微积分_2_试题卷 (1)

合集下载

微积分试题及答案

微积分试题及答案

一、选择题(每题2分)1、设x ƒ()定义域为(1,2),则lg x ƒ()的定义域为() A 、(0,lg2)B 、(0,lg2]C 、(10,100)D 、(1,2)2、x=-1是函数x ƒ()=()221x x x x --的() A 、跳跃间断点 B 、可去间断点 C 、无穷间断点 D 、不是间断点3、试求02lim x x→等于()A 、-14B 、0C 、1D 、∞ 4、若1y xx y+=,求y '等于() A 、22x y y x -- B 、22y x y x -- C 、22y x x y-- D 、22x yx y +-5、曲线221xy x=-的渐近线条数为() A 、0 B 、1 C 、2 D 、3 6、下列函数中,那个不是映射()A 、2y x = (,)x R y R +-∈∈ B 、221y x =-+ C 、2y x = D 、ln y x = (0)x > 二、填空题(每题2分) 1、__________2、、2(1))lim()1x n xf x f x nx →∞-=+设 (,则 的间断点为__________3、21lim51x x bx ax→++=-已知常数 a 、b,,则此函数的最大值为__________ 4、263y x k y x k =-==已知直线 是 的切线,则 __________5、ln 2111x y y x +-=求曲线 ,在点(,)的法线方程是__________ 三、判断题(每题2分)1、221x y x =+函数是有界函数 ( ) 2、有界函数是收敛数列的充分不必要条件 ( ) 3、limββαα=∞若,就说是比低阶的无穷小( )4可导函数的极值点未必是它的驻点 ( ) 5、曲线上凹弧与凸弧的分界点称为拐点 ( )四、计算题(每题6分)1、1sin xy x=求函数 的导数 2、21()arctan ln(12f x x x x dy =-+已知),求3、2326x xy y y x y -+="已知,确定是的函数,求 4、20tan sin limsin x x xx x→-求 5、计算 6、210lim(cos )x x x +→计算 五、应用题1、设某企业在生产一种商品x 件时的总收益为2)100Rx x x =-(,总成本函数为2()20050C x x x =++,问政府对每件商品征收货物税为多少时,在企业获得利润最大的情况下,总税额最大?(8分) 2、描绘函数21y x x=+的图形(12分) 六、证明题(每题6分)1、用极限的定义证明:设01lim (),lim ()x x f x A f A x+→+∞→==则 2、证明方程10,1xxe =在区间()内有且仅有一个实数一、选择题1、C2、C3、A4、B5、D6、B 二、填空题1、0x =2、6,7a b ==-3、184、35、20x y +-= 三、判断题1、√2、×3、√4、×5、× 四、计算题 1、1sin1sin1sin ln 1sin ln 22))1111cos ()ln sin 1111(cos ln sin )xxx xx xy x ee x x x x x x x x x x x'='='⎡⎤=-+⎢⎥⎣⎦=-+((2、22()112(arctan )121arctan dy f x dxxx x dx x x xdx='=+-++=3、 解:2222)2)222302323(23)(23(22)(26)(23x y xy y y x yy x y y x y x y yy y x y--'+'=-∴'=--'----'∴''=-4、解:2223000tan sin ,1cos 21tan (1cos )12lim lim sin 2x x x x x x x x x x x x x x x →→→--∴==Q :::当时,原式=5、解:65232222261)61116116(1)166arctan 6arctanx t dx t tt t t t t tt t C C===+=++-=+=-+=-+=-+⎰⎰⎰⎰令原式(6、 解:2201ln cos 01limln cos 20200012lim 1lim ln cos ln cos lim 1(sin )cos lim 2tan 1lim 22x xx x xx x x x x e ex xxxx x xx x e++→++++→→→→→-===-=-==-∴= 原式其中:原式 五、应用题1、解:设每件商品征收的货物税为a ,利润为()L x222()()()100(20050)2(50)200()45050()0,,()4(50)41(502)410250225L x R x C x axx x x x ax x a x L x x a aL x x L x a a ax T a T a T a =--=--++-=-+--'=-+--'==-='=-'==''=-<∴=令得此时取得最大值税收T=令得当时,T 取得最大值2、 解:()()2300,01202201D x y x x y x y x y x =-∞⋃+∞='=-'==''=+''==-,间断点为令则令则渐进线:32lim lim 001lim x x x y y y x y y x y x x→∞→→∞=∞∴=∴=+==∞∴无水平渐近线是的铅直渐近线无斜渐近线图象六、证明题 1、 证明:lim ()0,0()11101()1lim ()x x f x AM x M f x A x MM M xf A x f A xεεξε→∞→∞=∴∀>∃>>-<><<>∴-<=Q 当时,有取=,则当0时,有即2、 证明:[]()1()0,1(0)10,(1)100,1()0,1()(1)0,(0,1)()0,110,1x x x f x xe f x f f e f e f x x e x f x xe ξξξξ=-=-<=->∈=='=+>∈∴-Q Q 令在()上连续由零点定理:至少存在一个(),使得即又则在上单调递增方程在()内有且仅有一个实根。

