刚性攻丝

合集下载

FANUC系统刚性攻丝功能详解

FANUC系统刚性攻丝功能详解

FANUC系统刚性攻丝功能详解首先,刚性攻丝功能是指机器人在进行攻丝操作时,能够保持稳定的力和位置控制。

这意味着机器人可以根据既定的程序在工件表面上产生高质量的螺纹。

这种功能对于需要精确控制螺纹深度、螺距和螺纹形状的应用非常重要。

刚性攻丝功能的实现主要依赖于FANUC系统的硬件和软件设计。

FANUC系统使用高性能的力传感器和位置传感器来实时监测机器人与工件之间的力和位置信息。

这些传感器能够提供高分辨率和高精度的测量结果,从而保证机器人的稳定性和准确性。

在软件方面,FANUC系统提供了一套完整的攻丝控制算法。

这些算法对机器人的运动进行实时的力和位置调整,以实现精确的攻丝操作。

例如,在攻丝过程中,系统可以根据传感器信息实时调整机器人的速度和力度,以适应工件表面的不均匀性和材料特性。

此外,FANUC系统还提供了丰富的控制参数和设置选项,以满足不同应用的需求。

用户可以根据具体的攻丝要求进行调整,包括螺纹深度、起刀点位置、进给速度等等。

这些参数的灵活调整使得FANUC系统能够适应各种不同的攻丝操作,从而提高生产效率和质量。

最后,FANUC系统的刚性攻丝功能还具备一定的智能化特性。

系统可以通过学习和优化算法,自动适应不同材料和工件的攻丝过程。

它能够根据历史数据分析出最佳的攻丝参数和路径,从而提高攻丝的效率和质量。

总结起来,FANUC系统的刚性攻丝功能通过高性能的传感器、智能化的控制算法以及灵活的参数调整,实现了高质量和高效率的攻丝操作。

这种功能对于提高机器人的应用范围和工作效果具有重要意义,为用户创造了更多的机会和价值。

FANUC设定参数实现刚性攻丝

FANUC设定参数实现刚性攻丝

FANUC设定参数实现刚性攻丝(大连机床集团有限责任公司黄贤鸿)1 两种攻丝方式的比较以前的加工中心为了攻丝, 一般都是根据所选用的丝锥和工艺要求, 在加工程序中编入一个主轴转速和正/ 反转指令, 然后再编人G84 /G74 固定循环, 在固定循环中给出有关的数据, 其中Z 轴的进给速度是根据F=丝锥螺距×主轴转速得出, 这样才能加工出需要的螺孔来。

虽然从表面上看主轴转速与进给速度是根据螺距配合运行的, 但是主轴的转动角度是不受控的, 而且主轴的角度位置与Z 轴的进给没有任何同步关系, 仅仅依靠恒定的主轴转速与进给速度的配合是不够的。

主轴的转速在攻丝的过程中需要经历一个停止-正转-停止-反转-停止的过程, 主轴要加速-制动-加速-制动, 再加上在切削过程中由于工件材质的不均匀, 主轴负载波动都会使主轴速度不可能恒定不变。

对于进给Z 轴, 它的进给速度和主轴也是相似的, 速度不会恒定, 所以两者不可能配合得天衣无缝。

这也就是当采用这种方式攻丝时, 必须配用带有弹簧伸缩装置的夹头, 用它来补偿Z 轴进给与主轴转角运动产生的螺距误差。

如果我们仔细观察上述攻丝过程, 就会明显地看到, 当攻丝到底,Z 轴停止了而主轴没有立即停住(惯量), 攻丝弹簧夹头被压缩一段距离, 而当Z 轴反向进给时, 主轴正在加速, 弹簧夹头被拉伸, 这种补偿弥补了控制方式不足造成的缺陷, 完成了攻丝的加工。

对于精度要求不高的螺纹孔用这种方法加工尚可以满足要求, 但对于螺纹精度要求较高,6H 或以上的螺纹以及被加工件的材质较软(铜或铝) 时, 螺纹精度将不能得到保证。

