七年级数学正负数练习题
七年级数学上册正数和负数练习题及答案解析

七年级数学上册正数和负数练习题及答案解析学校:___________姓名:___________班级:___________考号:___________一、单选题1.从下列一组数﹣2,π,﹣12,﹣0.12,0的概率为( )A .56B .23 C .12 D .132.一个水库某天8:00的水位为-0.1m (以警戒线为基准,记高于警戒线的水位为正).在以后的6个时刻测得的水位升降情况如下(记上升为正,单位:m ):0.5,0.8-,0,0.2-;0.3-,●(最后一个时刻的水位升降情况被墨水污染),经过6次水位升降后,水库的水位恰好位于警戒线,则被墨水污染的数值是( )A .0.7B .0.8C .0.9D .1.03.规定:(↑3)表示向上移动3,记作+3,则(↓4)表示向下移动4,记作( )A .+4B .-4C .14+D .14- 4.在35,12-,+3.5,0,2π-,﹣0.7中,负分数有( ) A .1个 B .2个 C .3个 D .4个5.中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若零上10℃记作+10℃,则零下10℃可记作( )A .10℃B .0℃C .-10 ℃D .-20℃6.徐志摩的《泰山日出》一文描写了“泰山佛光”壮丽景象.若1月份的泰山山脚平均气温为9℃,山顶平均气温为-2℃,则山脚平均气温与山顶平均气温的温差是( )A .11℃B .-11℃C .7℃D .-7℃7.明明家为起点,向东走记为正,向西走记为负.明明从家出发,先走了+20米,又走了-30米,这时明明离家的距离是( )米.A .20B .10C .-10D .-208.下列说法不正确的是( )A .零是有理数B .零是整数C .零是正整数D .零是非负数二、填空题9.如果向东80米记作+80米,那么向西60米记作___________米.10.一食品的包装袋上标有55150+-克,这种食品一袋的最小重量不低于___________克.11.如果向东走6米记作+6米,那么向西走5米记作______米.12.高斯对______的研究几乎遍及所有领域,在数论、代数学、非欧几何、复变函数和微分几何等方面都做出了开创性的贡献.他还把数学应用于天文学、大地测量学和磁学的研究.13.一幢大楼地面上有12层,还有地下室2层,如果把地面上的第1层作为基准,记为0,规定向上为正,那么习惯上将第3层记为_____.14.如果向东80米记作+80米,那么向西60米记作___________米.三、解答题15.把下列个数分别填入相应集合内:-10,6,-173,0,3101,-2.25, 10%, -18 整数集合: ;负分数集合: ;正分数集合; ;非负数集合: ;16.小王上周五在股市以收盘价(收市时的价格)每股30元买进某公司股票若干股,在接下来的一周交易日内,小王记下该股每日收盘价格相比前一天的涨跌情况(单位:元).(1)星期五收盘时,该股票每股多少元?(2)这周内该股票收盘时的最高价、最低价分别是多少?17.若规定海平面的高度为 0 米,高于海平面的高度记为正数.现有一潜水艇在水面下 50 米处航行,一架飞机在水面上方 100 米处飞行.(1)试用正负数分别表示潜水艇和飞机的高度.(2)飞机在潜水艇上方多少米?参考答案:1.B【分析】找出题目给的数中的负数,用负数的个数除以总的个数,求出概率即可.【详解】℃数﹣2,π,﹣12,﹣0.12,06个数,其中﹣2,﹣12,﹣0.124个,℃这个数是负数的概率为4263P ==, 故答案选:B .【点睛】本题考查负数的认识,概率计算公式,正确找出负数的个数是解答本题的关键.2.C【分析】用0减去前5次各数与8:00的水位和,然后即可做出判断.【详解】解:0-(0.5-0.8+0-0.2-0.3-0.1)=0.9.故选:C .【点睛】此题主要考查正负数在实际生活中的应用,根据题意列出算式是解题的关键.3.B【分析】根据具有相反意义的量求解即可.【详解】解:(↑3)表示向上移动3,记作+3,则(↓4)表示向下移动4,记作4-故选B【点睛】本题考查了具有相反意义的量,理解正负数的意义是解题的关键.4.B【分析】考虑负分数是有理数且是负数依次判断即可. 【详解】解:35是正分数, 12-是负分数, +3.5是正分数,0不是负分数,2π-不是有理数,更不是负分数, ﹣0.7是负分数.℃负分数有两个12-和﹣0.7. 故选:B .【点睛】题目主要考查负分数的定义,理解负分数的判断方法是解题关键.5.C【分析】零上温度记为正,则零下温度就记为负,则可得出结论.【详解】解:若零上10C ︒记作10C +︒,则零下10C ︒可记作:10C -︒.故选:C .【点睛】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.6.A【分析】根据题意,用最高温度减去最低温度即可.【详解】解:℃山脚平均气温为9℃,山顶平均气温为-2℃,℃山脚平均气温与山顶平均气温的温差是()9211--=℃,故选:A .【点睛】本题考查了有理数减法的应用,理解题意是解题的关键.7.B【分析】根据正、负数的运算方法,把明明两次走的路程相加,然后根据正负数意义求出明明离家的距离即可.【详解】解:℃+20+(-30)=-10(米),℃这时明明离家的距离是10米.故选:B .【点睛】此题主要考查了负数的意义及其应用,以及正、负数的运算方法,要熟练掌握.8.C【分析】有理数可以分成整数、分数,或者分为正有理数,0,负有理数.【详解】解:0既不是正数也不是负数,故选:C .【点睛】本题考查了有理数的定义,解题的关键是正确理解有理数的概念.9.60-【分析】根据具有相反意义的量即可得.【详解】解:因为向东和向西是一对具有相反意义的量,所以如果向东行走80米记作80+米,那么向西行走60米应记作60-米,故答案为:60-.【点睛】本题考查了具有相反意义的量,掌握理解具有相反意义的量是解题关键.10.145【分析】一食品的包装袋上标有“净含量55150+-克”,表示这袋食品标准的质量是150克,实际每袋最小重量不低于150-5克.【详解】解:150-5=145(克).所以,这袋食品最小重量不低于145克.故答案为:145.【点睛】此题首先要知道以谁为标准,规定超出标准的为正,低于标准的为负,由此用正负数解答问题. 11.-5【分析】审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】解:℃向东走6米,记作+6米,℃向西走5米应记作﹣5米.故答案为:﹣5.【点睛】此题考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.12.数学【分析】根据数学学史及高斯的成就即可求解.【详解】高斯的数论研究 总结 在《算术研究》(1801)中,这本书奠定了近代数论的基础,它不仅是数论方面的划时代之作,也是数学史上不可多得的经典著作之一.高斯对代数学的重要贡献是证明了代数基本定理,他的存在性证明开创了数学研究的新途径.高斯在1816年左右就得到非欧几何的原理.他还深入研究复变函数,建立了一些基本概念发现了著名的柯西积分定理.他还发现椭圆函数的双周期性,但这些工作在他生前都没发表出来.1828年高斯出版了《关于曲面的一般研究》,全面系统地阐述了空间曲面的微分几何学,并提出内蕴曲面理论.高斯的曲面理论后来由黎曼发展. 高斯一生共发表155篇论文,他对待学问十分严谨,只是把他自己认为是十分成熟的作品发表出来.其著作还有《地磁概念》和《论与距离平方成反比的引力和斥力的普遍定律》等.故答案为:数学.【点睛】此题主要考查数学学史,解题的关键是熟知高斯对数学的研究及认识.13.+2【分析】由把地面上的第一层作为基准,记为0,规定向上为正,根据“正”和“负”的相对性,即可求得答案.【详解】解:℃把地面上的第1层作为基准,记为0,规定向上为正,则向下为负,℃2楼表示的是以地面为基准向上2层,所以记为+1,故习惯上将第3层记为:+2.故答案为+2.【点睛】此题考查了正数与负数的意义.此题比较简单,注意理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.14.-60【分析】此题主要用正负数来表示具有意义相反的两种量:向东记为正,则向西就记为负,直接得出结论即可.【详解】解:如果向东行走80米记作+80米,那么向西行走60米,应记作-60米.故答案为:-60.【点睛】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.15.