运筹学基础-线性规划(3)

合集下载

运筹学基础及应用共107页文档

运筹学基础及应用共107页文档
约束条件:关于X的线性等式或不等式 目标函数:Z=ƒ(x1 … xn) 为关于X 的线性函数,
求Z极大或极小
2020/4/19
4
1.2 线性规划问题的数学模型
三个组成要素:
1.决策变量:是决策者为实现规划目标采取的 方案、措施,是问题中要确定的未知量。
2.目标函数:指问题要达到的目的要求,表 示为决策变量的函数。
2020/4/19
16
可行解:满足约束条件的解称为可行解,可行解的集 合称为可行域。
最优解:使目标函数达到最大值的可行解。
基:约束方程组的一个满秩子矩阵称为规划问题的一
个基,基中的每一个列向量称为基向量,与基向量对应 的变量称为基变量,其他变量称为非基变量。
基解:在约束方程组中,令所有非基变量为0,可以
j1
x
j
0
( j 1, , n)
标准形式特点:
1. 目标函数为求极大值; 2. 约束条件全为等式;
3. 约束条件右端常数项全为非负;
4. 决策变量取值非负。
2020/4/19
9
一般线性规划问题如何化为标准型:
1. 目标函数求极小值:
n
minz cj xj j1
令: z'z,即化为:
maxz max(z)minz
3.约束条件:指决策变量取值时受到的各种可 用资源的限制,表示为含决策变量的等式或 不等式。
2020/4/19
5
一般线性规划问题的数学模型:
目标函数:m ( m a ) z x 或 c i 1 x 1 n c 2 x 2 c n x n
a11x1 a12x2 a1nxn (或,)b1
约束条件:a21x1a22x2a2nxn( 或,)b2

运筹学基础章节习题详解

运筹学基础章节习题详解

运筹学基础章节习题详解章节习题详解第1章导论1.区别决策中的定性分析和定量分析,试各举出两例。

答:决策中的定性分析是决策⼈员根据⾃⼰的主观经验和感受到的感觉或知识对决策问题作出的分析和决策,在许多情况下这种做法是合适的。

例1 在评定“三好⽣”的条件中,评价⼀个学⽣是否热爱中国共产党,尊敬师长,团结同学,热爱劳动等属于定性分析,它依赖于评价者对被评价者的感知、喜好⽽定。

在“德”、“智”、“体”这三个条件中规定“德”占30%、“智”占40%、“体”占30%,这种⽐例是决策者们通过协商和主观意识得出的,它也属于定性分析的范畴。

决策中的定量分析是借助于某些正规的计量⽅法去作出决策的⽅法,它主要依赖于决策者从客观实际获得的数据和招待所采⽤的数学⽅法。

例2 在普通⾼等学校录取新⽣时,通常按该⽣的⼊学考试成绩是否够某档分数线⽽定,这就是⼀种典型的定量分析⽅法。

另外,在评价⼀个学⽣某⼀学期的学习属于“优秀”、“良好”、“⼀般”、“差”中的哪⼀类时,往往根据该⽣的各科成绩的总和属于哪⼀个档次,或者将各科成绩加权平均后视其平均值属于哪⼀个档次⽽定。

这也是⼀种典型的定量分析⽅法。

2.构成运筹学的科学⽅法论的六个步骤是哪些?答:运⽤运筹学进⾏决策过程的⼏个步骤是:1.观察待决策问题所处的环境;2.分析和定义待决策的问题;3.拟定模型;4.选择输⼊资料;5.提出解并验证它的合理性;6.实施最优解。

3.简述运筹学的优点与不⾜之处。

答:运⽤运筹学处理决策问题有以下优点:(1)快速显⽰对有关问题寻求可⾏解时所需的数据⽅⾯的差距;(2)由于运筹学处理决策问题时⼀般先考察某种情况,然后评价由结局变化所产⽣的结果,所以不会造成各种损失和过⼤的费⽤;(3)使我们在众多⽅案中选择最优⽅案;(4)可以在建模后利⽤计算机求解;(5)通过处理那些构思得很好的问题,运筹学的运⽤就可以使管理部门腾出时间去处理那些构思得不好的问题,⽽这些问题常常要依赖于⾜够的主观经验才能解决的;(6)某些复杂的运筹学问题,可以通过计算机及其软件予以解决。