还有一点要注意的是, 当攻丝时主轴转速越高,Z 轴进给与螺距累积量之间的误差就越大, 弹簧夹头的伸缩范围也必须足够大, 由于夹头机械结构的限制, 用这种方式攻丝时, 主轴转速只能限制在600r/min 以下。

刚性攻丝就是针对上述方式的不足而提出的, 它在主轴上加装了位置编码器, 把主轴旋转的角度位置反馈给技控系统形成位置闭环, 同时与Z 轴进给建立同步关系, 这样就严格保证了主轴旋转角度和Z 轴进给尺寸的线生比例关系。

刚性攻丝

刚性攻丝
0
5203#2
刚性攻丝时,前馈有效
1
5203#4
刚性攻丝时,进给倍率和倍率取消无效
0
5210
刚性攻丝方式指令M代码
29
5211
刚性攻丝拉拔倍率
200
5213
深孔攻丝循环的返回量
0
5241
刚性攻丝主轴最高转速(第1齿轮)
800
5242
刚性攻丝主轴最高转速(第2齿轮)
3000
5243
刚性攻丝主轴最高转速(第3齿轮)
2000
5200#0
G84/G74前,指定刚性攻丝方式指令的M代码的方式(参数5210)
0
5200#2
用G80、复位等解除刚性攻丝状态要等待G61.0变为0
0
5200#3
刚性攻丝齿轮换挡不使用主轴电机速度选择信号G32~33
0
5200#4
刚性攻丝拉拔倍率(参数5211)有效
1
5200#5
刚性攻丝作为高速深孔攻丝循环
0
5200#6
刚性攻丝时,进给保持,单段无效
0
5201#2
刚性攻丝时,攻入和拉拔使用相同切削时间常数(参数5261~5264)
0
5201#3
刚性攻丝拉拔倍率(参数5211)单位为1%
0
5201#4
通过程序指定拉拔时的主轴转速,拉拔时使倍率有效
0
5202#0
刚性攻丝启动时进行主轴定向
1
5202#4
刚性攻丝的I点向R点移动中,R点到位宽度由参数5300指定
5300
刚性攻丝中攻丝轴的到位宽度
20
5301
刚性攻丝中主轴的到位宽度
20
5310

刚性攻丝

刚性攻丝

两种攻丝方式的比较以前的加工中心为了攻丝,一般都是根据所选用的丝锥和工艺要求,在加工程序中编入一个主轴转速和正/反转指令,然后再编人G84/G74固定循环,在固定循环中给出有关的数据,其中Z轴的进给速度是根据F=丝锥螺距×主轴转速得出,这样才能加工出需要的螺孔来。

虽然从表面上看主轴转速与进给速度是根据螺距配合运行的,但是主轴的转动角度是不受控的,而且主轴的角度位置与Z轴的进给没有任何同步关系,仅仅依靠恒定的主轴转速与进给速度的配合是不够的。

主轴的转速在攻丝的过程中需要经历一个停止-正转-停止-反转-停止的过程,主轴要加速-制动-加速-制动,再加上在切削过程中由于工件材质的不均匀,主轴负载波动都会使主轴速度不可能恒定不变。

对于进给Z轴,它的进给速度和主轴也是相似的,速度不会恒定,所以两者不可能配合得天衣无缝。

这也就是当采用这种方式攻丝时,必须配用带有弹簧伸缩装置的夹头,用它来补偿Z轴进给与主轴转角运动产生的螺距误差。

如果我们仔细观察上述攻丝过程,就会明显地看到,当攻丝到底,Z轴停止了而主轴没有立即停住(惯量),攻丝弹簧夹头被压缩一段距离,而当Z轴反向进给时,主轴正在加速,弹簧夹头被拉伸,这种补偿弥补了控制方式不足造成的缺陷,完成了攻丝的加工。