微积分数学竞赛试题及答案

微积分数学竞赛试题及答案

微积分数学竞赛试题及答案试题一:极限问题题目:求极限 \(\lim_{x \to 0} \frac{\sin x}{x}\)。

解答:根据洛必达法则,当分子分母同时趋向于0时,可以对分子分母同时求导后再求极限。

对分子和分母分别求导得到:\[ \lim_{x \to 0} \frac{\cos x}{1} = 1 \]因此,原极限的值为1。

试题二:导数问题题目:求函数 \( f(x) = 3x^2 - 2x + 1 \) 在 \( x = 1 \) 处的导数。

解答:首先求函数 \( f(x) \) 的导数:\[ f'(x) = 6x - 2 \]然后将 \( x = 1 \) 代入导数表达式中:\[ f'(1) = 6 \times 1 - 2 = 4 \]所以,函数在 \( x = 1 \) 处的导数为4。

试题三:积分问题题目:求定积分 \(\int_{0}^{1} x^2 dx\)。

解答:使用幂函数的积分公式:\[ \int x^n dx = \frac{x^{n+1}}{n+1} + C \]对于 \( n = 2 \),我们有:\[ \int x^2 dx = \frac{x^3}{3} + C \]计算定积分的值:\[ \int_{0}^{1} x^2 dx = \left[ \frac{x^3}{3} \right]_{0}^{1}= \frac{1^3}{3} - \frac{0^3}{3} = \frac{1}{3} \]试题四:级数问题题目:判断级数 \(\sum_{n=1}^{\infty} \frac{1}{n(n+1)} \) 是否收敛。

解答:这个级数可以通过部分分式分解来简化:\[ \frac{1}{n(n+1)} = \frac{A}{n} + \frac{B}{n+1} \]解得 \( A = 1 \) 和 \( B = -1 \),因此:\[ \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1} \]将这个结果代入级数中,我们得到一个望远镜级数:\[ \sum_{n=1}^{\infty} \left( \frac{1}{n} - \frac{1}{n+1}\right) \]这个级数的项会相互抵消,只剩下第一项 \( \frac{1}{1} \),所以级数收敛,其和为1。

南京大学2011-2012学年第二学期《微积分II(第一层次)》期中考试试题参考答案

南京大学2011-2012学年第二学期《微积分II(第一层次)》期中考试试题参考答案
2
解: 由于积分区域关于 x 0 对称, xy 关于 x 为奇函数,所以
xydxdydz =0 .

用椭球坐标变换: x ar sin cos , y br sin sin , z cr cos , J abcr sin ,
2
其中 0 r 1,0 ,0 2 . 所以, I
px?y?1e?e?yqe??x?y?1e?x???2?x?y?q?p2?a?c?aopdx?qdy????d?x??ydxdy2??ddxdy2?0ydx2?2222?0a1??costdt6?a2?所以i6?a2???pdx?qdy6?a2???pdx?qdy6?a2???x?1ex?1dxaooa022?a6?a??2?ae?1
2
y2 )
.
解:原式 = exp( 3. 设 F ( x, y )
2ln(1 x 2 y 2 ) ) e2 . ( x , y ) (0,0) tan( x 2 y 2 ) lim
xy

y/ x
( x, y) . ( xz y) f ( z )dz ,其中 f ( x) 为可微函数,求 Fxx

C AO
Pdx Qdy (
D
2 a Q P )dxdy 2 dxdy 2 ydx D 0 x y
2
2 0
a 2 (1 cos t )2 dt 6 a 2
2
所以 I 6 a