《管理运筹学》复习提纲

《管理运筹学》复习提纲

《管理运筹学》复习提纲管理运筹学是现代管理科学的一门重要学科,旨在帮助管理者进行决策和规划,以实现组织的最佳效益。

为了帮助大家复习管理运筹学,下面是一份复习提纲,共分为四个部分:运筹学的基础知识、线性规划、网络分析和决策分析。

每个部分都包含了相关的概念、方法和应用案例,希望对大家复习有所帮助。

一、运筹学的基础知识(300字)1.运筹学的定义和发展历程2.运筹学的研究对象和基本方法3.运筹学在管理中的应用场景和作用4.运筹学与其他管理学科的关系二、线性规划(300字)1.线性规划的基本概念和原理2.线性规划的求解方法:图解法、单纯形法3.线性规划的应用案例:生产计划、资源分配等4.敏感性分析在线性规划中的应用三、网络分析(300字)1.网络图的表示和性质2.关键路径法和关键事件法的基本原理3.网络分析的应用案例:项目管理、生产调度等4.项目的时间和资源的优化分配四、决策分析(300字)1.决策分析的基本概念和理论2.决策树的构建和分析方法3.敏感性分析在决策分析中的应用4.决策分析的应用案例:投资决策、市场营销策略等这些提纲覆盖了管理运筹学的核心内容,帮助大家回顾基本概念、原理和方法,并通过具体的应用案例加深对管理运筹学的理解和应用能力。