对于精度要求不高的螺纹孔用这种方法加工尚可以满足要求,但对于螺纹精度要求较高,6H或以上的螺纹以及被加工件的材质较软(铜或铝)时,螺纹精度将不能得到保证。

还有一点要注意的是,当攻丝时主轴转速越高,Z轴进给与螺距累积量之间的误差就越大,弹簧夹头的伸缩范围也必须足够大,由于夹头机械结构的限制,用这种方式攻丝时,主轴转速只能限制在600r/min以下。

刚性攻丝就是针对上述方式的不足而提出的,它在主轴上加装了位置编码器,把主轴旋转的角度位置反馈给技控系统形成位置闭环,同时与Z轴进给建立同步关系,这样就严格保证了主轴旋转角度和Z轴进给尺寸的线生比例关系。

因为有了这种同步关系,即使由于惯量、加减速时间常数不同、负载波动而造成的主轴转动的角度或Z轴移动的位置变化也不影响加工精度,因为主轴转角与Z轴进给是同步的,在攻丝中不论任何一方受干扰发生变化,则另一方也会相应变化,并永远维持线性比例关系。

刚性攻丝

刚性攻丝
3) F值必须小于切削进给的上限值4000mm/min即参数0527的规定值,否则出现编程报警。
4) 在M29指令和固定循环的G指令之间不能有S指令或任何坐标运动指令。
5) 不能在攻丝循环模态下指令M29。
6) 不能在取消刚性攻丝模态后的第一个程序段中执行S指令。
7) 不要在试运行状态下执行刚性攻丝指令。
1
刚性攻丝指令(M29)
指令M29Sx x x x;机床进入刚性攻丝模态,在刚性攻丝模态下,Z轴的进给和主轴的转速。M29指令的具体使用方法可参见“8.1.14 刚性攻丝方式”的说明。
8.1.14 刚性攻丝方式
在攻丝循环G84或反攻丝循环G74的前一程序段指令M29Sx x x x;则机床进入刚性攻丝模态。NC执行到该指令时,主轴停止,然后主轴正转指示灯亮,表示进入刚性攻丝模态,其后的G74或G84循环被称为刚性攻丝循环,由于刚性攻丝循环中,主轴转速和Z轴的进给严格成比例同步,因此可以使用刚性夹持的丝锥进行螺纹孔的加工,并且还可以提高螺纹孔的加工速度,提高加工效率。
使用G80和01组G代码都可以解除刚性攻丝模态,另外复位操作也可以解除刚性攻丝模态。
使用刚性攻丝循环需注意以下事项:
1) G74或G84中指令的F值与M29程序段中指令的S值的比值(F/S)即为螺纹孔的螺距值。
2) Sx x x x必须小于0617号参数指定的值,否则执行固定循环指令时出现编程报警。

FANUC OI 刚性攻丝参数

FANUC OI 刚性攻丝参数

刚性攻丝的参数NO.4002P00000001(不带外装编码器)NO.4002P00000010(带外装编码器)NO.4044P30NO.4045P20NO.4052P60NO.4065P3000NO.5202P00000001NO.5204P00000001NO.5211P10NO.5214P20000(可适当放大)NO.5241.P1000(刚性攻丝时主轴的最高转速,根据具体情况,可以进行调整)NO.5242.P1000NO.5243.P1000NO.5244.P1000NO.5261.P1000(主轴和攻丝轴的直线加减速时间常数, 根据具体情况,可以进行调整)NO.5262.P1000NO.5263.P1000NO.5271.P1000(回退时主轴和攻丝轴的直线加减速时间常数, 根2005年5月据具体情况,可以进行调整)NO.5272.P1000NO.5273.P1000NO.5280.P3000(刚性攻丝时主轴和攻丝轴的位置控制回路增益, 根据具体情况, 可以进行调整)NO.5281.P0NO.5282.P0NO.5283.P0NO.5291.P2000(刚性攻丝时主轴回路增益系数, 根据具体情况, 可以进行调整)NO.5300.P50NO.5301.P50NO.5310.P10000(可适当放大)NO.5311.P10000(可适当放大)NO.5312.P300NO.5313.P300NO.5314.P5000(可适当放大)NO.5321.P10试验程序:夞2005年5月。