见解析【分析】根据整数、负分数、正分数、非负数的定义即可得出答案;【详解】解:整数集合:-10,6,0,-18;负分数集合:-173,-2.25;正分数集合;3101,10%,;非负数集合:6,0,3101,10%;【点睛】本题考查了有理数的分类,熟练掌握相关的知识是解题的关键.16.(1)33元(2)这周内该股票收盘时的最高价是33元,最低价是31.5元【分析】(1)求出表格中的数的和,再加上30即可;(2)分别求出每天收盘时的价格,找出最高与最低即可.(1)根据题意得:30+2﹣0.5+1.5﹣1+1=33(元);答:星期五收盘时,该股票每股33元;(2)一周的股价分别为:32(元);32﹣0.5=31.5(元);31.5+1.5=33(元);33﹣1=32(元);32+1=33(元);这周内该股票收盘时的最高价是33元,最低价是31.5元.【点睛】本题考查正数和负数以及有理数的加减混合运算,解答本题的关键是理清正负数在题目中的实际意义.17.(1)潜水艇的高度为−50米,飞机的高度为100米(2)飞机在潜水艇上方150米【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,理解了“正”与“负”的意义后再根据题意作答.(1)解:℃规定海平面的高度为0米,高于海平面的高度记为正数,℃低于海平面的高度记为负数,℃潜水艇在水面下50米处航行,一架飞机在水面上方100米处飞行,℃潜水艇的高度为−50米,飞机的高度为100米;(2)解:℃潜水艇的高度为−50米,飞机的高度为100米,℃100−(−50)=150米,℃飞机在潜水艇上方150米.【点睛】本题考查正负数的实际应用,理解“正”和“负”的相对性,准确找出题中一对具有相反意义的量是解决问题的关键.。
初一数学上册正负数练习题

初一数学上册正负数练习题1.任意写出5个正数:_______________;任意写出5个负数:_______________..小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______, -4万元表示________________.3.已知下列各数:51?,432?,3.14,+3065,0,-239.则正数有_____________________;负数有____________________.4.向东行进-50m表示的意义是〖〗A.向东行进50m C.向北行进50m B.向南行进50m D.向西行进50m5.下列结论中正确的是〖〗A.0既是正数,又是负数B.O是最小的正数C.0是最大的负数 D.0既不是正数,也不是负数6.给出下列各数:-3,0,+5,213,+3.1,21,2004,+2008.其中是负数的有〖〗A.2个 B.3个 C.4个 D.5个1.零下15℃,表示为_________,比O℃低4℃的温度是_________.2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地.3.某天中午11时的温度是11℃,早晨6时气温比中午低7℃,则早晨温度为_____℃,若早晨6时气温比中午低13℃,则早晨温度为_______℃.4.“甲比乙大-3岁”表示的意义是______________________.5.在下列四组数-3,2.3,41;43,0,212;311,0.3,7;1,51,2中,三个数都不是负数的组是〖〗A. B. C. D.1.写出比0小4的数,比4小2的数,比-4小2的数.2.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度.3、学校对初一男生进行立定跳远的测试,以能跳1.7m 及以上为达标,超过1.7m的厘米数用正数表示,不足l.7m的厘米数用负数表示.第一组10名男生成绩如下:+,-,0 ,+,+,-,0 ,+,+10 ,-3问:第一组有百分之几的学生达标?1.1正数和负数一、选择题1.零上1℃记作+1℃,零下℃可记作A. B.-2C.℃D.-℃2.给出下列各数:-3,0,+5,?3,+3.1,?A.2个 B.3个 121,2004,+2008.其中是负数的有C.4个 D.5个3.下列结论中正确的是A.0既是正数,又是负数C.0是最大的负数 B.0是最小的正数 D.0既不是正数,也不是负数4.规定上升为正,水位上升-0.5m的意义是A.水位上升了0.5m B.水位下降了0.5mC.水位没有变化 D.水位下降了5m5.下列不是具有相反意义的量是A.前进5米和后退5米 B.节约3吨和消耗10吨C.身高增加2厘米和体重减少2千克 D.超过5克和不足2克二、填空题1.已知下列各数:?13,?2,3.14,+3065,0,-239.4则正数有____________________;负数有____________________.2.如果向南走5米,记作+5米,那么向北走8米应记作___________.3.如果把+210元表示收入210元,那么-60元表示______________.4.如果把公元2008年记作+2008年,那么-20年表示______________.5.“甲比乙大-3岁”表示的意义是______________________.6.如果全班某次数学测试的平均成绩为83分,某同学考了85分,记作+2分,得分90分和80分应分别记作_________________________.7.地图上标有甲地海拔高度为30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地.8.甲.乙两人同时从A地出发,如果甲向南走48m,记作+48m,则乙向北走2m,记为_______,这时甲乙两人相距_______m.三、解答题1.字母可以表示数.如果a表示正数,那么-a表示什么数?如果a表示负数,那么-a表示什么数?字母a可以表示那些数?字母-a可以表示那些数?2.学校对初一男生进行立定跳远的测试,以能跳1.7m 及以上为达标,超过1.7m的厘米数用正数表示,不足l.7m 的厘米数用负数表示.第一组10名男生成绩如下:问:第一组有百分之几的学生达标?3.测量一座公路桥的长度,各次测得的数据是:255米,270米,265米,267米,258米.求这五次测量的平均值;如以求出的平均值为基准数,用正.负数表示出各次测量的数值与平均值的差.正数和负数一、选择题1.若规定收入为“+”,那么支出-50元表示A.收入了50元;B.支出了50元; C.没有收入也没有支出; D.收入了100元2.下列说法正确的是A.一个数前面加上“-”号,这个数就是负数; B.零既不是正数也不是负数C.零既是正数也是负数; D.若a是正数,则-a不一定就是负数3.既是分数,又是正数的是A.+5B.-51C.0 D.8104.下列说法不正确的是A.有最小的正整数,没有最小的负整数; B.一个整数不是奇数,就是偶数C.如果a是有理数,2a就是偶数;D.正整数、负整数和零统称整数5.下列说法正确的是A.有理数是指整数、分数、正有理数、零、负有理数这五类数B.有理数不是正数就是负数C.有理数不是整数就是分数; D.以上说法都正确二、填空题1.向东走10米记作-10米,那么向西走5米,记作____________.2.某城市白天的最高气温为零上6℃,到了晚上8时,气温下降了8℃,该城市当晚8时的气温为_________.3.如果某股票第一天跌了3.01%,应表示为________,第二天涨了4.21%,?应表示为_____________.0.024.一种零件标明的要求是??10??0.0?,?表示这种零件的标准尺寸为直径10mm,该零件最大直径不超过____________mm,最小不小于____________mm,为合格产品.5.若书店在学校的东面500米记作+500米,那么超市的位置记作-600米,?则表示____________.6.在东西走向的公路上,?乙在甲的东边3?千米处,?丙距乙5?千米,?则丙在甲的__________.7.一潜水艇所在的高度为-100米,如果它再下潜20米,则高度是___________,如果在原 1来的位置上再上升20米,则高度是____________.8.收入-200元的实际意义是_____________________.三、解答题1.把下列各数填入相应的大括号内:-13.5,2,0,0.128,-2.236,3.14,+27,--15%,-14,51221,,26.73 正数集合{ ?},负数集合{ ?},整数集合{ ?},分数集合{ ?},非负整数集合{?}.2.下图中的两个圆分别表示正数集合和分数集合,请你在每个圆中及它们重叠的部分各填入3个数.3.课桌的高度比标准高度高2毫米记作+2毫米,那么比标准高度低3?毫米记作什么?