AO
Pdx Qdy 6 a 2 Pdx Qdy 6 a 2
x2 z2 2 y 1 与平面 2 x 2 y z 5 0 之间的最短与最长距离 .(9 分) 四. 求椭球面 2 4

微积分试题及答案

微积分试题及答案

微积分试题及答案微积分试题及答案第⼀章函数极限与连续⼀、填空题1、已知x x f cos 1)2(sin +=,则=)(cos x f 。

2、=-+→∞)1()34(lim22x x x x 。

3、0→x 时,x x sin tan -是x 的阶⽆穷⼩。

4、01sin lim 0=→xx kx 成⽴的k 为。

5、=-∞→x e xx arctan lim 。

6、≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。

7、=+→xx x 6)13ln(lim 0 。

8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。

9、函数)2ln(1++=x y 的反函数为_________。

10、设a 是⾮零常数,则________)(lim =-+∞→xx ax a x 。

11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价⽆穷⼩,则常数________=a 。

12、函数xxx f +=13arcsin )(的定义域是__________。

13、lim ____________x →+∞=。

14、设8)2(lim =-+∞→xx ax a x ,则=a ________。

15、)2)(1(lim n n n n n -++++∞→=____________。

⼆、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则中所给的函数必为奇函数。

(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。

2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有。

(A)α是⽐β⾼阶的⽆穷⼩;(B)α是⽐β低阶的⽆穷⼩;(C )α与β是同阶⽆穷⼩;(D )βα~。

微积分试题及答案-1

微积分试题及答案-1

《微积分》试题 第1页(共8页)微积分试题及参考答案与评分标准一、填空题(本大题共10小题,每小题2分,共20分)1、函数21()arcsinln(1)3x f x x -=+-的定义域为 ; 2、2lim(1)x x x→∞-= ;3、若22(sin )cos ,f x x '=则()f x = ;4、设2sin(1)(),1x f x x -=-则x = 是()f x 的可去间断点; 5、若0(32)(3)1limh f h f h→--=,则(3)f '= ;6、1(arctan )x =d ;7、可导函数()f x 是偶函数,若(1)3,f '=则(1)f '-= ;8、函数()f x =[0, 3]上满足罗尔定理条件,结论中的=ξ ; 9、曲线C :2ln 1xy x =-的垂直渐近线是 ; 10、设某商品的需求函数是402Q p =-,则需求价格弹性15|p η== 。

二、单项选择题(本大题共5小题,每小题2分,共10分)1、函数)(x f 在0x 处连续是)(x f 在0x 处可导的( ).(A )必要但非充分条件; (B )充分但非必要条件;(C )充分必要条件; (D )无关条件.《微积分》试题 第2页(共8页)2、当0→x 时,2x 是x cos 1-的( )无穷小.(A )等价; (B )同阶但不等价; (C )高阶; (D )低阶.3、设函数1)(1+=xe xf ,则0=x 为)(x f 的间断点类型是( ). (A )跳跃间断点; (B )可去间断点; (C )振荡间断点; (D )无穷间断点.4、设()f x 的一个原函数是2x ,则2(1)xf x x -=⎰d ( ) (A )222(1)x C -+; (B )222(1)x C --+;(C )221(1)2x C -+; (D )221(1)2x C --+.5、函数1sin ,0()0,0x x f x xx ⎧≠⎪=⎨⎪=⎩在0x =处( ). (A )不连续; (B )极限不存在;(C )连续且可导; (D )连续但不可导.三、计算题(本大题共8小题,每小题7分,共56分)1、求极限+01lim(1)xx x→+.2、求极限11lim()1ln x x x x→--.《微积分》试题 第3页(共8页)3、设ln(x y e =,求,y y '''.4、求曲线C :2ln(1)y x =+的凹凸区间与拐点.5、求曲线C :1x y xy e ++=在0x =对应点处切线的方程.《微积分》试题 第4页(共8页)6、求函数2()1xf x x =+的单调区间和极值.7、求不定积分()112ln dx x x +⎰.8、求不定积分⎰.《微积分》试题 第5页(共8页)四、应用题(本大题共1小题,共8分)设某产品的总成本函数为:2()5,C x x =+需求函数为:120.5,x p =-其中x 为产量,p 为价格,求(1)收益最大时的产量和价格;(2)利润最大时的产量和价格。