在复习过程中,可以结合课堂讲义、教材和相关参考资料,做题、做案例分析,并与同学进行讨论和交流,提高自己的学习效果。

同时,也建议大家不仅仅局限于复习知识点,还要进行实际问题的解决和分析,如企业生产优化、项目管理等,这将有助于将理论知识与实践能力相结合,提高综合运筹能力。

最后提醒大家,复习不仅要注重理论的牢固掌握,更要重视实践操作的能力培养,只有理论与实践相结合,才能真正将管理运筹学的知识运用到实际管理中,并取得优秀的管理业绩。

希望大家能够在复习中找到适合自己的方法和学习策略,取得好成绩。

加油!。

运筹学基础

运筹学基础

运筹学基础运筹学基础运筹学是一门研究问题的建模、分析和解决方法的学科,它涵盖了数学、统计学、计算机科学和工程等多个领域。

运筹学的目标是通过科学的方法,优化决策和资源利用,以达到最佳的效果。

运筹学的基础包括线性规划、整数规划、非线性规划、动态规划、排队论、网络流和图论等内容。

这些方法可以在许多领域中应用,包括物流、生产、供应链管理、交通运输、金融和资源分配等。

线性规划是运筹学中的一种基础方法。

它适用于求解具有线性目标函数和线性约束条件的问题。

线性规划常常涉及到资源的分配和决策的优化,例如在生产中如何最大化利润或者在供应链中如何最小化运输成本。

整数规划是在线性规划的基础上引入整数变量的一种问题求解方法。

这种方法可以用于求解一些离散决策问题,例如在物流中如何选择配送点和配送路线,以及如何安排生产任务等。

非线性规划是针对目标函数或约束条件中存在非线性项的问题的求解方法。

这种方法用于求解一些复杂的决策问题,例如在金融投资中如何优化投资组合,以及在环境保护中如何最小化排放量等。

动态规划是一种将多阶段决策问题转化为一系列单阶段决策问题的方法。

它适用于一些需考虑时序和状态转移的问题,例如旅行商问题和生产计划问题等。

排队论是研究顾客到达和服务系统间关系的数学方法。

它可以用于分析和优化服务系统的性能指标,例如等待时间和服务效率等。

排队论可以应用于各种排队系统,包括银行、餐厅和交通等。

网络流是研究网络中物质或信息流动的数学方法。

它可以用于解决一些网络中的最优路径或最小费用问题,例如在物流中如何选择最佳配送路径,以及在通信网络中如何优化数据传输等。

图论是研究图结构和图算法的学科。

它可以用于模型建立和问题求解,例如在地图上如何规划最短路径,以及在社交网络中如何分析人际关系等。

总之,运筹学提供了一系列数学方法和工具,用于解决决策和资源分配问题。

这些方法不仅可以优化决策效果,还可以提高经济效益和资源利用效率。

运筹学的应用范围广泛,对提高社会生产力和改善生活质量具有重要意义。

《运筹学》课件 第一章 线性规划

《运筹学》课件 第一章 线性规划

10
解:令
xi=
1, Si被选中
min z= ci xi i 1 10
0, Si没被选中
xi 5
i 1
x1 x8 1 x7 x8 1
称为技术系数
b= (b1,b2, …, bm) 称为资源系数
2、非标准型
标准型
(1)Min Z = CX
Max Z' = -CX
(2)约束条件
• “≤”型约束,加松弛变量;
松弛变量
例如: 9 x1 +4x2≤360
9 x1 +4x2+ x3=360
• “≥”型约束,减松弛变量;
例、将如下问题化为标准型
数据模型与决策 (运筹学)
课程教材:
吴育华,杜纲. 《管理科学基础》,天津大学出版社。
绪论
一、运筹学的产生与发展
运筹学(Operational Research) 直译为“运作研究”。
• 产生于二战时期 • 60年代,在工业、农业、社会等各领域得到广泛应用 • 在我国,50年代中期由钱学森等引入
Min z x1 2x2 3x3
x1 x2 x3 7
s.t
.
x1 x2 x3 3x1 x2 2
x3
2
5
x1, x2 , x3 0
解:令 Min z Max z' (z' z) ,第一个约束加松弛变量x5,
第二个约束减松弛变量x6,得标准型:
Max z' x1 2x2 +3x3
x1 x2 x3 x4 7
s.t .
x1 x2 3x1
x3 x2
x5 2 2x3 5
x1 , , x5 0

运筹学第1章-线性规划

运筹学第1章-线性规划
凸集的数学定义:设K为n维欧氏空间的一个点集,若K中任意两个 点X1和X2连线上的所有点都属于K,即“X =αX1+(1-α) X2 ∈ K(0≤a ≤ 1)”,则称K为凸集。设X(x1,x2,…,xn),X1(u1, u2,...,un),X2(v1,v2,…,vn),如图1一5所示,“X =αX1+(1α) X2 ∈ K(0≤a ≤ 1)”的证明思路如下:
下一页 返回
图解法步骤:
(1)建立坐标系; (2)将约束条件在图上表示; (3)确立满足约束条件的解的范围; (4)绘制出目标函数的图形 (5)确定最优解
用图解法求解下列线性规划问题
max z 2x1 3x2
4x1 0x2 16
s.t
10xx11
4x2 2x2
12 8
x1, x2 0
1. 1.1问题举例
(1)生产计划问题。 生产计划问题是典型的已知资源求利润最大化的问题,对于此类
问题通常有三个假设:①在某一计划期内对生产做出的安排;②生产 过程的损失忽略不计;③市场需求无限制,即假设生产的产品全部 卖出。
下一页 返回
1.一般线性规划问题的数学模型
例1 用一块连长为a的正方形铁皮做一个容 器,应如何裁剪,使做成的窗口的容积为最 大?
解:设 x1, x2分别表示从A,B两处采购的原油量(单
位:吨),则所有的采购方案的最优方案为:
min z 200x1 290x2
0.15x1 0.50x2 150000
s.t
0.20x1 0.50x1
0.30x2 0.15x2
120000 120000
x1 0, x2 0
1. 1线性规划问题与模型
也可以写成模型(1-6)和模型(1-7)的形式,其中模型(1-7)较为常用。

运筹学课程讲义

运筹学课程讲义

运筹学课程讲义第一部分线性规划第一章线性规划的基本性质1.1 线性规划的数学模型一、线性规划问题的特点胜利家具厂生产桌子和椅子两种家具。

桌子售价50 元/个,椅子售价30 元/个。

生产桌子和椅子需木工和油漆工两种工种。

生产一个桌子需要木工4 小时,油漆工2小时。

生产一个椅子需要木工3 小时,油漆工1 小时。

该厂每月可用木工工时为120 小时,油漆工工时为50 小时。

问该厂如何组织生产才能使每月的销售收入最大?max z 50x1 30x24x1 3x2 1202x1 x2 50x1,x2 0 例:某工厂生产某一种型号的机床。