现有5张课桌,量得它们的尺寸比标准尺寸长1毫米,-1毫米,0毫米,+3毫米,-?1.5毫米,若规定课桌的高度最高不能高于标准高度2毫米,最低不能低于标准高度2毫米,才算合格,问上述5张课桌有几张不合格?4.在一次数学测验中,一年班的平均分为86分,?把高于平均分的部分记作正数.李洋得了90分,应记作多少?刘红被记作-5分,她实际得分多少?王明得了86分,应记作多少?分数集合正数集合李洋和刘红相差多少分?四、学科内综合题1.已知有A,B,C三个数集,每个数集中所含的数都写在各自的大括号内,?请把这些数填入图中相应的部分. A.{-5,2.7,-9,7,2.1} B.{-8.1,2.1,-5,9.2,-C.{2.1,-8.1,10,7}2.观察下列各组数,请找出它们的排列规律,并写出后面的2个数.-2,0,2,4,?,; 1,-1}12345,,-,,-,?;3456 1,0,-1,0,1,0,-1,0,?;,2,4,-6,8,10,-12,14,?.3.我们用字母a表示一个有理数,试判断下列说法是否正确,若不正确,请举出反例.a一定表示正数,-a一定表示负数;如果a是零,那么-a就是负数;若-a是正数,则a一定为非正数.3五、竞赛题1.下列是按某种规律排列的一串数:0,3,8,17,34,?,那么第6个数是_______.2.观察下列数的排列规律:,应排在第_____位.六、中考题如果自行车车条的长度比标准长度长2mm,记作+2mm,那么比标准长度短1.5mm,应记作________mm.答案:一、1.A .B .D .C .C二、1.+5米.-2℃ .-3.01% +4.21% .10.0.98 5.?超市在学校西面600米.东边8千米或西边2千米.-120米 -80米8.支出200元三、1.正数集合{2,+27,1112123123413,,,,,,,,,,?,则21321432157221,26,0.128,3.14?}341 负数集合{-13.5,-2.236,-,-15%,-1,?}2 4,-15%,整数集合{2,0,+27?},分数集合{-13.5,0.168,-2.236,3.14,--11221,,26,?},非负整数集合{2,+27,0,?}.73 2.略.-3毫米,1张不合格..+4分;81分;0分;9分四、1.如图1所示9.2-52.7-9172.1710CB2.6,8;7,-;1,0;16,-1.错误.若a=-3,?则-a>0;78错误.a=0,-a=0;错误.非正数包括零.4五、1.67[提示:由前5个数发现a2=2a1+3,a3=2a2+2,a4=2a3+1,所以a6=2a5-1]2.39[提示:设a≥1的自然数,则这串数规律当a=9时,则六、-1.5. 11?11?2,,, aa?1a?2123,,??+3=39]875。
1-1正数和负数 练习题 七年级数学上学期人教版

1.1 正数和负数(练习题)一、单选题1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数,若其意义相反,则分别叫做正数与负数.若向东走9米记作+9米,则−5米表示()A.向东走5米B.向西走5米C.向东走4米D.向西走4米2.下列是具有相反意义的量是()A.身高增加1cm和体重减少1kg B.顺时针旋转90°和逆时针旋转45°C.向右走2米和向西走5米D.购买5本图书和借出4本图书3.昆昆沉迷游戏,有个人加了他好友,哄骗他能送游戏英雄和皮肤,并要求加他为QQ 好友,这位“游戏好友”告知其现在有个“扫码转账返利”活动,充值300元可返利500元,充值700元可返利1000元,如果你是昆昆你会()A.这么划算,赶紧充值后可以购买更多游戏装备和皮肤B.天上没有掉馅饼的事,肯定是骗子,必须立马删除“好友”C.立即和喜欢玩游戏的同学分享这么好的事情D.对这种事情一直抱着期待4.一种小吃包装袋上标注着“净含量:50g±1g”,则下列小吃净含量合格的是()A.52B.48C.50.5D.51.55.在2,0,−1,1四个数中,负数是()3A.2B.0C.−1D.136.入秋以后,某地菠菜喜获丰收,价格增长−1元/千克,意思就是()A.菠菜的价格降低−1元/千克B.菠菜的价格增长1元/千克C.菠菜的价格降低1元/千克D.以上说法都正确7.下列各数是负分数的是()A.−7B.1C.−1.5D.028.中国人很早就开始使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放着表示正数,斜放着表示负数,如图(1)表示(+2)+ (−2).按照这种表示法,如图(2)表示的是()A.(+3)+(+6)B.(−3)+(−6)C.(−3)+(+6)D.(+3)+(−6) 9.在一次数学测验中,小明所在班级的平均分为86分,把高出平均分的部分记为正数,小明考了98分记作+12分,若小强成绩记作-4分,则他的考试分数为()A.90分B.88分C.84分D.82分10.北京与柏林的时差为7小时,例如,北京时间14:00,同一时刻的柏林时间是7:00.小丽和小红分别在北京和柏林,她们相约在各自当地时间8:00~17:00之间选择一个时刻开始通话,这个时刻可以是北京时间()A.9:30B.11:30C.13:30D.15:30二、填空题11.某水果店盈利701元时我们记作+701元,那么亏本259元记作_____元.12.中国人最先使用负数,魏晋时期的数学家刘徽在其著作《九章算术注》中,用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(红色为正,黑色为负).如图1表示的算式是(+2)+(−2),根据这种表示法,可推算出图2所表示的算式是_______.13.下表是某市汽油价格调整情况:与上一年年底相比,11月9日的汽油价格是___________(填“上升”或“下降”)了___________元;14.中国古代的算筹计数法可追溯到公元前5世纪.摆法有纵式和横式两种(如图所示),以算筹计数的方法是摆个位为纵,十位为横,百位为纵,千位为横……这样纵横依次交替,宋代以后出现了笔算,在个位数划上斜线以表示负数,如表示−752,表示2369,则表示________.15.做生意盈亏属于正常现象,如果盈利500元记作+500元,那么-300元表示______.三、解答题16.任意写出5个正数和5个负数,并分别把它们填入相应的集合里.17.如果把收入50元记作50元,那么下列各数分别表示什么意义?(1)25元(2)7.3元(3)−12元(4)0元18.某超市2021年上半年的营业额与2020年同月营业额相比的增长率如下表所示.请根据表格信息回答下列问题:(1)该超市2021年上半年的营业额与2020年同月营业额相比,哪几个月是增长的?(2)2021年1月和4月比上年同月增长率是负数表示什么意思?(3)2021年上半年与2020年上半年同月相比,营业额没有增长的是哪几个月?19.某班8名同学的体重(单位:kg)分别为:52,51.5,49.5,50.5,45,56,47.5,42.5.你能设定一个标准用正负数表示他们的体重吗?20.一辆清雪车在一条东西方向的道路上进行清雪工作,清雪车早晨从A处出发,清雪结束时停留在B处.规定向东为正,当天行驶记录如下:(单位:千米)﹣15,+8,﹣7,+18,+6,﹣12.4,+6,﹣5.1.(1)B处在A处何方?距A处多少千米?(2)一辆清雪车每行驶1千米可清雪20立方米,求这辆清雪车这一天的清雪量.21.某检修小组乘一辆汽车沿公路东西方向检修线路,约定向东为正.某天从A地出发到收工时,行走记录为(单位:千米):+15,﹣2,+5,﹣1,+10,+3,﹣2,+12,+4,﹣2,+6.(1)计算收工时检修小组在A地的哪一边?距A地多远?(2)若每千米汽车耗油量为0.4升,求出发到收工汽车耗油多少升.参考答案:1.B2.B3.B4.C5.C6.C7.C8.D9.D10.D11.−25912.(+3)+(−6)13.上升48014.−741615.亏损300元16.5个正数:1、2、3、4、5;5个负数:-1、-2、-3、-4、-5;17.(1)收入25元(2)收入7.3元(3)支出12元(4)没有收入也没有支出18.(1)3月,5月,6月是增长的(2)负数表示降低,营业额下降(3)没有增长的是1月,2月,4月19.参考答案略20.(1)B处在A处的西方,距A处1.5千米;(2)这辆清雪车这一天的清雪量为155立方米.21.(1)检修小组在A地东边,距A地48千米;(2)出发到收工检修小组耗油24.8升.。
(完整版)初中数学正负数的加减乘除运算分类练习题

A .△同号两数相加,取__________________,并把____________________________。
