表面淬火工艺原理4-2

合集下载

钢的热处理(原理及四把火)

钢的热处理(原理及四把火)

钢的热处理钢的热处理:是将固态钢材采用适当的方式进行加热、保温和冷却以获得所需组织结构与性能的工艺。

热处理不仅可用于强化钢材,提高机械零件的使用性能,而且还可以用于改善钢材的工艺性能。

其共同点是:只改变内部组织结构,不改变表面形状与尺寸。

第一节钢的热处理原理热处理的目的是改变钢的内部组织结构,以改善钢的性能,通过适当的热处理可以显著提高钢的机械性能,延长机器零件的使用寿命。

热处理工艺不但可以强化金属材料、充分挖掘材料性能潜力、降低结构重量、节省和能源,而且能够提高机械产品质量、大幅度延长机器零件的使用寿命。

热处理工艺分类:(根据热处理的目的、要求和工艺方法的不同分类如下)1、整体热处理:包括退火、正火、淬火、回火和调质;2、表面热处理:包括表面淬火、物理和化学气相沉积等;3、化学热处理:渗碳、渗氮、碳氮共渗等。

热处理的三阶段:加热、保温、冷却一、钢在加热时的转变加热的目的:使钢奥氏体化(一)奥氏体( A)的形成奥氏体晶核的形成以共析钢为例A1点则W c =0.0218%(体心立方晶格F)W c =6.69%(复杂斜方渗碳体)当T 上升到A c1 后W c =0.77%(面心立方的A)由此可见转变过程中必须经过C和Fe原子的扩散,必须进行铁原子的晶格改组,即发生相变,A的形成过程。

在铁素体和渗碳体的相界面上形成。

有两个有利条件①此相界面上成分介于铁素体和渗碳体之间②原子排列不规则,空位和位错密度高。

1、奥氏体长大由于铁素体的晶格改组和渗碳体的不断溶解,A晶核一方面不断向铁素体和渗碳体方向长大,同时自身也不断形成长大。

2、残余 Fe 3 C的溶解 A长大同时由于有部分渗碳体没有完全溶解,还需一段时间才能全溶。

(F比Fe 3 C先消失)3、奥氏体成分的均匀化残余Fe 3 C全溶后,经一段时间保温,通过碳原子的扩散,使A成分逐步均匀化。

(二)奥氏体晶粒的长大奥氏体大小用奥氏体晶粒度来表示。

分为 00,0,1,2…10等十二个等级,其中常用的1~10级,4级以下为粗晶粒,5-8级为细晶粒,8级以上为超细晶粒。

淬火工艺规程

淬火工艺规程

淬火工艺规程一、淬火前得准备1、检查工件表面,不允许有碰伤、裂纹、锈斑、油垢及其她脏物存在,油垢可用碱煮洗,锈斑可用喷砂或冷酸清洗。

2、准备淬火所用得工具,检查设备就是否完好。

3、检查控温仪表指示就是否正确。

4、工件形状复杂得,其中有不需要淬硬得孔眼、尖角或厚度变化大得地方,为了防止变形与淬裂得危险均应采用堵塞或缠绕石棉得方法,使工件各部分加热及冷却温度均匀。

5、要求工件表面不允许有氧化脱碳现象,要用硼砂酒精溶液涂覆。

二、淬火规范1、加热温度(1)亚共析钢淬火加热温度为Ac3+30~50℃,一般在空气炉中加热比在盐浴中加热高10~30℃,采用油、硝盐淬火介质时,淬火加热温度应比水淬提高20℃左右。

(2)共析钢、过共析钢淬火加热温度为Ac1+30~50℃,一般合金钢淬火加热温度为Ac1或Ac3+30~50℃.(3)高速钢、高铬钢及不锈钢应根据要求合金碳化物溶入奥氏体得程度选择。

