1. pp’处注入的非平衡少数载流子浓度:
EFn Ei n p ni exp( ) k0T EFn EFP n p p p ni exp( ) k0T
2
p p ni exp(
Ei EFp k0T
)
在pp’边界处, x=-xp, qV=Efn-Efp,
qV n p ( x p ) p p ( x p ) ni exp( ) k0T
电子电势能-q V(x)由n到p不断升高 P区能带整体相对n区上移。n区能带整体相对p区下移。 直到具有统一费米能级 pn结费米能级处处相等标志pn结达到动态平衡,无扩散、 漂移电流流过。
动态平衡时
本征费米能级Ei的变化与-qV(x)一致
k0T n Dn q
k0T n Dn q
同理,空穴电流密度为:
qV x p ( ) 0 2. 加反向偏压下,如果qV>>k0T, e k0T

半导体物理第六章PN结

半导体物理第六章PN结

二、PN结的反向电流
加反向偏压时,外加电场与内 建电场方向相同,增强了势垒区的 电场强度,势垒区加宽、增高,漂 移运动超过了扩散运动。n区中的空 穴(p区中的电子)一旦到达势垒区 边界处,就立即被电场扫向p区(n 区),构成了pn结的反向电流,方 向由n区到p区。
一、PN结的正向电流
多子电流与少子电流的转换
注入的非平衡少子在扩散过程中与多子相遇
中性区 势垒区 扩散区 扩散区 中性区 + p n
而不断复合,经过一个扩散长度后,复合基 本完毕,载流子浓度接近平衡数值。非平衡 少子边扩散边复合的区域称为扩散区,载流 子浓度接近平衡值的区域称为中性区 半导体中的电流主要由多子运载,然而pn结 正向电流是由电注入的非平衡少子引起的。 �非平衡少子被多子复合并非电流的中断, 因为与少子复合的多子是从n区的右边过来的 电子,所以它们的复合正好实现了少子电流 到多子电流的转换,如图c所示。
qV ) k0T
� pn结的正向电流随正向偏压呈指数规律增长。
一、PN结的正向电流
正偏压作用下的能带图
1、由于正偏压的作用,势垒高度下降, pn结不再处于平衡状态,在势垒区和扩散区,电子 准费米能级和空穴准费米能级不一致,而在中性区二者则趋于重合。 �说明通过势垒边界分别注入到两侧的非平衡载流子扩散一段距离后才复合完毕。而中性区 载流子的分布接近热平衡分布,故在中性区,两个准费米能级趋于汇合成统一的费米能级。
qα j x d 2V ( x ) ρ ( x) = − = − dx 2 ε sε 0 ε sε 0
xD 对上式积分,并利用边界条件 ε ⎛ ± ⎜ ⎝ 2
⎞ ⎟ = 0 , 得: ⎠
ε ( x) =
qα j
2ε sε 0x − Nhomakorabea2

半导体物理 第二章 PN结 图文

半导体物理 第二章 PN结 图文

国家级精品课程——半导体器件物理与实验
第二章 PN结
引言
4-4 外延工艺:
外延是一种薄膜生长工艺,外延生长是在单晶衬底上沿晶体 原来晶向向外延伸生长一层薄膜单晶层。
外延工艺可以在一种单晶材料上生长另一种单晶材料薄膜。
外延工艺可以方便地形成不同导电类型,不同杂质浓度,杂 质分布陡峭的外延层。
外延技术:汽相外延(PVD,CVD)、液相外延(LPE)、分 子束外延(MBE)、热壁外延(HWE)、原子层外延技术。
硅平面工艺的主体
国家级精品课程——半导体器件物理与实验
第二章 PN结
引言
4-1 氧化工艺:
1957年,人们发现硅表面的二氧化硅层具有阻止杂质向硅内 扩散的作用。这一发现直接导致了氧化工艺的出现。 二氧化硅薄膜的作用: (1)对杂质扩散的掩蔽作用; (2)作为MOS器件的绝缘栅材料; (3)器件表面钝化作用; (4)集成电路中的隔离介质和绝缘介质; (5)集成电路中电容器元件的绝缘介质。 硅表面二氧化硅薄膜的生长方法: 热氧化和化学气相沉积方法。
N(x) (a)
Na
Nd xj
(b) -a(x - xj)
引言
扩 SiO2 散 结 N-Si
杂质扩散
P
N-Si
N-Si
由扩散法形成的P-N结,杂质浓度从P区到N区是
逐渐变化的,通常称之为缓变结,如图所示。设 P-N结位置在x=xj处,则结中的杂质分布可表示为: x
Na Nd (x xj), Na Nd (x xj)
Al
液体
Al
P
N-Si
N-Si
N-Si
把一小粒铝放在一块N型单晶硅片上, 加热到一定温度,形成铝硅的熔融体, 然后降低温度,熔融体开始凝固,在N 型硅片上形成含有高浓度铝的P型硅薄 层,它和N型硅衬底的交界面即为P-N 结(称之为铝硅合金结)。