1、(–3)+(–9)2、85+(+15)3、(–361)+(–332) 4、(–3.5)+(–532)△绝对值不相等的异号两数相加,取_________________________,并用____________________ . 互为__________________的两个数相加得0。
1、(–45) +(+23)2、(–1.35)+6.353、412+(–2.25) 4、(–9)+7△ 一个数同0相加,仍得_____________。
1、(–9)+ 0=______________;2、0 +(+15)=_____________。
B 1、(–1.76)+(–19.15)+ (–8.24) 2、23+(–17)+(+7)+(–13)3、(+ 341)+(–253)+ 543+(–852) 4、52+112+(–52) 5、-57+(+101)6、90-(-3)7、-0.5-(-341)+2.75-(+721) 8、 712143269696⎛⎫⎛⎫⎛⎫⎛⎫----++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭C .有理数的减法可以转化为_____来进行。
△减法法则:减去一个数,等于_____________________________。
1、(–3)–(–5) 2、341–(–143) 3、0–(–7)D .加减混合运算可以统一为_______1、(–3)–(+5)+(–4)–(–10) 2、341–(+5)–(–143)+(–5)△把–2.4–(–3.5)+(–4.6)+ (+3.5)写成省略加号的和的形式是______________,读作:__________________________,也可以读作:__________________________。
1、 1–4 + 3–52、–2.4 + 3.5–4.6 + 3.53、 381–253 + 587–852A.有理数的乘法法则:两数相乘,同号得________,异号得_______,并把___________________。
七年级正负数应用题数学

七年级正负数应用题数学1. 某巡警骑摩托车在一条南北大道上巡逻。
他从岗亭出发,中午停留在A处。
规定向北方向为正。
当天上午连续行驶情况如下:+5,-4,+3,-7,+4,-8,+2,-1。
(1) A处在岗亭的哪个方向?距离岗亭有多远?2. 某工厂生产一批零件。
根据要求,圆柱体的内径可以有0.03毫米的误差。
抽查5个零件,超过规定内径的记作正数,不足的记作负数。
检查结果如下:+0.025,-0.035,+0.016,-0.010,+0.041。
(1) 哪些产品符合要求?3. 某奶粉每袋的标准质量为454克。
在质量检测中,若超出标准质量2克,记作+2克。
若质量低于3克以上,则这袋奶粉为不合格。
现在抽取10袋样品进行质量检测,结果如下(单位:克)。
袋号 1 2 3 4 5 6 7 8 9 10质量 -23 -4 -3 -5 +4 +4 -6 -3(1) 这10袋奶粉中有哪几袋不合格?(2) 质量最高的是哪袋?它的实际质量是多少?4. 蜗牛从某点开始沿一东西方向直线爬行。
规定向东爬行的路程记为正数,向西爬行的路程记为负数。
爬过的各段路程依次为(单位:厘米):+4,-3,+10,-9,-6,+12,-10。
(1) 求蜗牛最后的位置在哪个方向,距离是多少?(2) 在爬行过程中,如果每爬1厘米奖励一粒芝麻,蜗牛一共得到多少粒芝麻?5. 某巡警车在一条南北大道上巡逻。
某天巡警车从岗亭A 处出发,规定向北方向为正。
当天行驶纪录如下(单位:千米):+10,-9,+7,-15,+6,-5,+4,-2。
(1) 最终巡警车是否回到岗亭A处?若没有,在岗亭何方,距离有多远?7. 生活与应用:(缺少具体内容,无法进行改写)蜗牛从A点出发,在一条数轴上来回爬行,向正半轴运动记作“+”,向负半轴运动记作“-”。
从开始到结束爬行的各段路程(单位:cm)依次为:+7,-5,-10,-8,+9,-6,+12,+4。
若A点在数轴上表示的数为-3,则蜗牛停在数轴上的位置为1。
人教版七年级上册数学1.1正数与负数练习题

初中数学组卷参考答案与试题解析一.选择题(共50小题)1.在数﹣(﹣3),0,(﹣3)2,|﹣9|,﹣14中,正数的有()个.A.2 B.3 C.4 D.5【分析】根据相反数的定义,有理数的乘方和绝对值的性质化简,然后根据正数和负数的定义判定即可.【解答】解:﹣(﹣3)=3是正数,0既不是正数也不是负数,(﹣3)2=9是正数,|﹣9|=9是正数,﹣14=﹣1是负数,所以,正数有﹣(﹣3),(﹣3)2,|﹣9|共3个.故选B.【点评】本题考查了正数和负数,主要利用了相反数的定义,有理数的乘方和绝对值的性质.2.在﹣32,(﹣3)2,﹣(﹣3),﹣|﹣3|中,负数的个数是()A.l个B.2个 C.3个 D.4个【分析】先把各数化简,再根据负数的定义,即可解答.【解答】解:﹣32=﹣9,(﹣3)2=9,﹣(﹣3)=3,﹣|﹣3|=﹣3,﹣9,﹣3是负数,共2个.故选:B.【点评】本题考查了正数和负数,解决本题的关键是先把各数化简.3.如果向北走6步记作+6,那么向南走8步记作()A.+8步B.﹣8步C.+14步D.﹣2步【分析】“正”和“负”是表示互为相反意义的量,向北走记作正数,那么向北的反方向,向南走应记为负数.【解答】解:∵向北走6步记作+6,∴向南走8步记作﹣8,故选B.【点评】本题考查了正数和负数的定义.解本题的根据是掌握正数和负数是互为相反意义的量.4.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃【分析】此题主要用正负数来表示具有意义相反的两种量:若零上记为正,则零下就记为负,直接得出结论即可.【解答】解:若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.故选:B.【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.5.纽约、悉尼与北京的时差如下表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数):当北京6月15日23时,悉尼、纽约的时间分别是()A.6月16日1时;6月15日10时 B.6月16日1时;6月14日10时C.6月15日21时;6月15日10时D.6月15日21时;6月16日12时【分析】由统计表得出:悉尼时间比北京时间早2小时,也就是6月16日1时.纽约比北京时间要晚13个小时,也就是6月15日10时.【解答】解:悉尼的时间是:6月15日23时+2小时=6月16日1时,纽约时间是:6月15日23时﹣13小时=6月15日10时.故选:A.【点评】本题考查了正数和负数.解决本题的关键是根据图表得出正确信息,再结合题意计算.6.大米包装袋上(10±0.1)kg的标识表示此袋大米重()A.(9.9~10.1)kg B.10.1kg C.9.9kg D.10kg【分析】根据大米包装袋上的质量标识为“10±0.1”千克,可以求得合格的波动范围,从而可以解答本题.【解答】解:∵大米包装袋上的质量标识为“10±0.1”千克,∴大米质量的范围是:9.9~10.1千克,故选:A.【点评】本题考查正数和负数,解题的关键是明确题意,明确正数和负数在题目中的实际意义.7.一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的是()A.24.70千克B.25.30千克C.24.80千克D.25.51千克【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“25±0.25千克”表示合格范围在25上下0.25的范围内的是合格品,即24.75到25.25之间的合格,故只有24.80千克合格.故选:C.【点评】此题考查正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.8.如果收入15元记作+15元,那么支出20元记作()元.A.+5 B.+20 C.﹣5 D.﹣20【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以如果收入15元记作+15元,那么支出20元记作﹣20元.故选D.【点评】考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.9.在﹣2、+、﹣3、2、0、4、5、﹣1中,负数有()A.1个 B.2个 C.3个 D.4个【分析】根据负数的定义逐一判断即可.【解答】解:在﹣2、+、﹣3、2、0、4、5、﹣1中,负数有在﹣2、﹣3、﹣1共3共个.故选:C.【点评】本题考查了负数的定义:小于0的数是负数.10.