过热敏感性强及脱碳敏感性强得钢,不易取上限温度.(4)低碳马氏体钢淬透性较低,应提高淬火温度以增大淬硬性;中碳钢及中碳合金钢应适当提高淬火温度来减少淬火后片状马氏体得相对量,以提高钢得韧性;高碳钢采用低温淬火或快速加热可限制奥氏体固溶碳量,而增加淬火后板条马氏体得含量,减少淬火钢得脆性.另外,提高淬火温度还会增加淬火后得残余奥氏体量。

2、加热方法(1)模具:室温进炉或300—400℃进炉,并在550—600℃时等温一段时间。

(2)弹簧或原材料(调质处理),可在淬火温度时进炉.3、保温时间加热与保温时间由零件入炉到达指定工艺温度所需升温时间(ι1),透热时间(ι2)及组织转变所需时间(ι3)组成。

ι1+ι2由设备功率、加热介质及工件尺寸、装炉数量等因素决定,ι3则与钢材得成分、组织及热处理技术要求有关。

普通碳钢及低合金钢在透热后保温5~15min即可满足组织转变得要求,合金结构钢透热后应保温15~25min。

高合金工具钢、不锈钢等为了溶解原始组织中得碳化物,应在不使奥氏体晶粒过于粗化得前提下,适当提高奥氏体化温度,以缩短保温时间。

表面淬火定义

表面淬火定义

表面淬火定义表面淬火是一种金属材料处理技术,旨在提高金属材料的硬度和耐磨性。

在表面淬火过程中,金属材料的表面被快速加热到高温,然后迅速冷却,使其细化晶粒并形成马氏体组织,从而获得优异的机械性能。

表面淬火是一种常用的金属材料处理方法,广泛应用于机械制造、汽车制造、航空航天等领域。

通过表面淬火处理,可以显著提高金属材料的硬度和耐磨性,增加其使用寿命和耐久性。

同时,表面淬火还可以改善金属材料的表面质量,提高其抗腐蚀性能,增强其抗拉强度和抗压强度。

表面淬火的基本原理是利用金属材料的相变规律。

当金属材料被加热到一定温度时,其晶体结构会发生变化,从而产生新的组织结构。

在表面淬火过程中,金属材料的表面被加热到临界温度以上,使其达到奥氏体相区,然后迅速冷却,使其迅速转变为马氏体组织。

马氏体组织具有高硬度和优异的耐磨性,可以显著提高金属材料的机械性能。

表面淬火可以采用多种方法进行,常见的方法包括火焰淬火、电火花淬火、激光淬火等。

不同的淬火方法适用于不同的金属材料和工件形状。

火焰淬火是一种较常用的表面淬火方法,它通过将金属材料的表面加热到高温并迅速冷却,使其形成马氏体组织。

电火花淬火利用电火花放电的高温和高能量特性,将金属材料的表面加热到临界温度以上,并通过迅速冷却形成马氏体组织。

激光淬火则利用激光的高能量和高密度特性,将金属材料的表面加热到临界温度以上,并通过迅速冷却形成马氏体组织。

表面淬火不仅可以提高金属材料的硬度和耐磨性,还可以改善其表面质量。

在表面淬火过程中,金属材料的表面会发生相变,原有的晶粒会细化并形成马氏体组织。

这种细化的晶粒结构可以显著提高金属材料的表面质量,使其更加光滑、均匀,减少表面缺陷和气孔的产生。

同时,表面淬火还可以提高金属材料的抗腐蚀性能,使其更加耐腐蚀和耐磨损。

表面淬火是一种有效的金属材料处理方法,可以显著提高金属材料的硬度和耐磨性,改善其表面质量,增强其机械性能和抗腐蚀性能。

在工业生产中,表面淬火被广泛应用于各个领域,为产品的质量和性能提供了有力支撑。

图4热处理工艺曲线示意图

图4热处理工艺曲线示意图

二、钢的热处理金属材料在固体范围内进行加热、保温和冷却,以改变其内部组织,获得所需性能的一种方法称热处理。

热处理的种类很多,根据其目的、加热和冷却方法的不同,可以分为:普通热处理、表面热处理及其他热处理方法。

