有介质时的高斯定理
有介质时的高斯定理,写出其物理意义

有介质时的高斯定理,写出其物理意义
高斯定理(也称为高斯通量定理)是电磁学中的一个基本定理,描述了电场或磁场通过一个封闭曲面的总通量与在该曲面内部源的大小之间的关系。
具体表达式为:对一个任意形状的封闭曲面,电场或磁场通过该曲面的总通量等于该曲面内部电荷或磁荷的代数和。
物理意义如下:
1. 电场或磁场通过一个封闭曲面的总通量是该曲面内部电荷或磁荷的性质之一,可以帮助我们了解场的发源和分布。
例如,通过测量通过一个闭合曲面的电场通量,可以推断该闭合曲面内部的电荷分布情况。
2. 高斯定理对于计算电场或磁场的分布以及场源的性质具有重要的应用。
通过选取适当的曲面以及利用高斯定理,可以简化计算复杂电场或磁场的过程,提高计算效率。
3. 高斯定理还有与能量和电荷守恒定律的联系。
当封闭曲面内部不存在电荷时,即电荷守恒定律成立时,通过该曲面的电场通量为零。
这可以用来推导电场能量的守恒。
总的来说,高斯定理在电磁学中具有重要的作用,它可以帮助我们理解场的分布、推断电荷或磁荷的性质,并且简化电场或磁场计算的过程。
有电介质的高斯定理

εr 1
S 2
S 2
d
V
V D1 = ε oε r E1 = ε oε r d ε oV D2 = ε o E2 = d
为什么 E1介 = E2真? 反而D1 ≠ D2了?
E1 , E2 , D1 , D2的方向均 ↓
关键: 关键: σ1 ≠ σ 2!
(2) 介质内的极化强度 P ,表面的极化电荷密度σ' 表面的极化电荷密度σ P = χ eε o E1 = ε o (ε r 1)V d σ1 S σ 2 方向: 方向: ↓ V εr 1 2 d ∵σ ′ = P cosθ
εo εo εr
(2) U = Q = 2b[ε r b (ε r 1)t ]Q ) C ε o S[2ε r b (ε r 1)t ]
问: Q左? 右 =Q
平板电容器极板面积为S间距为 接在电池上维持V 间距为d,接在电池上维持 例 . 平板电容器极板面积为 间距为 接在电池上维持 . 均匀介质ε 厚度d 均匀介质εr 厚度 ,插入电容器一半忽略边缘效应 求(1)1,2两区域的 E 和 D ;(2)介质内的极化强度 P, , 两区域的 介质内的极化强度 表面的极化电荷密度 σ ' ;(3)1,2两区域极板上自由 , 两区域极板上自由 σ 电荷面密度 σ 1 , 2. 解:(1)V = E1d = E2d ) ∴ E1 = E2 = V d
U = E1 (b t ) + E2 t = εrσ o [εrb (εr 1) t] ε
q εrεoS ∴C = = = U εrb (εr 1) t
空气隙中 D = σ E1 = σ εo
介质中 D = σ
ε 1 b r t εr
εoS b
与t的位置无关 的位置无关 t↑,C↑ ↑ ↑ εrεoS t=b C = b
第七节 有电介质时的高斯定理

3
第七节 有电介质时的高斯定理
1. 有极分子和无极分子
电介质
无极分子:(氢、甲烷、石蜡等)
有极分子:(水、有机玻璃等)
有极分子— 极性电介质
特点:分子正负电重心不重合,有固有电偶极矩;
4
第七节 有电介质时的高斯定理
无极分子 — 非极性电介质 例如 H2、O2、CO2、CH4
特点:分子正负电中心重合,无固有电偶极
布求得合场强的分布。
11
第七节 有电介质时的高斯定理
例 7-13 设一带电量为Q 的点电荷周围充满电容率 为 的均匀介质,求场强分布。 解: 根据介质中的高斯定理
2 D ds D 4 r q0
S
r
q0 D 4 r 2
1 q0 E 2 4 r D
8
第七节 有电介质时的高斯定理
(2)有电介质时的高斯定理
1 SE dS ε0 (Q0 Q)
Q0 由 εr Q0 - Q
Q0
Q
Q0 得 E dS S ε0 ε r
S
0 r E dS Q0
9
第七节 有电介质时的高斯定理
S
0 r E dS Q0
S
D 2 π rl l
D
2πr
D E ε0 ε r 2 π ε0 ε r r
( R1 r R2 )
R2
r
R1
14
第七章 静电场
一 电介质的极化
二 有电介质时的高斯定理
1
第七节 有电介质时的高斯定理
一、电介质的极化
电介质指的是导电性极差的物质。在电介质内 几乎不存在自由电子(或正离子)。通常条件下的
9-6有电介质时的高斯定理 电位移