某种速冻水饺的储藏温度是﹣18±2℃,四个冷藏室的温度如下,则不适合储藏此种水饺的是()A.﹣17℃B.﹣22℃C.﹣18℃D.﹣19℃【分析】根据有理数的加减运算,可得温度范围,根据温度范围,可得答案.【解答】解:﹣18﹣2=﹣20℃,﹣18+2=﹣16℃,温度范围:﹣20℃至﹣16℃,A、﹣20℃<﹣17℃<﹣16℃,故A不符合题意;B、﹣22℃<﹣20℃,故B不符合题意;C、﹣20℃<﹣18℃<﹣16℃,故C不符合题意;D、﹣20℃<﹣19℃<﹣16℃,故D不符合题意;故选:B.【点评】本题考查了正数和负数,有理数的加法运算是解题关键,先算出适合温度的范围,再选出不适合的温度.11.李白出生于公元701年,我们记作+701,那么秦始皇出生于公元前256年,可记作()A.256 B.﹣957 C.﹣256 D.445【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:公元701年用+701年表示,则公年前用负数表示;则公年前256年表示为﹣256年.故选C.【点评】此题考查正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.12.下列各数:(﹣3)2,0,﹣(﹣)2,,(﹣1)2009,﹣22,﹣(﹣8),﹣|﹣|中,负数有()A.2个 B.3个 C.4个 D.5个【分析】负数是小于零的数,由此进行判断即可.【解答】解:(﹣3)2=9,﹣(﹣)2=﹣,(﹣1)2009=﹣1,﹣22=﹣4,﹣(﹣8)=8,﹣|﹣|=﹣,则所给数据中负数有:﹣(﹣)2、(﹣1)2009、﹣22、﹣|﹣|,共4个.故选C.【点评】本题考查了正数和负数的知识,解答本题的关键是掌握负数的定义.13.有四包真空包装的火腿肠,每包以标准质量450g为基准,超过的克数记作正数,不足的克数记作负数.下面的数据是记录结果,其中与标准质量最接近的是()A.+2 B.﹣3 C.+4 D.﹣1【分析】根据正负数的意义,绝对值最小的即为最接近标准的.【解答】解:|2|=2,|﹣3|=3,|+4|=4,|﹣1|=1,∵1<2<3<4,∴从轻重的角度来看,最接近标准的是记录为﹣1.故选:D.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.14.下列各式结果是负数的是()A.﹣(﹣3)B.﹣|﹣3| C.3﹣2D.(﹣3)2【分析】根据相反数、绝对值、乘方,进行化简,即可解答.【解答】解:A、﹣(﹣3)=3,故错误;B、﹣|﹣3|=﹣3,正确;C、,故错误;D、(﹣3)2=9,故错误;故选:B.【点评】本题考查了相反数、绝对值、乘方,解决本题的关键是熟记相反数、绝对值、乘方的法则.15.在下列选项中,具有相反意义的量是()A.收入20元与支出30元B.上升了6米和后退了7米C.卖出10斤米和盈利10元D.向东行30米和向北行30米【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:A、收入20元与支出30元是相反意义的量,故A正确;故选:A.【点评】本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.16.一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的有()A.25.30千克B.25.51千克C.24.80千克D.24.70千克【分析】根据一种面粉的质量标识为“25±0.25千克”,可以求出合格面粉的质量的取值范围,从而可以解答本题.【解答】解:∵一种面粉的质量标识为“25±0.25千克”,∴合格面粉的质量的取值范围是:(25﹣0.25)千克~(25+0.25)千克,即合格面粉的质量的取值范围是:24.75千克~25.25千克,故选项A不合格,选项B不合格,选项C合格,选项D不合格.故选C.【点评】本题考查正数和负数,解题的关键是明确正负数在题目中的实际意义.17.一袋大米的标准重量为10kg.把一袋重10.5kg的大米记为+0.5kg,则一袋重9.8kg的大米记为()A.﹣9.8kg B.+9.8kg C.﹣0.2kg D.0.2kg【分析】根据正、负数的意义列式计算即可得解.【解答】解:∵多于标准重量0.5kg的面粉记作+0.5kg,∴低于标准重量0.2kg的面粉记作﹣0.2kg.故选C.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.18.如果+160元表示增加160元,那么﹣60元表示()A.增加100元B.增加60元C.减少60元D.减少220元【分析】利用相反意义量的定义判断即可.【解答】解:如果+160元表示增加160元,那么﹣60元表示减少60元,故选C【点评】此题考查了正数与负数,熟练掌握相反意义量的定义是解本题的关键.19.中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数,如果收入120元记作+120元,那么﹣100元表示()A.支出20元B.收入20元C.支出100元D.收入100元【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:如果收入120元记作+120元,那么﹣100元表示支出100元,故选:C.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.20.2016年深圳市生产总值同比增长9%,记作+9%,而尼日利亚国内生产总值同比下滑2.24%,应记作()A.2.24% B.﹣2.24% C.2.24 D.﹣2.24【分析】利用相反意义量的定义判断即可.【解答】解:2016年深圳市生产总值同比增长9%,记作+9%,而尼日利亚国内生产总值同比下滑2.24%,应记作﹣2.24%,故选B【点评】此题考查了正数与负数,熟练掌握相反意义量的定义是解本题的关键.21.在下列数:﹣3,0,1,﹣中,属于负数的有()A.1个 B.2个 C.3个 D.4个【分析】根据小于0的数即为负数解答可得.【解答】解:在﹣3,0,1,﹣中,属于负数的有﹣3、﹣这2个,故选:B.【点评】本题主要考查正数和负数,熟练掌握负数的概念是解题的关键.22.我们规定一个物体向右运动为正,向左运动为负.如果该物体向左连续运动两次,每次运动3 米,那么下列算式中,可以表示这两次运动结果的是()A.(﹣3)2 B.(﹣3)﹣(﹣3)C.2×3 D.(﹣3)×2【分析】根据正数和负数表示相反意义的量,向右移动记为正,向左运动为负,该物体向左运动3 米得(﹣3)米,连续向左运动两次,就是再乘2,从而得出答案.【解答】解:∵向右运动为正,向左运动为负,该物体向左连续运动两次,每次运动3 米,∴这两次运动结果的是:(﹣3)×2;故选D.【点评】此题考查了正数和负数,相反意义的量用正数和负数表示,解决本题的关键是熟记正负数的意义.23.在﹣4、﹣2、0、1、3、4这六个数中,正数有()A.1个 B.2个 C.3个 D.4个【分析】根据正数的定义,可得答案.【解答】解:∵1>0,3>0,4>0,∴1,3,4是正数,故选:C.【点评】本题考查了正数和负数,利用整数的定义是解题关键.24.在﹣0.5,﹣,0,1这四个数中,负数有()个.A.1 B.2 C.3 D.4【分析】根据负数的意义,可得答案.【解答】解:∵﹣<0,﹣0.5<0,∴,﹣0.5是负数,故选:B.【点评】本题考查了正数和负数,利用负数的定义是解题关键.25.某品牌乒乓球的标准质量为2.7克,误差为±0.03克,若从符合要求的乒乓球中随意取出两只,则这两只乒乓球的质量最多相差()A.0.03克B.0.06克C.2.73克D.2.67克【分析】根据题意可以求得两只乒乓球的质量最多相差多少,本题得以解决.【解答】解:∵某品牌乒乓球的标准质量为2.7克,误差为±0.03克,∴若从符合要求的乒乓球中随意取出两只,则这两只乒乓球的质量最多相差:(2.7+0.03)﹣(2.7﹣0.03)=0.06(克),故选B.【点评】本题考查正数和负数,解答本题的关键是明确正数和负数在题目中的实际意义.26.如果向东走3米记作+3 米,那么向西走2 米记作()A.米 B.米C.2 米D.﹣2 米【分析】根据负数的意义和应用,可得:如果向东走3 米记作+3 米,那么向西走2 米记作﹣2米.【解答】解:如果向东走3 米记作+3 米,那么向西走2 米记作﹣2米.故选:D.【点评】此题主要考查了用正负数表示两种具有相反意义的量.具有相反意义的量都是互相依存的两个量,它包含两个要素,一是它们的意义相反,二是它们都是数量.27.中国人很早开始使用负数,中国古代数学著作《九章算术》的”方程“一章,在世界数学史上首次正式引入负数.