每台机床上需要 2.9m、2.1m、1.5m的轴,分别为1根、2根和1根。

这些轴需用同一种圆钢制作,圆钢的长度为74m。

如果要生产100台机床,问应如何安排下料,才能用料最省?二、数学模型的标准型1. 繁写形式2. 缩写形式3. 向量形式4. 矩阵形式若原模型中变量 x j 有上下界,如何化为非负变量?三、 任一模型如何化为标准型?1. 若原模型要求目标函数实现最大化,如何将其化为最小化问题?2. 若原模型中约束条件为不等式,如何化为等式?3. 若原模型中变量 x k 是自由变量,如何化为非负变量?1. 2 图解法该法简单直观,平面作图适于求解二维问题。

使用该法求解线性规划问题时,不必把原模型化为标准型。

一、 图解法步骤1. 由全部约束条件作图求出可行域2. 作出一条目标函数的等值线3. 平移目标函数等值线,作图求解最优点,再算出最优值 max z 5x 1 6x 2 7x 3x 1 5x 23x 3 15 5x 1 6x 210x 3 20 x 1 x 2 x 3 5x 1 0,x 2 0,x 3无约束令 x 1' x 1,x 3 x 3' x 3'',x 3' ,x 3'' 0, Z 1Z ' 1 1 min z ' 5x 1' 6x 2 7x 3' 7x 3'' 0x 5 Mx 6 1 x 1' 5x 2 1 11 3x 3' 3x 3'' x 4 x 6 15 1 5x 1' 6x 2 10x 3' 10x 3'' x 5 20 1 x ' x 1 ' II '' 54.Mx 7 x 1, x 2 , x 3, x 3, x 4 , x 5 ,x 6, x 7 0从图解法看线性规划问题解的几种情况1. 有唯一最优解2. 有无穷多组最优解3. 无可行解4. 无有限最优解(无界解)min z 6x1 4x?2x〔X2 13 最优解(1,0),最优值33x14x2 22x1, x20直观结论:1)线性规划问题的可行域为凸集,特殊情况下为无界域(但有有限个顶点)或空集;2)线性规划问题若有最优解,一定可以在其可行域的顶点上得到。

运筹学基础(中文版第10版)哈姆迪塔哈课后习题答案解析

运筹学基础(中文版第10版)哈姆迪塔哈课后习题答案解析

运筹学基础(中文版第10版)哈姆迪塔哈课后习题答案解析第一章线性规划模型1.1 线性规划的基本概念1.请解释线性规划模型的基本要素以及线性规划模型的一般形式。

答:- 线性规划模型的基本要素包括决策变量、目标函数、约束条件。

- 线性规划模型的一般形式如下:Max/Min Z = c₁x₁ + c₂x₂ + ... + cₙxₙSubject to:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ≥ 01.2 线性规划模型的几何解释1.请说明线性规划模型的几何解释。

答:线性规划模型在几何上可以表示为一个多维空间中的凸多面体(可行域),目标函数为该多面体上的一条直线,通过不同的目标函数系数向量c,可以得到相应的最优解点。

通过多面体的边界和顶点,可以确定最优解点的位置。

如果可行域是无限大的,则最优解点可以在其中的任何位置。

1.3 线性规划模型求解方法1.简要说明线性规划模型的两种求解方法。

答:线性规划模型可以通过以下两种方法进行求解: - 图形法:根据可行域的几何特征,通过图形方法确定最优解点的位置。

- 单纯形法:通过迭代计算,逐步靠近最优解点。

单纯形法是一种高效的求解线性规划问题的方法。

第二章单变量线性规划2.1 单变量线性规划模型1.请给出单变量线性规划模型的一般形式。

答:Max/Min Z = cxSubject to:ax ≤ bx ≥ 02.2 图形解法及其应用1.请解释图形解法在单变量线性规划中的应用。

答:图形解法可以直观地帮助我们确定单变量线性规划模型的最优解。

通过绘制目标函数和约束条件的图像,可以确定最优解点的位置。

对于单变量线性规划模型,图形解法特别简单,只需要绘制一条直线和一条水平线,求解它们的交点即可得到最优解点的位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