半导体第2章 PN结 总结

半导体第2章 PN结 总结

第二章PN结1. PN结:由P型半导体和N型半导体实现冶金学接触(原子级接触)所形成的结构.任何两种物质(绝缘体除外)的冶金学接触都称为结(junction),有时也叫做接触(contact)。

2。

PN结是几乎所有半导体器件的基本单元。

除金属-半导体接触器件外,所有结型器件都由PN结构成。

3。

按照杂质浓度分布,PN 结分为突变结和线性缓变结.突变结杂质分布线性缓变结杂质分布4。

空间电荷区:PN结中,电子由N区转移至P区,空穴由P区转移至N区.电子和空穴的转移分别在N区和P区留下了未被补偿的施主离子和受主离子。

它们是荷电的、固定不动的,称为空间电荷。

空间电荷存在的区域称为空间电荷区。

5. 内建电场:P区和N区的空间电荷之间建立了一个电场—-空间电荷区电场,也叫内建电场。

PN结自建电场:在空间电荷区产生缓变基区自建电场:基区掺杂是不均匀的,产生出一个加速少数载流子运动的电场,电场沿杂质浓度增加的方向,有助于电子在大部分基区范围内输运。

大注入内建电场:在空穴扩散区(这有利于提高BJT的电流增益和频率、速度性能)。

6. 内建电势差:由于内建电场,空间电荷区两侧存在电势差,这个电势差叫做内建电势差(用表示).7。

费米能级:平衡PN结有统一的费米能级。

准费米能级:当pn结加上外加电压V后,在扩散区和势垒区范围内,电子和空穴没有统一的费米能级,分别用准费米能级。

8. PN结能带图热平衡能带图平衡能带图非平衡能带图正偏压:P正N负反偏压:P负N正9。

空间电荷区、耗尽区、势垒区、中性区势垒区:N区电子进入P区需要克服势垒,P区空穴进入N区也需要克服势垒.于是空间电荷区又叫做势垒区。

耗尽区:空间电荷区内的载流子完全扩散掉,即完全耗尽,空间电荷仅由电离杂质提供。

这时空间电荷区又可称为“耗尽区”.中性区:PN结空间电荷区以外的区域(P区和N区)。

耗尽区主要分布在低掺杂一侧,重掺杂一边的空间电荷层的厚度可以忽略。

10。

单边突变结电荷分布、电场分布、电势分布11. 载流子载流子:能够导电的自由粒子。

半导体物理 第六章 pn结ppt课件

半导体物理 第六章 pn结ppt课件

E E cn x n n exp( ) x n 0 k T 0
qV ( x ) qV D n ) n 0exp( k T 0
当 X=Xn时,V(x)=VD,
n(x)=nn0
当 X=-Xp时,V(x)=0, n(-xp)=nn0
qV D n ( x ) n n exp( ) p p 0 n 0 k T 0
产生漂移电流
6.1.3
电子从费米能级高的n区流 向费米能级低的p区, 空穴从p流到n区。
最后,Pn具有统一费米能级EF,
EFn不断下移,EFp不断上 Pn结处于平衡状态。 移,直到EFn=EFp,
能带发生整体相对移动与pn结空 间电荷区中存在内建电场有关。
随内建电场(np)不断增大, V(x)不断降低,
使漂移电流〉扩散电流
少数载流子的抽取或吸出:n区边界nn’处的空穴被 势垒区强场驱向p区, p区边界pp’处的电子被驱向n 区。
qV D p p exp( ) n 0 p 0 k T 0
平衡时,pn结具有统一的费米 能级,无净电流流过pn结。 1. 外加电压下,pn结势垒的变化及载流子的运动 势垒区:载流子浓度很小,电阻很大; 势垒外:载流子浓度很大,电阻很小; 外加正向偏压主要降在势垒区;外加正向电场与 内建电场方向相反, 产生现象:势垒区电场减小,使势垒区空间电荷减小; 载流子扩散流〉漂移流, 净扩散流〉0 ; 宽度减小; 势垒高度降低(高度从qVD降到q(VD-V)