如果收入1000元记作+1000元,那么﹣600元表示()A.收入600元B.支出600元C.收入400元D.支出400元【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:由题意得:如果收入1000元记作+1000元,那么﹣600元表示支出600元.故选:B.【点评】本题主要考查了正数和负数的定义,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量,比较简单.28.如果水位升高2m时水位变化记作+2m,那么水位下降2m时水位变化记作()A.﹣2m B.﹣1m C.1m D.2m【分析】根据水位升高2m时水位变化记作+2m,从而可以表示出水位下降2m 时水位变化记作什么,本题得以解决.【解答】解:∵水位升高2m时水位变化记作+2m,∴水位下降2m时水位变化记作﹣2m,故选A.【点评】本题考查正数和负数,解答本题的关键是明确正数和负数在题目中的实际意义.29.中国人很早就开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数,如果盈利100元记作+100,则﹣80元表示()A.亏损20元B.盈利20元C.亏损80元D.盈利80元【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:如果盈利100元记作+100,则﹣80元表示亏损80元,故选:C.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.30.体重增加了﹣2㎏,表示()A.体重增加了2㎏ B.体重减少了2㎏C.体重减少了﹣2㎏D.体重不变【分析】把标准体重记作0千克,增加记作“+”,下降记作“﹣”.【解答】解:体重增加了﹣2千克表示体重减少了2千克.故选:B.【点评】本题是考查正、负数的意义及其应用,属于基础知识.31.某储蓄所办理的5件业务是:取出865元,取出500元,存入1230元,取出300元,取出265元,这时存款总计增加了多少元()A.﹣700 B.﹣250 C.350 D.900【分析】根据正数和负数表示相反意义的量,存入记为正,可得取出的表示方法,根据有理数的加法,可得答案.【解答】解:取出865元,取出500元,存入1230元,取出300元,取出265元,分别记为﹣865元,﹣500元,1230元,﹣300元,﹣265元,﹣865+(﹣500)+1230+(﹣300)+(﹣265)=﹣700(元),故选:A.【点评】本题考查了正数和负数,利用了有理数的加法.32.飞机上升﹣1500米,实际上就是()A.上升1500米B.下降1500米C.下降﹣1500米D.无法确定【分析】根据正负数的意义,上升负数即为下降解答.【解答】解:飞机上升﹣1500米,实际上就是下降1500米.故选B.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.33.若火箭发射点火前5s记作﹣5s,则火箭发射点火后10s应记作()A.﹣10s B.5s C.+5s D.+10s【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵火箭发射点火前5s记作﹣5s,∴火箭发射点火后10s应记作+10s.故选D.明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.34.已知四个数中:(﹣1)2013,|﹣2|,﹣(﹣1.5),﹣32,其中负数的个数有()A.1个 B.2个 C.3个 D.4个【分析】利用“负数的奇数次幂是负数”,“绝对值大于等于0”既可作答.注意最后﹣32=﹣9.【解答】解:(﹣1)2013=﹣1;|﹣2|=2;﹣(﹣1.5)=1.5;﹣32=﹣3【点评】此题主要考查基本的正负数运算,会判断正数和负数,属于基础题.35.某次数学测试的成绩,以70分为基准,老师公布成绩为:小丽+28分,小明0分,小亮﹣12分,则小亮的实际分数是()A.98分B.70分C.58分D.88分【分析】根据正数和负数的意义列式计算即可得解.【解答】解:小亮的实际分数是70﹣12=58.故选C.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.36.有一种记分方法:以80为准,88分记为+8分,某同学得分为73分,则应记为()A.+73分B.﹣73分C.+7分D.﹣7分【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵以80分为基准,88分记为+8分,∴得73分记为﹣7分;故选D.明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.37.如果m是一个有理数,那么下面结论中正确的是()A.﹣m一定是负数 B.|m|一定是正数C.﹣|m|一定是负数D.|m|不是负数【分析】根据正数大于0,负数小于零,可得答案.【解答】解:A、﹣m是非正数,故A错误;B、|m|是非负数,故B错误;C、﹣|m|是非正数,故C错误;D、|m|是非负数,故D正确;故选:D.【点评】本题考查了正数和负数,利用了正数和负数的意义.38.如图所示,如果把张明前面第二个同学李利记作+2,那么﹣1表示张明周围的()同学.A.甲B.丙C.乙D.丁【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:∵李利在张明前第二个同学记作+2,∴张明后第一个同学记为﹣1,故选:B.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.39.在下列各数﹣(+3)、﹣22、、﹣、﹣(﹣1)2、﹣|﹣4|中,负数有()A.2个 B.3 个C.4个 D.5个【分析】根据相反数的定义,有理数的乘方,以及绝对值的性质分别化简,再根据正数和负数定义进行判断即可得解.【解答】解:﹣(+3)=﹣3是负数,﹣22=﹣4是负数,(﹣)2=,是正数,﹣=﹣,是负数,﹣(﹣1)2=﹣1,是负数,﹣|﹣4|=﹣4是负数,综上所述,负数有5个.故选D.【点评】本题考查了正数和负数,主要利用了相反数的定义,有理数的乘方,绝对值的性质,要注意负数和分数的乘方加括号和不加括号的意义完全不同.40.在有理数﹣(﹣3),(﹣2)2,0,﹣32,﹣|3|,﹣中,负数的个数有()个.A.0 B.1 C.2 D.3【分析】此题只需根据负数的定义,即负数为小于0的有理数,再判定负数的个数.【解答】解:根据负数的定义,则﹣32,﹣|3|,﹣为负数,共3个.故选D.【点评】本题考查了负数的定义,比较简单,容易掌握.41.在海平面上15米记作15米,那么在海平面下5米可记作()A.5 B.﹣5 C.5米 D.﹣5米【分析】根据正数和负数表示相反意义的量,海平面上记为正,可得海平面下的表示方法.【解答】解:海平面上15米记作15米,那么在海平面下5米可记作﹣5米,故选:B.【点评】本题考查了正数和负数,相反意义的量用正数和负数表示.42.下列各数:﹣6,﹣3.4,+2.25,1,0,﹣3.14,2014,其中正数的个数有()A.2个 B.3个 C.4个 D.5个【分析】根据正数的定义选出即可.【解答】解:正数有+2.25,1,2014,共3个,故选B.【点评】本题考查了对正数和负数的应用,主要考查学生的理解能力.43.小明同学在一条南北走向的公路上晨练,跑步情况记录如下:(向北为正,单位:m):500,﹣400,﹣700,800,小明同学跑步的总路程为()A.800m B.200m C.2400m D.﹣200m【分析】求出运动情况中记录的各个数的绝对值的和即可.【解答】解:各个数的绝对值的和:500+400+700+800=2400(米).则小明同学跑步的总路程为2400米.故选:C.【点评】考查了正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.而求路程不考虑方向,是各数的绝对值的和.44.下列语句叙述不正确的是()A.若上升3米记作+3米,则不升不降记为0米B.水位的变化是﹣2米,表示的意义是水位下降了﹣2米C.温度上升﹣10℃是指下降10℃D.盈利﹣10元是指亏损10元【分析】根据各个选项中的语句可以判断正确与否,从而可以解答本题.【解答】解:若上升3米记作+3米,则不升不降记为0米,故选项A正确,水位的变化是﹣2米,表示的意义是水位下降了2米或上升了2米,故选项B错误,温度上升﹣10℃是指下降10℃,故选项C正确,盈利﹣10元是指亏损10元,故选项D正确,故选B.【点评】本题考查正数和负数,解答本题的关键是明确正数和负数在题目中的实际含义.45.