普通热处理有退火、正火、淬火、回火;表面热处理有表面淬火(感应加热、火焰加热等)、化学热处理(渗碳、渗氮等);其他热处理有真空热处理、变形热处理和激光热处理等。

热处理方法虽然很多,但都是由加热、保温和冷却三个阶段组成的,通常用热处理工艺曲线表示。

图1-34 热处理工艺曲线示意图一、钢的普通热处理根据加热及冷却的方法不同,获得金属材料的组织及性能也不同。

普通热处理可分为退火、正火、淬火和回火四种。

普通热处理是钢制零件制造过程中非常重要的工序。

退火1.退火工艺及其目的退火是将工件加热到适当温度,保温一定时间,然后缓慢冷却的热处理工艺,实际生产中常采取随炉冷却的方式。

退火的主要目的:①降低硬度,改善钢的成形和切削加工性能;②均匀钢的化学成分和组织;③消除内应力。

2.常用退火工艺方法根据处理的目的和要求的不同,钢的退火可分为完全退火、球化退火和去应力退火等。

表1-4 为主要退火工艺方法及其应用。

表1-4 常用退火方法的工艺、目的与应用名称工艺目的应用完全退火将钢加热至Ac 3 以上30~50℃,保温一定时间,炉冷至室温(或炉冷至600℃以下,出炉空冷)细化晶粒,消除过热组织,降低硬度和改善切削加工性能主要用于亚共析钢的铸、锻件,有时也用于焊接结构球化退火将钢加热至Ac 1 以上20~40℃,保温一定时间,炉冷至室温,或快速冷至略低于Ar 1 温度,保温后出炉空冷,使钢中碳化物球状化的退火工艺使钢中的渗碳体球状化,以降低钢的硬度,改善切削加工性,并为以后的热处理做好组织准备。

若钢的原始组织中有严重的渗碳体网,则在球化退火前应进行正火消除,以保证球化退火效果主要用于共析钢和过共析钢均匀化退火(扩散退火)将钢加热到略低于固相线温度(Ac 3 或Ac cm 以上150~300℃),长时间保温(10~15h),随炉冷却。

第四章 表面淬火10 1

第四章 表面淬火10 1
150 2500 f 2 2 x x
(b)比功率的选择:
f 最佳
600 2 x
比功率是指感应加热时工件单位表面积上所吸收的 电功率。比功率选择主要决定于频率和要求硬化层 深度 设备比功率 :设备输出功率与零件同时被加热的面 积比
P P A
P P工 P A
实验表明:
●在工件直径一定的情况下,随着硬化层深度 的增厚,表面残余压应力先增大,达到一定 值后,继续增加硬化层厚度,表面残余压应 力反而减少。 ●残余应力与沿硬化层深度的硬度分布有关。 过渡区硬度降落愈陡,表面压应力虽较大, 但紧靠过渡区的张应力峰值也最大;过渡区 硬度降得愈平缓,过渡区愈宽,张应力峰值 内移且减少,表面的残余压应力也减少。 ●残余应力的分布和钢中的含碳量有关。含碳 量愈高,残余压应力愈大
§4-3:表面淬火方法
一、感应加热表面淬火
工件在交变磁场作用下产生了较高的感
应电势并在表面形成涡流,利用感应电流
在零件表面产生的热效应而使零件加热称 为感应加热;将感应加热后的零件快速冷 却的淬火工艺称为感应加热淬火。
根据设备输出频率高低,感应加热的种类如下表所示:
加热方法 工频 中频 高频、超音频 超高频脉冲
流条;冷却装置等
▲感应圈形状与结构
感应圈的几何形状主要根据工件硬化部位 的几何形状、尺寸及选择的加热方式来确定。 设计时应注意以下几种效应:
▲临近效应:(采用旋转加热方法)
▲环状效应:(有利于圆柱体外表面)
▲尖角效应:(调节线圈与零件间的间隙或改 进感应圈的结构来改善)
▲感应圈尺寸的确定
感应圈管壁厚度应略大于高频电流穿透厚度。
67 / f (mm) 4、感应加热时的驱流和屏蔽