∫∫ D S
S1
= D 1 S=S σ
σ σ E1 = = ε 1 ε r 1ε 0
v v v v 再利用 D 1= ε 1 E 1 , D 2= ε 2 E 2 可求得
σ σ E2 = = ε 2 ε r 2ε 0
方向都是由左指向右。 方向都是由左指向右。
有电介质时的高斯定理 电位移
负两极板A、 间的电势差为 (2)正、负两极板 、B间的电势差为 )
例题9-6 一半径为 的金属球,带有电荷 0,浸埋在均匀 一半径为R的金属球 带有电荷q 浸埋在均匀 的金属球, 例题 无限大”电介质(电容率为ε),求球外任一点P的场 ),求球外任一点 “无限大”电介质(电容率为 ),求球外任一点 的场 强及极化电荷分布。 强及极化电荷分布。 P 根据金属球是等势体, 解: 根据金属球是等势体,而 ε r 且介质又以球体球心为中心对 称分布,可知电场分布必仍具 称分布, R Q0 球对称性, 球对称性,用有电介质时的高 斯定理来。 斯定理来。 S 如图所示, 如图所示,过P点作一半 点作一半 径为r并与金属球同心的闭合 径为 并与金属球同心的闭合 球面S, 球面 ,由高斯定理知
4εr(εr 2 1) 3 ′ σ 上负下正 σ2 = ε0 (εr2 1)E2 = εr1εr 2 +εr1εr3 + 2εr 2εr3
′ σ3 = ε0 (εr3 1)E3 =
4εr(εr3 1) 2 σ εr1εr 2 + εr1εr3 + 2εr 2εr3
上负下正
有电介质时的高斯定理 电位移
r r 由 P = ε0 (εr 1)E 得电极化强度矢量的分布
P=
r r 由 σ′ = P n 得束缚电荷的分布
有电介质时的高斯定理

解:( 1 )求 : D D, E , P 具有球对称性
选过场点与球面同心的 球面为S:r
S内
R
q
r
P
2 D d S D 4 r q 0
S
r
当:r R : 当: r R :
q q
0
0 q0
D=0
E=0
P=0
0
E
(1 r )q0 R P n P 2 4r R 2 (1 r )q0 q 4R R
总结
D分布
球对称 面对称 轴对称
高斯面 同心球面 垂直于板的和中心 面对称的封闭柱面 同轴封闭园柱面
由于导体为等势体:
例:设无限长同轴电缆的芯线半径为R1,外皮 的内半径为R2。芯线与外皮之间充入两层绝缘 的均匀电介质,其相对电容率分别为εr1和εr2。 两层电介质的分界面半径为R,如图。求单位 长度的电容。 解: (1) 先求 : D R2 εr1 设单位长芯线、外皮 R R1 分别带电λ、-λ εr2 D, E 具有轴对称性 选过场点与电缆同轴的单位长封闭园柱 面为高斯面:r
§9-4 有介质时的高斯定理
一、有介质时的环路定理和高斯定理:
E E0 E
L
有介质时的环路定理:
E d l 0
有介质时的高斯定理:
q内
E d S
S
q
S内
q
S
0
0
q0
1 1 S内 ) ( q0 q内 P dS 0 S内 0 0 S ( E P ) d S q 0 0
D, E , P
40 r r
有介质时的高斯定理