FANUC+设定参数实现刚性攻丝.pdf

FANUC+设定参数实现刚性攻丝.pdf

设定参数实现刚性攻丝(大连机床集团有限责任公司 黄贤鸿)1两种攻丝方式的比较以前的加工中心为了攻丝,一般都是根据所选用的丝锥和工艺要求,在加工程序中编入一个主轴转速和正/反转指令,然后再编人G84/G74固定循环,在固定循环中给出有关的数据,其中Z轴的进给速度是根据F=丝锥螺距×主轴转速得出,这样才能加工出需要的螺孔来。

虽然从表面上看主轴转速与进给速度是根据螺距配合运行的,但是主轴的转动角度是不受控的,而且主轴的角度位置与Z轴的进给没有任何同步关系,仅仅依靠恒定的主轴转速与进给速度的配合是不够的。

主轴的转速在攻丝的过程中需要经历一个停止-正转-停止-反转-停止的过程,主轴要加速-制动-加速-制动,再加上在切削过程中由于工件材质的不均匀,主轴负载波动都会使主轴速度不可能恒定不变。

对于进给Z轴,它的进给速度和主轴也是相似的,速度不会恒定,所以两者不可能配合得天衣无缝。

这也就是当采用这种方式攻丝时,必须配用带有弹簧伸缩装置的夹头,用它来补偿Z轴进给与主轴转角运动产生的螺距误差。

如果我们仔细观察上述攻丝过程,就会明显地看到,当攻丝到底,Z轴停止了而主轴没有立即停住(惯量),攻丝弹簧夹头被压缩一段距离,而当Z轴反向进给时,主轴正在加速,弹簧夹头被拉伸,这种补偿弥补了控制方式不足造成的缺陷,完成了攻丝的加工。

对于精度要求不高的螺纹孔用这种方法加工尚可以满足要求,但对于螺纹精度要求较高,6H或以上的螺纹以及被加工件的材质较软(铜或铝)时,螺纹精度将不能得到保证。

还有一点要注意的是,当攻丝时主轴转速越高,Z轴进给与螺距累积量之间的误差就越大,弹簧夹头的伸缩范围也必须足够大,由于夹头机械结构的限制,用这种方式攻丝时,主轴转速只能限制在600r/min以下。

刚性攻丝就是针对上述方式的不足而提出的,它在主轴上加装了位置编码器,把主轴旋转的角度位置反馈给技控系统形成位置闭环,同时与Z轴进给建立同步关系,这样就严格保证了主轴旋转角度和Z轴进给尺寸的线生比例关系。

FANUC系统刚性攻丝问题

FANUC系统刚性攻丝问题

(图一)刚性攻丝的实验参数,S=800,F=800,传动比为4:1。

SVGuide选择“XTYT”观测页面,主轴选择“SPEED”观测项目,攻丝轴选择“SYNC”观测项目,采样时间1ms,采样数据点8000~10000该图的左面有个小的凸台,这其实是主轴从速度环变为位置环时,主轴先执行了回零动作。

可以通过NO5202#0=0关闭这个回零的动作。

这个图形表明刚性攻丝的性能仍然不行,因为主轴转速没有达到指令转速,当S=800时,主轴电机转速应该是3200,很显然,图形的红色曲线表明主轴电机的转速大约2500左右,表明电机仍然在加速过程中。

需要减小加减速时间常数NO5241~5244,原值为2400ms,改为800ms后,得到(图二)的曲线。

(图二)该图形表明,已经取消了主轴回零这个动作,并且在刚性攻丝过程中,主轴电机转速已经达到3200RPM,主轴以S=800旋转,同时,主轴和攻丝轴Z轴的同步误差小于50个同步脉冲。

(图三)这是在机床高速档进行的刚性攻丝实验,主轴指令转速1500RPM,高速档传动比1:1,很显然主轴电机没有达到指令转速,修改加减速时间后,同步误差脉冲猛增(该图未保留),所以该机床高速档不宜进行刚性攻丝。