如果规定向东行进为正,那么﹣50m表示的意义是()A.向东行进50m B.向南行进50m C.向西行进50m D.向北行进50m 【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:如果规定向东行进为正,那么﹣50m表示的意义是向西行进50m.故选:C.【点评】此题考查了正数和负数,本题解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.46.下列各数中,﹣(﹣3),(﹣3)2,﹣|+5|,,﹣12,﹣(﹣1)2013,负数的个数是()A.1个 B.2个 C.3个 D.4个【分析】根据负数是小于零的数,可得答案.【解答】解:﹣(﹣3)=3>0,(﹣3)2=9>0,﹣|+5|=﹣5<0,﹣=﹣<0,﹣(﹣1)2013=+1>0.故选:B.【点评】本题考查了正负数,小于零的数是负数,大于零的数是正数,0既不是正数也不是负数.47.在下列各数:﹣(+3)、﹣22、(﹣1)100、﹣(﹣1)、2007、﹣|﹣4|中,负数的个数是()A.2 B.3 C.4 D.5【分析】首先利用相反数的意义,绝对值的意义,乘方的计算方法化简,再进一步找出负数即可.【解答】解:﹣(+3)=﹣3,(﹣1)100=1,﹣(﹣1)=1,﹣|﹣4|=﹣4,所以负数有:﹣(+3)、﹣22、﹣|﹣4|共3个.故选:B.【点评】此题考查正负数的意义,求绝对值、相反数、乘方的方法,注意不要把带负号的都看做负数.48.排球比赛所使用的排球质量是有严格规定的.现检查4个排球的质量,超过规定质量的记做正数,不足规定质量的记做负数.1﹣4号排球检查结果如下+15,﹣10,+30,﹣20,那么哪一号排球的质量好些()A.1号 B.2号 C.3号 D.4号【分析】根据绝对值越小的说明误差越小,所以先求已知几个数的绝对值,选择绝对值最小的即可.【解答】解:∵|+30|>|﹣20|>|+15|>|﹣10|,又∵绝对值最小的数,越是离标准质量的克数最近的,∴第2个球质量好些;故选B.【点评】本题考查了绝对值,正数和负数的知识,解决此类问题的关键是找出绝对值最小的有理数,并理解绝对值的概念.49.在下列各组中,()是互为相反意义的量.A.上升的反义词是下降B.篮球比赛胜5场与负5场C.向东走3米,再向南走2米D.增产10吨粮食与减产吨粮食【分析】根据相反意义的量的定义对各选项分析判断利用排除法求解.【解答】解:A、上升的反义词是下降,但没有量,故本选项错误;B、篮球比赛胜5场与负5场是互为相反意义的量,故本选项正确;C、向东走3米,再向南走2米不是互为相反意义的量,故本选项错误;D、增产10吨粮食与减产吨粮食,减产没有量,故本选项错误.故选B.【点评】本题考查了正数和负数,主要是对相反意义的量的考查,是基础题.50.三和超市出售的三种品牌的月饼袋上,分别标有质量为(600±5)g,(600±l0)g,(600±20)g的字样,从中任意拿出两袋,它们的质量最多相差()A.40g B.30g C.20g D.10g【分析】根据题意计算出月饼质量最多的为600+20=620g,最少的为600﹣20=580g,求出之差即为它们的质量最多相差.【解答】解:根据题意得:月饼质量最多的为600+20=620g,最少的为600﹣20=580g,则从中任意拿两袋月饼,它们的质量最多相差620﹣580=40g.故选A.【点评】此题考查了正数与负数,弄清题意是解本题的关键.。
初中七年级数学正数与负数练习

初中七年级数学正数与负数练习一.填空题(共7小题)1.(2013•乐山)如果规定向东为正,那么向西即为负.汽车向东行驶3千米记作3千米,向西行驶2千米应记作_________千米.2.(2012•玉林)既不是正数也不是负数的数是_________.3.(2012•连云港)某药品说明书上标明药品保存的温度是(20±2)℃,该药品在_________℃范围内保存才合适.4.(2006•大连)某水井水位最低时低于水平面5米,记为﹣5米,最高时低于水平面1米,则水井水位h米中h的取值范围是_________.5.(2004•芜湖)按照“神舟”号飞船环境控制与生命保障分系统的设计指标,“神舟”六号飞船返回舱的温度为21℃±4℃.该返回舱的最高温度为_________℃.6.若喀左县政府广场的海拔高度为110米,以此地为标准,测得乌兰山公园顶部电视塔高为85米,平房子乡政府处为﹣125米,则电视塔处的海拔高度为_________米,平房子乡政府处的海拔高度为_________米.7.某公交车上原有乘客16人,经过3个站点时上下车情况如下(上车为正,下车为负):(+3,﹣5),(﹣2,+6),(﹣4,+7),则现车上有_________人.二.解答题(共7小题)8.检修小组从A地点出发,在东西走向的路上检修线,如果规定向东为正,向西为负,一天中行驶记录如下(单位:千米);﹣4,+7,﹣9,+8,+6,﹣4,﹣3.(1)收工时距A地多远?(2)距A地最远的是哪一次?(3)若每千米耗油0.3升,从出发到收工共耗油多少升?9.某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超出或不少?10.某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天(2)该厂实行计件工资制,一周结算一次,每辆车60元,超额完成任务每辆再奖15元,少生产一辆倒扣15元,那么该厂工人这一周的工资总额是多少元?(2)这10袋样品中,符合每袋标准质量450克的有_________袋;(3)这批样品的总质量是多少克?平均质量比标准质量多还是少?多或少几袋?(要求:写出算式,并计算)12.有8筐苹果,以每筐30千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的纪录如下:回答下列问题:(1)与标准重量比较,这8筐苹果总计超过或不足多少千克?(2)若苹果每千克售价4元,则出售这8筐苹果可卖多少元?13.有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的纪录如下:回答下列问题:(1)这8筐白菜中最接近标准重量的这筐白菜重_________千克;(2)这8筐白菜一共重多少千克?14.有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:(1)8筐白菜的总重量.(2)平均每筐白菜的重量.初中七年级数学正数与负数练习参考答案与试题解析一.填空题(共7小题)1.(2013•乐山)如果规定向东为正,那么向西即为负.汽车向东行驶3千米记作3千米,向西行驶2千米应记作﹣2千米.2.(2012•玉林)既不是正数也不是负数的数是0.3.(2012•连云港)某药品说明书上标明药品保存的温度是(20±2)℃,该药品在18~22℃范围内保存才合适.4.(2006•大连)某水井水位最低时低于水平面5米,记为﹣5米,最高时低于水平面1米,则水井水位h 米中h的取值范围是﹣5≤h≤﹣1.5.(2004•芜湖)按照“神舟”号飞船环境控制与生命保障分系统的设计指标,“神舟”六号飞船返回舱的温度为21℃±4℃.该返回舱的最高温度为25℃.6.若喀左县政府广场的海拔高度为110米,以此地为标准,测得乌兰山公园顶部电视塔高为85米,平房子乡政府处为﹣125米,则电视塔处的海拔高度为195米,平房子乡政府处的海拔高度为﹣15米.7.某公交车上原有乘客16人,经过3个站点时上下车情况如下(上车为正,下车为负):(+3,﹣5),(﹣2,+6),(﹣4,+7),则现车上有21人.二.解答题(共7小题)8.检修小组从A地点出发,在东西走向的路上检修线,如果规定向东为正,向西为负,一天中行驶记录如下(单位:千米);﹣4,+7,﹣9,+8,+6,﹣4,﹣3.(1)收工时距A地多远?(2)距A地最远的是哪一次?(3)若每千米耗油0.3升,从出发到收工共耗油多少升?9.某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超出或不足的部分分别这样样品的平均质量比标准质量多几克?如果标准质量为400克,则抽样样品的总质量是多少?10.某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计(2)该厂实行计件工资制,一周结算一次,每辆车60元,超额完成任务每辆再奖15元,少生产一辆倒扣15元,那么该厂工人这一周的工资总额是多少元?(2)这10袋样品中,符合每袋标准质量450克的有3袋;(3)这批样品的总质量是多少克?平均质量比标准质量多还是少?多或少几袋?(要求:写出算式,并计算)=450.512.有8筐苹果,以每筐30千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的纪录如下:回答下列问题:(1)与标准重量比较,这8筐苹果总计超过或不足多少千克?(2)若苹果每千克售价4元,则出售这8筐苹果可卖多少元?13.有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的纪录如下:回答下列问题:(1)这8筐白菜中最接近标准重量的这筐白菜重24.5千克;(2)这8筐白菜一共重多少千克?14.有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:(1)8筐白菜的总重量.(2)平均每筐白菜的重量.。