高温熔融的铝冷却后,n型硅片 上形成高浓度的p型薄层。
P型杂质浓度NA,
n型杂质浓度ND,
特点:交界面浓度发生突变。
在n型单晶硅片上扩散受主杂质,形成pn结。 杂质浓度从p到n 逐渐变化,称为缓变结。

半导体物理学第6章(pn结)

6.1.1 pn结的形成和杂质分析
在同一片半导体基片上,分别制造P 型半导 体和N 型半导体,经过载流子的扩散,在它们的 交界面处就形成了PN 结。
PN结是构造半导体器件的基本单元。其 中,最简单的晶体二极管就是由PN结构 成的。
PN
★ p-n结的形成
p-n结的形成 ♦ 控 制 同 一 块 半 导 体 的 掺 杂 , 形 成 pn 结 (合金法; 扩散法; 离子注入法等)
p(x) NV e
kT
pp0e kT
即有: x xp
n np0
p pp0
xn x
n nn0
p pn0
xp x xn
eV ( x)
n(x) np0e kT
eVD
np0 nn0e kT
eV ( x)
p(x) pp0e kT
eVD
pn0 pp0e kT
理想二极管方程(1)
新的坐标:
0

Dp
d 2pn dx'2

pn
p
边界条件:
-xp
xn
x
X’
0
pn (x' ) 0
pn (x'
0)

ni2 ND
eqVA / kT 1
空穴电流
一般解
pn (x')

A ex'/ LP 1

A ex'/ LP 2
其中, LP DP P
♦ 正向偏压时,在少子扩散区, 少子复合 率>产生率(非平衡载流子注入); 反向时, 产生率>复合率(少数载流子被抽取)
♦ 反向时, 少子浓度梯度很小反向电流 很小

半导体的基础知识与PN结(ppt 24页)


2、 P 型半导体
在硅或锗的晶体中掺入少量的 3 价杂质元素,如 硼、镓、铟等,即构成 P 型半导体(或称空穴型半导 体)。
空穴浓度多于自由电子浓度 空穴为多数载流子(简称多子), 电子为少数载流子(简称少子)。
+3
(本征半导体掺入 3 价元素后,原来 晶体中的某些硅原子将被杂质原子 代替。杂质原子最外层有 3 个价电 子,3与硅构成共价键,多余一个空 穴。)
扩散运动使空间电荷区增大,扩散电流逐渐减小;
随着内电场的增强,漂移运动逐渐增加;
当扩散电流与漂移电流相等时,PN 结总的电流等于零, 空间电荷区的宽度达到稳定。
即扩散运动与漂移运动达到动态平衡时,形成PN结。
P
PN结
N
二、 PN 结的单向导电性 空间电荷区变窄,有利
1. PN结 外加正向电压时处于导通于状扩态散运动,电路中有
外电场使空间电荷区变宽;
不利于扩散运动,有利于漂移运动,漂移电流大于扩 散电流,电路中产生反向电流 I ;
由于少数载流子浓度很低,反向电流数值非常小。
P
耗尽层
N
IS
内电场方向
外电场方向
V
R
图 1.1.7 PN 结加反向电压时截止
反向电流又称反向饱和电流。对温度十分敏感,
随着温度升高, IS 将急剧增大。
P
空间电荷区
N
—— PN 结,耗 尽层。
(动画1-3)
3. 空间电荷区产生内电场
空间电荷区正负离子之间电位差 Uho —— 内电场; 内电场阻止多子的扩散 —— 阻挡层。
4. 漂移运动 内电场有利 于少子运动—漂 移。
少子的运动 与多子运动方向 相反
阻挡层