minZ= 10x1 +8x2 +7 x3 2x1 + x2 ≥ 6 S.t. x1 + x2 + x3 ≥ 4 x1 , x2 , x3≥0
化线性规划模型为标准型
maxZ’= -10x1- 8x2 - 7x3 +0x4-Mx5 +0x6-Mx7 2x1 + x2 - x4 + x5 = 6 x 1 + x 2 + x 3 - x 6 + x 7= 4 x1 , x2 , x3 , x4 , x5 , x6 , x7 ≥0
Cj CB 0 0 XB
标准化
Max z=2x1+4x2+ 0x3+ 0x4+ 0x5+ 0x6 2x1+2x2 + x3 =12 x1+2x2+ x4 =8 4x1 +x5 =16 4x2 +x6=12 x1, …, x6≥0
2 4 x2 0 x3 0 x4 0 x5 0 x6 x1
b
12 8 16 12 0
线性规划

0 0 -Z -Z’
1 0 0 -10
1/2 1/2 0 -8
0 1 0 -7
-1/2 1/2 0 0
1/2 -1/2 -1
0 -1 0
0 1 -1
3 1
0
σj<0
第一阶段规划最优
0 1 -1

0
0 -Z’
1
0 0 1 0 0
1/2 1/2 1/2
0 1 0
0
1 0 -1 2 -1
-1/2
9
线性规划
接上表
0
0
3
0 -2 1 1 0 0 0
0
1 0 0 0 1 0 0
0
0 1 0 0 0 1 0
1
0 0 0 1/3 0 2/3 -1/3
-2
-1 0 -1 -2/3 -1 -4/3 -1/3
0
1 0 0 0 1 0 0
-1
-2 1 -3 -1 -2 1 -3
12
1 1 2 4 1 9 -2
0
x6 0.5 -0.5 2
b
2
2
x1 0 1 0
比 值
4 4 32
8
8
0
0
1
0
0
0
0
-2
0
0
0.25
0
检验数j
-36
j<0
令 x4=0,x6=0,得x1=2,x2=8,x3=2, x5=8 即 X0=(2, 8, 2 ,0 , 8, 0) T 此时Z= 2×2+4×8=36 是最优解
16
线性规划
11
线性规划 第一阶段规划求解
Min Z x5 x7 MaxZ ' x5 x7 2 x1 x2 x4 x5 6 x1 x2 x3 x6 x7 4 x ,, x 0 7 1
-1 0 1 0 0 -1 0 1 -1 0 1 0 6 4 0

Max W x6 x7
x1
1 -4 -2 0 1 -4 -2 -6
x2
-2 1 0 0 -2 1 0 1
x3
1 2 1 0 1 2 1 3
x1 2 x2 x3 x4 11 4 x x 2 x x x 3 1 2 3 5 6 2 x1 x3 x7 1 x1 , , x7 0
-1
0 1 0 0 2
1
-1 -2 1 -3 -5
-2
10 1 1 1 12
1