(图4)加大了主轴速度环比例增益NO4044,NO4045,以及积分增益4052,NO4053后,它们的初始化值为10,现在改为15,同步误差脉冲有降低。

一点补充,NO5280为攻丝轴Z轴的位置环增益,当NO5280的值不为零时,NO5281~5284无效,此时N05280要和主轴各档的位置环增益相同,即NO4065~4068每个值相等,与NO5280的值相同。

当NO5280为零时,NO5281~5284的值生效,并与NO4065~4068的值对应相等。

提高NO5280~5281以及NO4065~4068的值,可以提高刚性攻丝的精度。

在诊断参数DGN452的值不为零时,需要检查NO5280,NO5281~NO5284的值是否与NO4065~NO4068相等或者对应相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设定参数实现刚性攻丝
一般都是根据所选用的丝锥和工艺要求, 在加工程序中编入一个主轴转速和正/反转指令, 然后再编人G84/G74 固定循环, 在固定循环中给出有关的数据, 其中Z 轴的进给速度是根据 F =丝锥螺距×主轴转速得出, 这样才能加工出需要的螺孔来。

虽然从表面上看主轴转速与进给速度是根据螺距配合运行的, 但是主轴的转动角度是不受控的, 而且主轴的角度位置与Z 轴的进给没有任何同步关系, 仅仅依靠恒定的主轴转速与进给速度的配合是不够的。

主轴的转速在攻丝的过程中需要经历一个停止-正转-停止-反转-停止的过程, 主轴要加速-制动-加速-制动, 再加上在切削过程中由于工件材质的不均匀, 主轴负载波动都会使主轴速度不可能恒定不变。

对于进给Z 轴, 它的进给速度和主轴也是相似的, 速度不会恒定, 所以两者不可能配合得天衣无缝。

这也就是当采用这种方式攻丝时, 必须配用带有弹簧伸缩装置的夹头, 用它来补偿Z 轴进给与主轴转角运动产生的螺距误差。

如果我们仔细观察上述攻丝过程, 就会明显地看到, 当攻丝到底,Z 轴停止了而主轴没有立即停住( 惯量), 攻丝弹簧夹头被压缩一段距离, 而当Z 轴反向进给时, 主轴正在加速, 弹簧夹头被拉伸, 这种补偿弥补了控制方式不足造成的缺陷, 完成了攻丝的加工。

对于精度要求不高的螺纹孔用这种方法加工尚可以满足要求, 但对于螺纹精度要求较高,6H 或以上的螺纹以及被加工件的材质较软( 铜或铝) 时, 螺纹精度将不能得到保证。

还有一点要注意的是,
当攻丝时主轴转速越高,Z 轴进给与螺距累积量之间的误差就越大, 弹簧夹头的伸缩范围也必须足够大, 由于夹头机械结构的限制, 用这种方式攻丝时, 主轴转速只能限制在600r/min 以下。

刚性攻丝就是针对上述方式的不足而提出的, 它在主轴上加装了位置编码器, 把主轴旋转的角度位置反馈给技控系统形成位置闭环, 同时与Z 轴进给建立同步关系, 这样就严格保证了主轴旋转角度和Z 轴进给尺寸的线生比例关系。

因为有了这种同步关系, 即使由于惯量、加减速时间常数不同、负载波动而造成的主轴转动的角度或Z 轴移动的位置变化也不影响加工精度, 因为主轴转角与Z 轴进给是同步的, 在攻丝中不论任何一方受干扰发生变化, 则另一方也会相应变化, 并永远维持线性比例关系。

如果我们用刚性攻丝加工螺纹孔, 可以很清楚地看到, 当Z 轴攻丝到达位置时, 主轴转动与Z 轴进给是同时减速并同时停止的, 主轴反转与Z 轴反向进给同样保持一致。

正是有了同步关系, 丝锥夹头就用普通的钻夹头或更简单的专用夹头就可以了, 而且刚性攻丝时, 只要刀具( 丝锥) 强度允许, 主轴的转速能提高很多,4 000r/min 的主轴速度已经不在话下。