半导体物理学第6章(pn结)


电位V
- - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + +
V0
- - - - - -
P型区
空间 电荷 区
N型区
③ 空间电荷区 —— 在PN结的交界面附近,由于扩散 运动使电子与空穴复合,多子的浓度下降,则在P 区和N 区分别出现了由不能移动的带电离子构成的区域,这就是 空间电荷区,又称为阻挡层,耗尽层,垫垒区。 (见下一页的示意图)


漂移运动 P型半导体 - - - - - - - - - - - - - - - - - - - - - - - - + + + + 内电场E
N型半导体
+ + + + + + + +
+ + + + + + + + + + + +
所以扩散和漂移这一对相反的运动最终达到平衡, 扩散运动 相当于两个区之间没有电荷运动,空间电荷区的厚 度固定不变。
Ei Ev
Ec Ei
Silicon (n-type)
Ef
Ev
热平衡条件
内建电势
内建电势
PN结的内建电 势决定于掺杂 浓度ND、NA、 材料禁带宽度 以及工作温度
③接触电势差: ♦ pn结的势垒高度—eVD 接触电势差—VD ♦ 对非简并半导体,饱和电离近似,接触 电势为:

第六章 pn结 ppt课件


电势能增大,即引起能带的整体上下移动。
载流子扩散的结果是使杂质电离,形成内建电场,其大小就是载流 子电势能的改变量。
电离中心 内建电场
n eeee 扩散
++++ ----
扩散 h
h h
p
h
浓度梯度形成的电场
第六章
pn 结
—— pn结能带图
流过pn结的总电流密度为漂移电流和扩散电流密度之和:
费米能级的改变=电势能的改变
p
EFp
n
EFn
Ecp
E
电子扩散区
p
e
Lp
q(VD+V)
EFp Evp
Ecn
h
EFn
Ln
n
空穴扩散区
Evn
第六章
理想pn结模型
pn 结
—— pn结电压特性
小注入:注入的少数载流子浓度比平衡多子浓度小得多;
突变耗尽层:外加电压直接降落在耗尽层上,耗尽层中的电荷是由 电离中心的电荷组成,耗尽层外的半导体呈电中性;
不考虑耗尽层中载流子的产生与复合作用,即通过耗尽层的电子和 空穴的电流是常数;
满足玻尔兹曼分布。
第六章
pn 结
理想pn结的电流电压方程 计算的基本步骤: 计算势垒边界的非平衡载流子浓度;
—— pn结电压特性
由扩散连续性方程得到扩散区中非平衡载流子的分布;
由扩散方程算出少子的电流密度;
得到电流电压方程。
外加正向电压下,pn结势垒的变化及载流子的运动
pn结加正向电压V,由于势垒两侧的载流子浓度很大,电阻很小, 正向偏压几乎都降落在结区,削弱内建电场(qVD-qV);
内建电场(qVD-qV)减弱,打破了载流子扩散与漂移的平衡态,使 扩散流起主导,存在净扩散电流。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n=5×1016/cm3 3 本征硅的原子浓度: 4.96×1022/cm3 以上三个浓度基本上依次相差106/cm3 。
21
1.1.3 半导体载流子的运动
漂移运动:两种载流子(电子和空穴)在
电场的作用下产生的定向运动。
两种载流子运动产生的电流方向一致。
空穴
电流I
. 。 。 。
.