25cr2ni4mov淬火工艺

25cr2ni4mov淬火工艺

25cr2ni4mov淬火工艺25Cr2Ni4MoV淬火工艺淬火工艺简介•淬火是金属材料热处理的一种重要工艺方法。

•25Cr2Ni4MoV是一种常用于制造高强度、高韧性的钢材。

•淬火工艺可以使钢材获得良好的力学性能和组织结构。

工艺原理•淬火工艺通过快速冷却将钢材中的奥氏体转变为马氏体,从而提高钢材的硬度和强度。

•25Cr2Ni4MoV钢材的主要组织相为铁素体和奥氏体。

•淬火过程中,钢材中的全部奥氏体转变为马氏体,同时形成细小的碳化物颗粒。

淬火工艺步骤1.加热–将25Cr2Ni4MoV钢材加热至适当温度,一般为摄氏度。

–加热时间根据钢材的厚度和尺寸而定,一般为1-2小时。

2.保温–在适当温度下保持一段时间,使钢材内部均匀加热。

–保温时间一般为30分钟至1小时。

3.冷却–快速将钢材置于冷却介质中,如水、油或盐水溶液。

–冷却速度决定了淬火效果的好坏,一般要求快速冷却。

4.回火–对淬火后的钢材进行回火处理,以消除残余应力并提高韧性。

–回火温度一般为摄氏度,时间根据需要而定。

淬火工艺的优点•可以显著提高25Cr2Ni4MoV钢材的硬度和强度。

•能够改善钢材的耐磨性和耐蚀性。

•可以调节钢材的组织结构和机械性能,使其适应不同的工作环境。

淬火工艺的注意事项•加热温度、保温时间和冷却速度需要根据具体材料和要求进行合理选择。

•淬火过程中,应保证钢材的均匀加热和冷却,避免出现过热或过冷区域。

•回火温度和时间的选择应根据需要平衡硬度和韧性的关系。

总结•25Cr2Ni4MoV淬火工艺是一种有效的钢材热处理方法。

•正确的淬火工艺可以使钢材获得良好的力学性能和组织结构。

•在实际应用中,根据具体需求选择合适的加热温度、保温时间和冷却介质,仔细控制回火温度和时间,可以获得理想的淬火效果。

淬火工艺的应用领域•25Cr2Ni4MoV钢材广泛应用于航空航天、汽车制造、电力设备等领域。

•淬火工艺可以提高钢材的耐磨性和耐腐蚀性,适用于制造工具、轴承等耐久性要求高的零部件。

热处理工艺规范

热处理工艺规范

热处理工艺规范一、淬火、回火工艺规范1.淬火、回火准备工作:1)检查设备,仪表是否正常;2)正确选择夹具;3)检查零件表面是否有碰伤、裂纹、锈斑等缺陷;4)确认零件要求的淬火部位硬度、变形等的技术要求,核对零件的形状、材料的加工状态是否与图样及工艺文件相符合;5)表面不允许氧化、脱碳的零件,当在空气炉加热时,应采取防氧化脱碳剂装箱保护或采用真空炉加热;6)易开裂的部位如尖角靠边的孔,应采取预防措施,如塞石棉、耐火泥等。

2.常见材料淬火、回火工艺规范1)加热温度表1 常用材料的常规淬火、回火规范注:Cr12Mo1V1 即 D2(美国)、1.2379(德国)、SLD(日立)、SKD11(日本)、K110(奥地利);9CrWMn 即 O1(美国)、1.2510(德国)、K460(奥地利);4Cr5MoSiV1 即 H13(美国)、1.2344(德国)、8407/8402(一胜百)、W302(奥地利);7Cr7Mo3V2Si 即 LD1;HS-1是高级火焰淬火,多用模具钢;除45号钢或特别说明均采用回火两次的工艺。

2)淬火保温时间t =8~10 min+kαDk——装炉系数(1~1.5);α——保温系数(见表2);D——零件有效厚度。

表2 淬火保温系数3)回火保温时间①工件有效厚度d<=50mm,保温2小时;②工件有效厚度d>50mm,按照保温时间t=d/25(小时)计算;③每次回火后空冷至室温,再进行下次回火。