无极分子在电场中, 正负电荷中心会被
拉开一段距离,产生 感应电偶极矩,这
称为位移极化。
无极分子
l
q q
p ql
感应电偶极矩
(2)分子中的正电荷等效中心 与负电荷等效中心 不重合的称为有极分子(如 HCl、H2O、NH3 )
例如左图的左右表面 上就有极化电荷。
正是这些极化电荷 的电场削弱了电介 质中的电场。
电介质的击穿
当外电场很强时,电介质的正负电中心 有可能进一步被拉开,出现可以自由移动的 电荷,电介质就变为导体了,这称为击穿。
电介质能承受的最大 电场强度称为该电介质 的击穿场强, 或介电强度。
例如. 空气的击穿场强 约 3 kV/mm.
介质中的高斯定理又写为: sD dS q内
… 的高斯定理
即通过任意封闭面的电位移的通量等于 该封闭面所包围的自由电荷的代数和。
说明: 1.它比真空中的E 的高斯定律更普遍,当没有电介质
时, 即r=1, 就过渡到真空中的高斯定律了。
2.如果电场有一定的对称性,我们就可以先从 D 的高
斯定理求出 D 来;然后再求出 来。
实验:插入电介质后,电压变小
U U0
r
Q Q Q Q
r>1……介质的
相对介电常数 (相对电容率)
r 随介质种类和
状
U
为什么插入电介质 会使电场减弱?
1电介质的极化
电介质这类物质中,没有自由电子, 不导电, 但可以极化。 电介质分子可分为有极和无极两类:
有极分子在电场中, 固有电偶极矩会转向 电场的方向,这称为 转向极化。
有电介质时的高斯定理

有电介质时的高斯定理
有电介质时的高斯定理是电学中的一个重要定理,它描述了电场的分布与电荷分布的关系。
此定理的公式表述为:电场穿过一个封闭曲面的通量等于该曲面内部的电荷总量的比例,即ΦE=Q/ε0,其中ΦE为电场的通量,Q为曲面内部的电荷总量,ε0为真空中的电介质常数。
在有电介质时,电场的分布受到电介质的影响。
电介质的存在会使电场强度发生改变,这是因为电介质的分子会被电场极化,从而产生极化电荷。
这些极化电荷会改变电场的分布,使电场在电介质中的强度比在真空中的强度小。
因此,在有电介质时,要考虑电介质对电场的影响,才能准确地计算电荷的分布。
在应用高斯定理时,通常需要选择一个适当的曲面来计算电场的通量。
曲面的选择应当考虑到电荷分布的对称性,以便简化计算。
在有电介质时,曲面的选择也需要考虑到电介质的影响。
如果曲面穿过电介质,那么在计算电荷总量时,需要将电介质中的极化电荷也计算在内。
高斯定理的应用范围很广,包括电场的计算、电容器的设计、电荷分布的测量等。
在电场的计算中,高斯定理可以用来求解各种电场分布,例如电偶极子、均匀带电球面等。
在电容器的设计中,高斯定理可以用来计算电容器的电容量,从而确定电容器的电荷储存能
力。
在电荷分布的测量中,高斯定理可以用来测量电荷的总量,从而确定电荷的分布情况。
有电介质时的高斯定理是电学中的一个重要定理,它描述了电场的分布与电荷分布的关系。
在应用该定理时,需要考虑到电介质的影响,并选择适当的曲面来计算电场的通量。
高斯定理的应用范围很广,包括电场的计算、电容器的设计、电荷分布的测量等。
4.2有电介质存在时高斯定理和环路定理