电子
电场作用下的漂移运动
因五价杂质原子中只有四个价电子能与周围四个半 导体原子中的价电子形成共价键,而多余的一个价电子 因无共价键束缚而很容易被激发而成为自由电子。
在N型半导体中自由电子是多数载流子,它主要由 杂质原子提供;空穴是少数载流子, 由热激发形成。
提供自由电子的五价杂质原子因带正电荷而成为 正离子,因此五价杂质原子也称为施主杂质。
按电容的定义:
即电压变化将引起电荷变化, 从而反映出电容效应。 而PN结两端加上电压, PN结内就有电荷的变
化, 说明PN结具有电容效应。 PN结具有的电容效应,由两方面的因素决定。 一是势垒电容CB 二是扩散电容CD
40
1) 势垒电容CT
势垒电容是由阻挡层内空间电荷引起的。 空间电荷区是由不能移动的正负杂质离子所形成的,均 具有一定的电荷量, 所以在PN结储存了一定的电荷, 当外 加电压使阻挡层变宽时, 电荷量增加;反之, 外加电压使阻 挡层变窄时, 电荷量减少。 即阻挡层中的电荷量随外加电压变化而改变, 形成了电容效 应, 称为势垒电容,用 CT表示。
如果外加电压使PN结中: P区的电位高于N区的电位,称为加正向电压, 简称正偏; P区的电位低于N区的电位,称为加反向电压, 简称反偏。
30
在一定的温度条件下 ,由本征激发决定的少子 浓度是一定的,故少子形 成的漂移电流是恒定的, 基本上与所加反向电压的 大小无关,这个电流也称 为反向饱和电流。
二.少数载流子的漂移 在内电场的作用下,P区中的少子自由电子向N区
漂移,而N区中的少子空穴向P区飘移,使内电场削弱。
25
三.扩散与漂移的动态平衡 当内电场达到一定值时,多子的扩散运动与少子的漂移
运动达到动态平衡时,这时,虽然扩散和漂移仍在不断进行, 但通过界面的净载流子数为零。空间电荷区不再变化,这个空 间电荷区,就称为PN结。
22
扩散运动:由于载流子浓度的差异,而形 成的载流子由浓度高的区域向浓度低的区 域扩散,产生扩散运动。
空穴扩散示意
23
§1.2 PN结 1.2.1 PN结的形成
在一块本征半导体在两侧通过扩散不同的杂质, 分别形成N型半导体和P型半导体。此时将在N型半 导体和P型半导体的结合面上形成如下物理过程:
硅和锗的晶 体结构:
5
硅和锗的共价键结构
+4表示除 去价电子 后的原子
+4
+4
+4
+4
共价键共 用电子对
6
形成共价键后,每个原子的最外层电子是 八个,构成稳定结构。
+4
+4
+4
+4
共价键有很强的结合力,使原子规 则排列,形成晶体。
共价键中的两个电子被紧紧束缚在共价键中,称为 束缚电子,常温下束缚电子很难脱离共价键成为自 由电子,因此本征半导体中的自由电子很少,所以 本征半导体的导电能力很弱。
1)、表达式:
ID __流过PN结的电流;
IS __反向饱和电流;
u -为结电压
当 T = 300(27C):
UT-温度的电压当量, k -为波耳次曼常数(1.381∙10-3J/k)
UT = 26 mV
T -为绝对工作温度
q -为电子电荷量1.6∙10-19C
35
2)、V-A特性曲线
I(mA) 正向电流ID
7
(2)电子空穴对
在绝对0度(T=0K)和没有外界激发时,价电子完全 被共价键束缚着,本征半导体中没有可以运动的带电粒 子(即载流子),它的导电能力为 0,相当于绝缘体。
当温度升高或受到光的照射时,价电子能量增高,有 些获得足够的能量的价电子可以挣脱原子核的束缚,成 为自由电子。
这一现象称为本征激发,也称热激发。
这一现象称为复合。
本征激发和复合在一定温度下会达到动态平衡。
本征激发和复合的过程
10
(3)本征半导体的导电机理
本征半导体中存在数量相等的两种载流子,即 自由电子和空穴。
+4
+4
+4
+4
在其它力的作用下, 空穴吸引附近的电子 来填补,这样的结果 相当于空穴的迁移, 而空穴的迁移相当于 正电荷的移动,因此 可以认为空穴是载流 子。
实质上: PN结=空间电荷区=耗尽层=内电场=电阻
空间电荷区特点: •无载流子 •阻止多子的扩散进行 •利于少子的漂移
- - -+ + +
-P
-+ -+
N+
- - -+ + +
29
1.2.2 PN结的单向导电性
PN结具有单向导电性,若外加电压使电流从P 区流到N区, PN结呈低阻性,所以电流大;反之 是高阻性,电流小。
反向击穿电压 UBR
反向电流IR
反向
正向导通电压 UD
0 0.6
U(V)
正向
PN结V-A特性 曲线
加正向电压时 加反向电压时 i≈–IS
36
1.2.4 PN结的击穿特性
当反向电压超过反向
击穿电压UB时,反向电流 将急剧增大,而PN结的反
反向击穿电压 UBR
向电压值却变化不大,此 反向电流IR 反向
半导体PN结_图文.ppt
§1.1 半导体的基本知识
1.1.1 本征半导体 1)导体、半导体和绝缘体
根据物体导电能力(电阻率)的不同,来划分导 体、绝缘体和半导体。
导体:自然界中很容易导电的物质称为导体,金属 一般都是导体。
绝缘体:有的物质几乎不导电,称为绝缘体,如橡 皮、陶瓷、塑料和石英。
2
半导体:另有一类物质的导电特性处于导体和绝缘 体之间,称为半导体,如硅Si、锗Ge、砷 化镓GaAs以及一些硫化物、氧化物等。
17
4)杂质半导体的导电作用Leabharlann IIPIN
I = IP + IN N 型半导体 I IN P 型半导体 I IP
20
5)杂质对半导体导电性的影响
掺入杂 质对本征半导体的导电性有很大 的影响,一些典型的数据如下: 1 T=300 K室温下,本征硅的电子和空穴浓度:
n = p =1.4×1010/cm3 2 掺杂后 N 型半导体中的自由电子浓度:
空间电荷区无载流子停留,故曰耗尽层,又叫阻挡层或 势垒层。无外电场作用时,PN结内部虽有载流子运动,但无定 向电流形成。
实际中,如果P区和N区的掺杂浓度相同,则耗尽区相对 界面对称,称为对称结。如果一边掺杂浓度大(重掺杂),一边 掺杂浓度小(轻掺杂),则称为不对称结。用P+N或PN+表示(+号 表示重掺杂区)。这时耗尽区主要伸向轻掺杂区一边。
26
PN结的形成过程
在一块本征半导体在两侧通过扩散不同的杂质, 分别形成N型半导体和P型半导体。此时将在N型半 导体和P型半导体的结合面上形成如下物理过程:
因浓度差
多子的扩散运动由杂质离子形成空间电荷区
空间电荷区形成内电场