加工效率提高 5 倍以上, 螺纹精度还得到保证, 目前已经成为加工中心不可缺少的一项主要功能。

2 刚性攻丝功能的实现
从电气控制的角度来看, 数控系统只要具有主轴角度位置控制和同步功能, 机床就能进行刚性攻丝, 当然还需在机床上加装反馈主轴角度的位置编码器。

要正确地反映主轴的角度位置, 最好把
编码器与主轴同轴联接, 如果限于机械结构必需通过传动链联接时, 要坚持1:1 的传动比, 若用皮带, 则非同步带不可。

还有一种可能, 那就是机床主轴和主轴电动机之间是直连, 可以借用主轴电动机本身带的内部编码器作主轴位置反馈, 节省二项开支。

除去安装必要的硬件外, 主要的工作是梯形图控制程序的设计调试。

市面上有多种数控系统, 由于厂家不同, 习惯各异, 对刚性攻丝的信号安排和处理是完全不一样的。

我们曾经设计和调试过几种常用数控系统的刚性攻丝控制程序, 都比较繁琐。

调试人员不易理解梯形图控制程序, 特别是第一台样机调试周期长, 不利于推广和使用。

尽管如此, 加工中心有了该项功能, 扩大了加工范围, 受到用户的青睐。

3 不用设计梯形图实现刚性攻丝
在FANUC Oi 数控系统里, 参数N0.5200#0 如果被设定为0, 那么刚性攻丝就需要用M 代码指定。

一般情况下, 我们都使用M29, 而在梯形图中也必须设计与之相对应的顺序程序, 这对初次尝试者来说还有一定的困难。

正常的情况下, 没有特殊要求时, 主轴参数初始化后把参数No.5200#0 设定为1, 其它有关参数基本不动, 也不用增加任何新的控制程序, 这样就简单多了。

在运行调试中要根据机床本身的机械特性设置刚性攻丝必须的一组参数(见表l) 。

参数设置好后就可以直接使用固定循环G84/G74 指令编程, 其格式举例如下:
表1 刚性攻丝参数表
功能参数
攻丝最高主轴转速N0.5241 - N0.5244
主轴与攻丝轴的时间常数N0.5261 - No.5264
刚性攻丝轴回路增益N0.5280 - N0.5284
刚性攻丝时攻丝轴移动位置偏差量的极限值N0.5310
刚性攻丝时主轴移动位置偏差量的极限值N0.5311
刚性攻丝时的攻丝轴停止时的位置偏差量极限值N0.5312
刚性攻丝时的主轴停止时的位置偏差量极限值N0.5313
(1) 每分钟进给编程
右螺纹
G94;Z 轴每分钟进给
M3Sl000;主轴正转(1000r/min)
G9O G84X-300.Y-250.Z-150.R-120. P300 F1000;右螺纹攻丝, 螺距lmm
左螺纹
G94;Z 轴每分钟进给
M4Sl000; 主轴反转(1000r/min)
G9O G74X-300.Y-250.Zl50.R-120.P300 F1000; 左螺纹攻丝, 螺距lmm
(2) 每转( 主轴) 进给编程
右螺纹
G95; Z 轴进给/ 主轴每转
M3S1000; 主轴正转(1000r/min)
G9O G84X-300.Y-250.Z-150.R-120. P300 F1.0; 右螺纹攻丝, 螺距1mm
右螺纹
G95;Z 轴进给/ 主轴每转
M4S1000;主轴反转(1000r/min)
G90 G74 X-300.Y-250.Z150.R-120. P300 F1.0; 左螺纹攻丝, 螺距l mm
以上刚性攻丝编程由于将参数No.5200#0 设置为1, 固定循环G84/ 成为刚性攻丝的指令, 所以它的编程格式就完全与原固定循环G84/G74 普通攻丝是一样的。

根据用户的使用调查, 刚性攻丝性能大大优于普通。

相关文档
最新文档