4)去应力(入炉时效)①高合金钢550~650℃,热透后,保温时间>3小时;3.淬火和回火设备1)淬火设备——真空淬火炉、中温箱式炉、高温箱式炉。

2)回火设备——真空回火炉、中温箱式炉。

3)冷却设备——水槽、油槽、风箱。

4.操作方法1)零件应均匀摆放于炉内有效加热区,在箱式炉中一般为单层排列加热,工件间适当间隙。

小件可适当堆放,但要酌情增加保温时间。

2)细长零件加热要考虑装炉方法,以减少工件变形,如垂直吊挂,侧立放平支稳等。

淬火以及淬火工艺

淬火以及淬火工艺


低合金钢:
淬火温度也应根据其临界点(Ac1及Ac3)来 选定,但考虑到合金元素的作用,为了加 速奥氏体化, 过共析低合金钢:Ac1+(50~110 °C) , 亚共析低合金钢:Ac3+(30~100 °C); 高速钢、高铬钢及不锈钢应根据合金碳化 物溶入奥氏体的程度选定。一般高速钢的 淬火加热温度比其Ac1高出30°C以上。
第八章 淬火及淬火工艺
主要内容
1. 淬火加热 2. 淬火介质 3. 钢的淬透性 4. 淬火工艺 5. 表面淬火 6. 淬火缺陷


言1
淬火是热处理工艺中最重要的工艺。 从广义上说,淬火是将合金在高温下所 具有的状态以过冷、过饱和状态固定至室 温,或使基体转变成晶体结构与高温状态 不同的亚稳状态的热处理形式。
常用的盐浴成分及其正常使用温度见表8. 5。
8. 1. 3. 3固体介质


流态床加热采用固体粒子(石墨、石英砂或刚玉等)作为加 热介质。当通人一定流速的气流时,粒子就会呈悬浮状像 流体一样地运动,在粒子堆表面呈沸腾状态,内部粒子则 呈快速湍流运动,这种称为粒子被流态化。通过电加热使 流动粒子很快被加热到所需温度,靠它们来加热工件。 使用这种加热介质的炉子名称曾很多,如流动粒子炉、流 化床、流态床或沸腾层炉等,目前国家标准中称之为流态 床。采用这种加热介质的优点很多:①升温快(20多分钟可 升至850°C ),炉温较均匀且易控制;②使用温度范围广 泛(高、中、低温均可);③工件处理后表面无氧化脱碳;④ 启动方便,节省电能等。但它还存在一些缺点,如工作电 压较高(60~80V),有粉尘逸出,炉子生产能力较小等,均 待进一步改进。



原因如下:
(1)奥氏体中溶人碳量的增加使MS点降低,淬火后所得的 残余奥氏体量将增多,结果使淬火钢的硬度下降; (2)奥氏体的晶粒粗化,淬火后得到粗大马氏体,使钢的脆 性大为增加; (3)空气介质加热时钢的脱碳氧化严重,降低淬火钢的表面 质量;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.2 表面淬火工艺原理
一、钢在非平衡加热时的相变特点
如前所述,钢在表面淬火时,其基奉条件是有足够的能量密度提供表面加热,使表面有足够快的速度达到相变点以上的温度。

因此,表面淬火时,钢处于非平衡加热。

钢在非平衡加热时有如下特点:
1.在一定的加热速度范围内,临界点随加热速度的增加而提高。

在快速加热时均随着加热速度的增加而向高温移动。

但当加热速度大到某一范围时,所有亚共析钢的转变温度均相同.加热速度愈快,奥氏体形成温度范围愈宽,但形成速度快;形成时间短.加热速度对奥氏体开始形成温度影响不大,但随着加热速度的提高,显著提高了形成终了温度.原始组织愈不均匀,最终形成温度提得愈高.
2.奥氏体成分不均匀性随着加热速度的增加而增大
如前所述,随着加热速度的增大,转变温度提高,转变温度范围扩大.随着转变温度的升高,与铁素体相平衡的奥氏体碳浓度降低,而与渗碳体相平衡的奥氏体碳浓度增大.因此,与铁素体相毗邻的奥氏体碳浓度将和与渗碳体相毗邻的奥氏体中碳浓度有很大差异。