内电场促使少子漂移 内电场阻止多子扩散
27
最后,多子的扩散和少子的漂移达到动态平衡,
自由电子产生的同时,在其原来的共价键中就 出现了一个空位,原子的电中性被破坏,呈现出正 电性,其正电量与电子的负电量相等,人们常称呈 现正电性的这个空位为空穴。
8
空穴
+4
+4
自由电子
+4
+4
束缚电子
可见:因热激发而出现的自由电子和空穴 是同时成对出现的,称为电子空穴对。
9
游离的部分自由电子在运动中也可能回到空 穴中去。自由电子和空穴相遇重新结合成对消失 的过程,称为复合 。
PN结变窄
正向电流If
P
N
+- R
外加正向电压示意(导电)
PN结变宽
反向电流Is P
N
-+
R
外加反向电压示意(截止)
33
(3) PN 结的单向导电性
正偏导通,呈小电阻,电流较大; 反偏截止,电阻很大,具有很小的反 向漂移电流,电流近似为零。
由此可以得出结论:
PN结具有单向导电性。
34
1.2.3 PN结的伏安(V-A)特性
形成PN结 。 扩散电流 = 漂移电流 总电流 = 0
对于P型半导体和N型半导 体结合面,离子薄层形成的 空间电荷区称为PN结。在 空间电荷区,由于缺少多子 ,所以也称耗尽层。
扩散运动 漂移运动
内电场
-+
- - -+
-P
-+ -+
- - -+
++ N+ ++
由于接触面载 流子运动形成 PN结示意图
28
24
一.多数载流子的扩散 P型半导体和N型半导体有机地结合在一起时,因为P区
一侧空穴多,N区一侧电子多,所以在它们的界面处存在空穴 和电子的浓度差。于是P区中的空穴会向N区扩散,并在N区被 电子复合。而N区中的电子也会向P区扩散,并在P区被空穴复 合。随着扩散运动的不断进行,界面两侧显露出的正、负离子 逐渐增多,空间电荷区展宽,使内电场不断增强,于是漂移运 动随之增强。
11
自由电子的定向运动形成了电子电流,空穴的 定向运动也可形成空穴电流,它们的方向相反。
相关文档
最新文档