微积分考试试题及答案

微积分考试试题及答案

微积分考试试题及答案一、选择题1. 下列哪个是微积分的基本定理?A. 韦达定理B. 牛顿-莱布尼兹公式C. 洛必达法则D. 极限定义答案:B. 牛顿-莱布尼兹公式2. 对于函数$f(x) = 3x^2 - 2x + 5$,求其导数$f'(x)$。

A. $3x^2 - 2x$B. $6x - 2$C. $6x - 2x$D. $6x - 2$答案:D. $6x - 2$3. 已知函数$y = 2x^3 + 4x - 1$,求其在点$(1, 5)$处的切线斜率。

A. 6B. 8C. 10D. 12答案:B. 8二、填空题1. 函数$y = \sin x$在$x = \pi/2$处的导数是\_\_\_\_\_\_。

答案:$1$2. 函数$y = e^x$的导数是\_\_\_\_\_\_。

答案:$e^x$3. 函数$y = \ln x$的导数是\_\_\_\_\_\_。

答案:$\frac{1}{x}$三、简答题1. 请解释一下微积分中的基本概念:导数和积分的关系。

答:导数和积分是微积分的两个基本概念,导数表示函数在某一点上的变化率,而积分表示函数在某一区间上的累积效果。

导数和积分互为逆运算,导数可以用来求解函数的斜率和最值,积分可以用来求解函数的面积和定积分。

2. 为什么微积分在物理学和工程学中如此重要?答:微积分在物理学和工程学中具有重要作用,因为微积分提供了一种精确的方法来描述和分析连续变化的过程。

通过微积分,可以求解物体在运动过程中的速度、加速度、轨迹等物理量,以及工程中涉及到的曲线、曲面、体积等问题。

微积分为物理学和工程学提供了丰富的数学工具,可以更准确地描述和解决实际问题。

四、计算题1. 计算定积分$\int_{0}^{1} x^2 dx$。

答:$\frac{1}{3}$2. 求函数$f(x) = 3x^2 - 2x + 5$在区间$[1, 2]$上的定积分。

答:$\frac{19}{3}$以上就是微积分考试的试题及答案,希望对你的复习有所帮助。

《微积分学》课后习题试题01.doc

《微积分学》课后习题试题01.doc

一、函数的概念 二、函数的特性(奇偶性、单调性、周期性,不再赘述。

)函数的有界性:/(Q 在 X 上有上界R, V XG X,^f(x)<k ; /⑴在X 上有下界^>3ke R, V XG X,有 /(兀)在 X 上有界〉0, Vxe X,有|/Cr)|5M 。

例如:f(x) = l-x 2[0,+ 00)有上界1,无下界。

/(兀)"在(-OO, + OO )有下界0,无上界。

/. /(x) = arctan x 在(-汽 + 呵 有界。

三、分段函数在定义域的不同范围具有不同的表达式的函数叫做分段函数。

0,一九 x< 0例2.取整函数:若n < X < H + 1 , n G Z ,则[力=〃。

[x]表示不超过X 的最大整数。

例如:[2・5]=2, [3] =3, [0] =0,[-兀]=-4。

注意:(1) V XG /?,有[兀]W x v [尢]+1 ; (2) 0<x-[x]<l o习题课一.• |arctan^<-, 丨2例1 •符号函数f(x) = sgn x = < 1, x>00, % = 0 , —1, x < 0求 /(2), /(0), /(-2)o解:/⑵=1,/(0) = 0, /(-2) = -lo y=sgnx例3・证明:f(x) = x-[x], xe (-oo^+ oo)是以1为周期的周期函数。

四、基本初等函数(1) 幕函数:y = x a(OCG /?) o(2) 指数函数:y" @>0,且心1)。

(3) 对数函数:y = log^ x (6/ >0,且 GH I)。

(4) 三角函数: y = sinx ; y = cosx ; y = tan x ;y = cot x ; y = secx ; y = cscx 。

(5)反三角函数:y = arcsinx ; y = arccosA : ; y = arctan x ; y = arccotx o五、复合函数 1. 复合函数的定义若函数y = f (w)的定义域为D|,函数u =(p(x)的定义域为Z )2,值域-1, W= 0,1, 2,-2<x<-l-l<x<0 0<%<l 1 < x< 2 2 < x< 31 1 1- y=M-• 6■• e-• ---- o||||B,OX•D- • 8—A y・・・/(兀)是以1为周期的周期函数。