由于加热速度快,加热时间短,碳及合金元素来不及扩散,将造成奥氏体中成分的不均匀,且随着加热速度的提高,奥氏体成分的不均匀性增大。

例如0.4%C碳钢,当以130℃/s的加热速度加热至900℃时,奥氏体中存在着1.6%C的碳浓度区.显然,快速加热时,钢种、原始组织对奥氏体成分的均匀性有很大影响.对热传导系数小,碳化物粗大且溶解困难的高合金钢采用快速加热是有困难的.
3.提高加热速度可显著细化奥氏体晶粒.
快速加热时,过热度很大,奥氏体晶核不仅在铁素体一碳化物相界面上形成,而且也可能在铁素体的亚晶界上形成,因此使奥氏体的成核串增大。

又由于加热时间极短,奥氏体晶粒来不及长大.当用超快速加热时,可获得超细化晶粒。

4.快速加热对过冷奥氏体的转变及马氏体回火有明显影响.
快速加热使奥氏体成分不均匀及晶粒细化,减小了过冷奥氏体的稳定性,使c曲线左移.由于奥氏体成分的不均匀性,特别是亚共析钢,还会出现二种成分不均匀性现象。

在珠光体区域,原渗碳体片区与原铁索体片区之间存在着成分的不均匀性,这种区域很傲小,即在微小体积内的不均匀性.而在原珠光体区与原先共析铁索体块区也存在着成分的不均匀性,这是大体积范围内的不均匀性.由于存在这种成分的大体积不均匀性,将使这二区域的马氏体转变点不同,马氏体形态不同.即相当于原铁素体区出现低碳马氏体,原珠光体区出现高碳马氏体.由于快速加热奥氏体成分的不均匀性,淬火后马氏体成分也不均匀,所以,尽管淬火后硬度较高,但回火时硬度下降较快,因此回火温度应比普通加热淬火的略低。

二、表面淬火的组织与性能
1.表面淬火的金相组织
钢件经表面淬火后的金相组织与钢种、淬火前的原始组织及淬火加热时沿截面温度的分布有关。

最简单的是原始组织为退火状态的共析钢。

淬火以后金相组织应分为三区,自表面向心部分别为马氏体区(M) (包括残余奥氏体),马氏体加珠光体(M十P)及珠光体(P)区。

这里所以出现马氏体加珠光体区,因快速加热时奥氏体是在一个温度区间、并非在一个恒定温度形成的,其界限相当于沿截面温度曲线的奥氏体开始形成温度及奥氏体形成终了温度.在全马氏体区,自表面向里,由于温度的差别,在有情况下也可以看到其差别,最表面温度高,马氏体较粗大,中间均匀细小,紧靠开始形成温度区,由于其淬火前奥氏体成分不均匀,如腐蚀适当,将能看到珠光体痕迹(“珠光体灵魂”).在温度低于奥氏体形成终了温度区,由于原为退火组织,加热时不能发生组织变化,故为淬火前原始组织.
若表面淬火前原始组织为正火状态的45钢,则表面淬火以后其金相组织沿截面变化将要复杂得多.如果采用的是淬火烈度很大的淬火介质,即只要加热温度高于临界点,凡是奥氏体区均能淬成马氏体,按其金相组织分为四区,表面马氏体区(M),往里为马氏体加铁素体(M+F),再往里为马氏体加铁索体加珠光体区,中心相当于温度低于奥氏体开始形成温度区为淬火前原始组织,即珠光体加铁索体。

在全马氏体区,金相组织也有明显区别,在紧靠相变点Ac3区,相当于原始组织铁索体部位为腐蚀颜色深的低碳马氏体区,相当于原来珠光体区为不易腐蚀的隐晶马氏体区,二者颜色深浅差别很大(图4-5b)。