初一数学衔接课程练习试题【正负数】

初一衔接课程练习试题【正负数】1.在-(-2),-|-2|,(-2),-2这4个数中,负数的个数是()A.1B.2C.3D.4解析:负数是小于零的数,由此可得出答案.解:-(-2)=2,-|-2|=-2,(-2)=-2,所给数据中负数有:-|-2|,(-2),-2,共3个.故选C.2.在有理数,-(-2),|-2|,-22,(-2)2,(-2)3中,负数有()A.1个B.2个C.3个D.4个解析:计算出结果,即可作出判断.解:-(-2)=2,|-2|=2,-22=-4,(-2)2=4,(-2)3=-8,则负数有2个.故选B3.若向东走9米,记作:+9米,那么-6表示_____.解析:首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.解:∵向东走9米,记作:+9米,∴-6表示向西走6米.故答案为:向西走6米.4.如果全班某次数学测试的平均成绩为83分,某同学考了85分,记作+2分,得分80分应记作_____.解析:根据85-83=2=+2,记作+2分,求出80-83=-3,即可得出结论(记作-3分).解:∵85-83=2=+2,记作+2分,∴80-83=-3,即得分80分记作-3分,故答案为:-3分.5.长江足球队近六年与黄河队比赛如下表:表1长江足球队成绩年份979899000102一场+3+2-2-1+40二场+1-5+3-40-1合计其中用-x表示净输x个球.用+x表示净赢x个球.用0表示平局.请您帮忙计算一下以上六年合计分别是多少?1997年:_____1998年:_____1999年:_____2000年:_____2001年:_____2002年:_____六年净胜球总计:_____.思考:以上结果你是如何得出的?(1)同号两数如何相加?(2)异号两数如何相加?(3)一个数与零相加和是多少?解析:根据有理数的加减运算法则,根据同号相加,异号相加的运算,分别计算1997、1998、1999、2000、2001、2002各年的赢球数,相加则为6年的总数.解:(1)符号不变,将绝对值相加.(2)取绝对值较大的加数的符号,并用较大的绝对值减较小的绝对值.(3)还是它本身.故答案依次为:+4、-1、+1、-5、+4、-1、2.6.下面为某个雨季某地一条河流一周以来的水位变化情况,上周日水位为70米.(注:正数表示比前一天上升,负数表示比前一天下降。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学正负数练习题
一、选择题
1.若规定收入为“+”,那么支出-50元表示( )
A.收入了50元;
B.支出了50元;
C.没有收入也没有支出;
D.收入了100元
2.下列说法正确的是( )
A.一个数前面加上“-”号,这个数就是负数;
B.零既不是正数也不是负数
C.零既是正数也是负数;
D.若a是正数,则-a不一定就是负数
3.既是分数,又是正数的是( )
A.+5
B.-5
C.0
D.8
4.下列说法不正确的是( )
A.有最小的正整数,没有最小的负整数;
B.一个整数不是奇数,就是偶数
C.如果a是有理数,2a就是偶数;
D.正整数、负整数和零统称整数
5.下列说法正确的是( )
A.有理数是指整数、分数、正有理数、零、负有理数这五类数
B.有理数不是正数就是负数
C.有理数不是整数就是分数;
D.以上说法都正确
二、填空题
1.向东走10米记作-10米,那么向西走5米,记作____________.
2.某城市白天的最高气温为零上6℃,到了晚上8时,气温下降了8℃,该城市当晚8时的气温为_________.
3.如果某股票第一天跌了3.01%,应表示为________,第二天涨了
4.21%,•应表示为_____________.
4.一种零件标明的要求是 (•单位:•mm)•,•表示这种零件的标准尺寸为直径10mm,该零件最大直径不超过____________mm,最小不小于____________mm,为合格产品.
5.若书店在学校的东面500米记作+500米,那么超市的位置记作-600米,•则表示____________.
6.在东西走向的公路上,•乙在甲的东边3•千米处,•丙距乙5•千米,•则丙在甲的__________.
7.一潜水艇所在的高度为-100米,如果它再下潜20米,则高度是___________,如果在原来的位置上再上升20米,则高度是____________.
8.收入-200元的实际意义是_____________________.
三、解答题
1.把下列各数填入相应的大括号内:-13.5,2,0,0.128,-
2.236,
3.14,+27,- ,-15%,-1 ,,26 .
正数集合{ …},负数集合{ …},
整数集合{ …},分数集合{ …},
非负整数集合{ …}.
2.下图中的两个圆分别表示正数集合和分数集合,请你在每个圆中及它们重叠的部分各填入3个数.
3.课桌的高度比标准高度高2毫米记作+2毫米,那么比标准高度低3•毫米记作什么?现有5张课桌,量得它们的尺寸比标准尺寸长1毫米,-1毫米,0毫米,+3毫米,-•1.5毫米,若规定课桌的高度最高不能高于标准高度2毫米,最低不能低于标准高度2毫米,才算合格,问上述5张课桌有几张不合格?
4.在一次数学测验中,一年(4)班的平均分为86分,•把高于平均分的部分记作正数.
(1)李洋得了90分,应记作多少?
(2)刘红被记作-5分,她实际得分多少?
(3)王明得了86分,应记作多少?
(4)李洋和刘红相差多少分?
四、学科内综合题
1.已知有A,B,C三个数集,每个数集中所含的数都写在各自的大括号内,•请把这些数填入图中相应的部分.
A.{-5,2.7,-9,7,2.1}
B.{-8.1,2.1,-5,9.2,- }
C.{2.1,-8.1,10,7}
2.观察下列各组数,请找出它们的排列规律,并写出后面的2个数.
(1)-2,0,2,4,…,;
(2)1,- ,,- ,,- ,…;
(3)1,0,-1,0,1,0,-1,0,…;
(4),2,4,-6,8,10,-12,14,….
3.我们用字母a表示一个有理数,试判断下列说法是否正确,若不正确,请举出反例.
(1)a一定表示正数,-a一定表示负数;
(2)如果a是零,那么-a就是负数;
(3)若-a是正数,则a一定为非正数.
五、竞赛题
1.下列是按某种规律排列的一串数:0,3,8,17,34,…,那么第6个数是_______.
2.观察下列数的排列规律:,,,,,,,,,,,…,则应排在第_____位.
六、中考题
(2002?吉林)如果自行车车条的长度比标准长度长2mm,记作+2mm,那么比标准长度短1.5mm,应记作________mm.
答案:
一、1.A 2.B 3.D 4.C 5.C
二、1.+5米 2.-2℃ 3.-3.01% +4.21% 4.10.02 9.98
5.•超市在学校西面600米
6.东边8千米或西边2千米
7.-120米 -80米
8.支出200元
三、1.正数集合{2,+27,,26 ,0.128,3.14…}
负数集合{-13.5,-2.236,- ,-15%,-1 ,…}
整数集合{2,0,+27…},分数集合{-13.5,0.168,-2.236,3.14,- ,-15%,-1 ,,26 ,…},非负整数集合{2,+27,0,…}.
2.略
3.-3毫米,1张不合格.
4.(1)+4分;(2)81分;(3)0分;(4)9分
四、1.如图1所示
2.(1)6,8;(2) ,- ;(3)1,0;(4)16,-18
3.(1)错误.若a=-3,•则-a(2)错误.a=0,-a=0;(3)错误.非正数包括零.
五、1.67[提示:由前5个数发现a2=2a1+3,a3=2a2+2,a4=2a3+1,所以a6=2a5-1]
2.39[提示:设a≥1的自然数,则这串数规律,,,
当a=9时,则,,……(1+2+3+4+5+6+•7+8)+3=39]
六、-1.5.。