微积分测试题一(极限、连续)答案

微积分测试题一(极限、连续)答案

微积分测试题(一)极限、连续部分(答案)一、选择题(每小题3分,共21分) 1、 当0x →+时,(A )无穷小量。

A 1sin x xB 1x e C ln x D 1sin x x2、点1x =是函数311()1131x x f x x x x -<⎧⎪==⎨⎪->⎩的(C )。

A 连续点B 第一类非可去间断点C 可去间断点D 第二类间断点 3、函数()f x 在点0x 处有定义是其在0x 处极限存在的(D )。

A 充分非必要条件B 必要非充分条件C 充要条件D 无关条件4、已知极限22lim()0x x ax x→∞++=,则常数a 等于(A )。

A -1B 0C 1D 25、极限201lim cos 1x x e x →--等于(D )。

A ∞B 2C 0D -2 6、设函数11()1x x f x e-=-则(D )。

A x=0,x=1都是()f x 的第一类间断点.B x=0,x=1都是()f x 的第二类间断点C x=0是()f x 的第一类间断点,x=1是()f x )的第二类间断点.D x=0是()f x 的第二类间断点,x=1是()f x 的第一类间断点. . D 【分析】 显然x=0,x=1为间断点,其分类主要考虑左右极限.【详解】 由于函数f(x)在x=0,x=1点处无定义,因此是间断点.且 0lim ()x f x →=∞,所以x=0为第二类间断点;1lim ()0x f x +→=,1lim ()1x f x -→=-,所以x=1为第一类间断点,故应选(D). 【评注】 应特别注意:1lim 1x x x +→=+∞-,1lim 1x xx -→=-∞- 从而+∞=-→+11lim x xx e,.0lim 11=-→-x x x e7已知lim()9xx x a x a→∞+=-,则a =( C ).A.1;B.∞;C.ln 3;D.2ln3.二、填空题(每小题4分,共20分) 1、21lim(1)x x x→∞-2、 当0x →+时,无穷小ln(1)Ax α=+与无穷小sin 3x β=等价,则常数3、 已知函数()f x 在点0x =处连续,且当0x ≠时,函数21()2x f x -=,则函数值(0)f4、 111lim[]1223(1)n n n →∞+++••+5、 若lim ()x f x π→存在,且sin ()2lim ()x xf xf x x ππ→=+-,则lim ()x f x π→三、解答题1、(7分)计算极限 222111lim(1)(1)(1)23n n→∞--- 解:原式=132411111lim()()()lim 223322n n n n n n n n →∞→∞-++•••=•= 2、(6分)计算极限 30tan sin lim x x xx →-解:原式=2322000sin 1sin 1cos 1cos 2lim lim lim cos cos 2x x x x x xx x x x x x x →→→--===3、(7分)计算极限 123lim()21x x x x +→∞++ 解:原式= 11122112221lim(1)lim(1)121211lim(1)lim(1)1122x x x x x x x x x e x x +++→∞→∞+→∞→∞+=+++=+•+=++ 4、(7分)计算极限1x e →-解:原式=201sin 12lim 2x x xx →=5、(7分)设3214lim 1x x ax x x →---++ 具有极限l ,求,a l 的值解:因为1lim(1)0x x →-+=,所以 321lim(4)0x x ax x →---+=,因此 4a = 并将其代入原式321144(1)(1)(4)lim lim 1011x x x x x x x x l x x →-→---++--===++6、(8分)设3()32,()(1)nx x x x c x αβ=-+=-,试确定常数,c n ,使得()()x x αβ解:32221()32(1)(2)(1)(2)3lim ,3,2(1)x x x x x x x x c n c x cα→=-+=-+-+=∴==- 此时,()()x x αβ7、(7分)试确定常数a ,使得函数21sin0()0x x f x xa xx ⎧>⎪=⎨⎪+≤⎩在(,)-∞+∞内连续解:当0x >时,()f x 连续,当0x <时,()f x 连续。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档