由此移向淬火表面,低碳
马氏体区逐渐扩大,颜色逐渐变浅,而隐晶马氏体区颜色增深,靠近表面变成中碳马氏体(如图4-5a)。

图4-5 45钢表面淬火后不同加热温度区的金相组织
若45钢表面淬火前原始组织为调质状态,由于回火索氏体为粒状渗碳化均匀分布在铁素体基体上的均匀组织,因此表面淬火后不会出现由于上述那种碳浓度大体积不均匀性所造成的淬火组织的不均匀.在截面上相当于Acl与Ac3,温度区的淬火组织中,未溶铁索体也分布得比较均匀.在淬火加热温度低于Ac1,至相当于调质回火温度区,如图4-6中C区,由于其温度高于原调质回火温度而又低于临界点,因此将发生进一步回火现象。

表面淬火将导致这一区域硬度下降(图4—6).这一部分的回火程度取决于参数M,其区域大小取决于表面淬火加热时沿截面的温度梯度。

加热速度愈快,沿截面的温度梯度愈陡,该区域愈小.由于加热速度快,加热时间短,参数M小,回火程度也减小.
表面淬火淬硬层深度一般计至半马氏体(50%M)区,宏观的测定方法是沿截面制取金相试样,用硝酸酒精腐蚀,根据淬硬区与未淬硬区的颜色差别来确定(淬硬区颜色浅);也可借测定截面硬度来决定。

图4-6原始组织为调质状态的45钢表面淬火后沿截面硬度
2.表面淬火后的性能
(1)表面硬度
快速加热,激冷淬火后的工件表面硬度比普通加热淬火高。

例如激光加热淬火的45钢硬度比普通淬火的可高4个洛氏硬度单位;高频加热喷射淬火的,其表面硬度比普通加热淬火的硬度也高2~3个洛氏硬度单位。

这种增高硬度现象与加热温度及加热速度有关.当加热速度一定,在某一温度范围内可以出现增加硬度的现象,提高加热速度,可使这一温度范围移向高温,看来这和快速加热时奥氏体成分不均匀性、奥氏体晶粒及亚结构细化有关。

(2)耐磨性
快速加热表面淬火后工件的耐磨性比普通淬火的高。

快速表面淬火的耐磨性优于普通淬火的。

看来,这也与其奥氏体晶粒细化、奥氏体成分的不均匀,表面硬度较高及表面压应力状态等因素有关。

(3)疲劳强度
采用正确的表面淬火工艺,可以显著地提高零件的抗疲劳性能。

例如40Gr钢,调质加表面淬火(淬硬层深度0,9mm)的疲劳极限为324N/mm2,而凋质处理的仅为235N/mm2。

表面淬火还可显著地降低疲劳试验时的缺口敏感性。

表面淬火提高疲劳强度的原因,除了由于表层本身的强度增高外,主要是因为在表层形成很大的残余压应力。

表面残余压应力愈大,工件抗疲劳性能愈高。

3.表面淬火淬硬层深度及分布对工件承载能力的影响
虽然表面淬火有上述优点,但使用不当也会带来相反效果。

例如淬硬层深度选择不当,或局部表面淬火硬化层分布不当,均可在局部地方引起应力集中而破坏。

(1)表面淬火硬化层与工件负载时应力分布的匹配即表面淬火淬硬层深度必须与承载相配。

(2)表面淬硬层深度与工件内残余应力的关系
由第三章所采用类似的分析方法可知,表面淬火时由于仅表面加热,仅表面发生胀缩,故表面将承受压应力。

淬火冷却时表面热应力为拉应力,而表面组织应力为压应力,二者叠加结果,表面残余应力为压应力。

这种内应力由于表面部分加热和冷却时的胀缩和组织转变时的比容变化所致,显然其应力大小及分布与淬硬层深度有关.试验表明,在工件直径一定的情况下,随着硬化层深度的增厚,表面残余压应力先增大,达到一定值后,若再继续增厚硬化层深度,表面残余压应力反而减小。

残余应力还与沿淬火层深度的硬度分布有关,即与马氏体层的深度、过渡区的宽度及工件截面尺寸之间的比例有关。

相关文档
最新文档