0 -W 0

0
0
-Z’ -W
-2
0
1
0
0 0 -1
0 -1
1 -1
1 0 2 1
3 0 1 3
-1 0 -1 -1 0 0 0 0
0 0 0
进行第二阶段的计算
此时求解不是最优,继续迭代
令x5= 将第一阶段的人工变量列取消, 并将目标函数系数换成原问题的 x6= x7=0,得最优解X= ( 0, 1, 1 ,12, 0 )T, minW= 0。因人工变 量目标函数系数, 重新计算检验数行, MinxZ = 0, x1 x 2 x 3 化为标准型 MaxZ ' 3x1 x2 x3 6=x7 3 所以是原问题的基可行解。于是可以开始第二阶段的计 可得如下第二阶段的初始单纯形 算。 表;应用单纯形算法求解得最终表。
目的达到:则所求解为 原问题的可行解 目的未达到:则原问题 无解
第二阶段利用已求出的初始基可行解来求原问题最优解。
第二阶段Max Z ' 3x1 x2 x3
5
线性规划 试用两阶段法求解如下线性规划问题
Min Z 3x1 x 2 x 3 Max Z 3x1 x 2 x3 0 x 4 0 x5 Mx 6 Mx 7 x1 2 x 2 x 3 11 4 x x 2 x 3 1 2 3 2 x 1 x 3 1 x1 , x 2 , x 3 0
x1 2 x2 x3 x4 11 4 x x 2 x x x 3 1 2 3 5 6 2 x1 x3 x7 1 x1 ,, x7 0
6
线性规划 初等变换 -Z ’
0 0 0 -W 0
Min Z x6 x7
1 1 -8 1 1
-8+2M
0 1 -7 0 1
-7+M
-1 0 0 -1 0
-M
1 0 -M 1 0
0
0 -1 0 0 -1
-M
0 1 -M 0
6 4 0 6 4
10M

1
-10+3M
1
0

1
0
0
1/2 1/2
-3+1/2M
0
-1/2
1/2
0
0 1
3
1
-7+M
1/2
1/2M-5
-1/2
5-3/2M
0 -1 0
0 0 0
进行第二阶段的计算
此时求解不是最优,继续迭代
令x5= 将第一阶段的人工变量列取消, 并将目标函数系数换成原问题的 x6= x7=0,得最优解X= ( 0, 1, 1 ,12, 0 )T, minW= 0。因人工变 量目标函数系数, 重新计算检验数行, MinxZ = 0, x1 x 2 x 3 化为标准型 MaxZ ' 3x1 x2 x3 6=x7 3 所以是原问题的基可行解。于是可以开始第二阶段的计 可得如下第二阶段的初始单纯形 算。 表;应用单纯形算法求解得最终表。
x1 2 x 2 x3 x 4 11 4 x x 2 x x x 3 1 2 3 5 6 2 x1 x3 x7 1 x1 ,, x7 0
第一阶段是先求以人工变量等于0为目标的线性规划问题
第一阶段 Min Z x6 x7
1/2 -3/2 -11 1 -2
1/2
-1/2 1/2 1/2 -1/2 1/2
0
-1 -7 1 -2 -6
3
1 37 2 2 36
13

0 0 -Z’
0
1
-1
σj<0
线性规划
四、单纯形法补遗
进基变量相持:
– 单纯形法运算过程中,同时出现多个相同的j最大。 – 在符合要求的j(目标为max:j>0,min:j<0)中,选取下标
0 0
2 1
1 1
0 1
-Z’ 0
0 2
1 3 1 0
0 1
1 2 1/2 1/2 1/2
0 0
1 1 0 1 1
0 -1
0 -1 -1/2 1/2
-1 1
0 0 1/2 -1/2
0 0
-1 -1 0 -1
6
4 10 3 1 1
12

0 -Z’ 0
0
1 0

0
-Z’
0
1/2
-3/2
-1
令 x3= x4=x6=0得 x1=2, x2=2, 此解最优 max-Z’=36 第二阶段规划求解 Min Z 10x1 8x 2 7x 3 Max Z' 10x1 8x 2 7x从而得 minZ=36 3
x4
x5
0 -1 0 0
x6
0 1 0 -1
x7
0 0 1
b
1 0 0 0 1 0 0 0
11 3 1 0 11 3 1 4
7
-1 0 0 1 0
0 -1 0 -1
0 1 0 0

0 0 -W
线性规划
0 0 3 0 -2 0 3
0
-2 1 0 1 0
1
0 0 1 0 0
0
1 0 0 0 1
0
0 -1 0 -1 -2
再次迭代结果
结论:非基变量检验数有为0的,此线性规划有无穷多个解
2
线性规划
试用大M法求解
maxZ’= -10x1- 8x2 - 7x3 +0x4-Mx5 +0x6-Mx7 2x1 + x2 - x4 + x5 = 6 x1 + x2 + x3 - x6 + x7= 4 x1 , x2 , x3 , x4 , x5 , x6 , x7 ≥0
2 1 -10 2
4
线性规划
相关文档
最新文档