例题:均匀介质内部极化体电荷密度ρ’=0
在介质内部取任意高斯面S,则有
∫∫ D ⋅ dS = 0
S
无自由电荷
在均匀线性介质中 D (r ) = ε 0 ε E (r ) P ( r ) = χ eε 0 E ( r )
χ e P= D ε
接触起电的危害和应用
人体放电
人体对地电容约为
100 ~ 200 pf,人坐在人造革椅 子上起立,或在塑料地板上步行数步所产生的接触 静电电荷造成人体的静电电压可以达到104V~空气 的击穿场强,有时会出现瞬间放电现象
航天工业
静电放电造成火箭和卫星发射失败,干扰航天飞行
例题
如上题。球形电容器内外半径 分别为R1与R2,其间充以相对 介电常数为ε1和ε2的均匀介质, 两介质界面半径为R。两介质 的击穿场强分别为E1和E2,且 E1<E2,为合理使用材料,最 好使两种介质内的电场强度同 时达到其击穿值,求此时R的 大小。
A B C D
场强分布
Q R1 < r < R, EB = 4πε 0ε1r 2 Q R < r < R2 , EC = 4πε 0ε 2 r 2
ε = 1 + χe
相对介电常数(与真空相对)
真空中
ε = 1, D = ε 0 E
应用
∫∫ D ⋅ dS = ∑ q0
S in S
可以用来计算某些场分布(由对称性决定)
利用D-
Gauss定理按以下路径求
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有电介质时的高斯定理
电位移
2 D dS D 4r q0 q0 D 所以 2 4r q0 写成矢量式为 D r 3 4r 因 D E , 所以离球心r 处P点的场强为 D q0 q0 E E r r 3 3 4r 4 0 r r r
0
r R2
R2 R1
r R1 r R2
由 P n 得束缚电荷的分布 1 2 1
R ln( R / R ) 0 ( r 1)U R2 ln( R2 / R1 ) 0 r ( 1)U
束缚电荷在介质内表面为正,外表面为负。
有电介质时的高斯定理
§9-6 有电介质时的高斯定理 电位移
1.有电介质时的高斯定理
1 E dS
电位移
同时考虑自由电荷和束缚电荷产生的电场自由电荷 总电场
S
0
(q
S内
0
q)
束缚电荷
由电荷守恒定律和面上束缚 电荷,得面内束缚电荷
高斯
有电介质时的高斯定理
电位移
q dS P cosdS SP dS
D3
2 0 r 3
E1d E2 d / 2 E3 d / 2
可解得 r 2 r3 2 1 E1 0 r1 r 2 r1 r 3 2 r 2 r 3 1 r3 4 r1 E2 0 r1 r 2 r1 r 3 2 r 2 r 3 1 4 r2 1 E3 0 r1 r 2 r1 r 3 2 r 2 r 3
0
r R2
有电介质时的高斯定理
电位移
由电位移与电场的关系,知
E
U
R1
20 r r
0
r R1
R1 r R2
R2 R1
0
r R2
内外筒电势差
R2
R2 E dl
R1
R2 dr ln 20 r r 20 r R1
r R1
R1 r R2
质内部极化电荷体密度等于零,极化面电荷分布 在与金属交界处的电介质变面上(另一电介质表 面在无限远处),其电荷面密度为
P en
有电介质时的高斯定理
电位移
q0 r 1 2 4R r
因为εr >1,上式说明σ’恒与q0反号,在交界 面处只有电荷和极化电荷的总电荷量为
d1 d 2 q d1 d 2 VA-VB=E1d1 E2 d 2 1 2 S 1 2
q=σS是每一极板上的电荷,这个电容器的电容为 q S C d1 d 2 VA -VB 可见电容电介质的放置次序无关。上述结果可以 推广到两极板间有任意多层电介质的情况(每一层的 厚度可以不同,但其相互叠合的两表面必须都和电容 器两极板的表面相平行)。
q=σS是每一极板上的电荷,这个电容器的电容为 q S C d1 d 2 VA -VB 可见电容电介质的放置次序无关。上述结果可 以推广到两极板间有任意多层电介质的情况(每一层 的厚度可以不同,但其相互叠合的两表面必须都和电 容器两极板的表面相平行)。
1
2
有电介质时的高斯定理
电位移
(2)正、负两极板A、B间的电势差为
电位移
电位移矢量 同时描述电场和电介质极化的复合矢量。 电位移线与电场线 性质不同。 + + + + + + + + + + + + + + + + + + + +
电场线 电位移线
三矢量间关系
2. D、E、P 三矢量之间关系 D 0 E P D 0 r E E P 0 ( r 1) E
S内
q0 代入得 S ( 0 E P ) dS S内 定义:电位移矢量 D E P 0 有介质时的高斯定理 D d S q 0
S S内
S
S
通过电介质中任一闭合曲面的电位移通量等 于该面包围的自由电荷的代数和。
有电介质时的高斯定理
由 P n 0 ( r 1) E n 得束缚电荷的分布
上负下正 上负下正 上负下正
4 r( 3 r 2 1) 0 ( r 2 1) E2 2 r1 r 2 r1 r 3 2 r 2 r 3 4 r( 2 r 3 1) 0 ( r 3 1) E3 3 r1 r 2 r1 r 3 2 r 2 r 3
有电介质时的高斯定理
电位移
结果表明:带电金属球周围充满均匀无限大电介 质后,其场强减弱到真空时的1/εr倍, 可求出电极化强 度为
q0 q0 q0 r 1 P r 0 r r 3 3 3 4r 4 0 r r 4r r 电极化强度 P 与 r 有关,是非均匀极化。在电介
有电介质时的高斯定理
电位移
D dS D1S+D2 S=0
S1
所以
即在两电介质内,电位移 D1和 D2 的量值相等。由于
D1=D2
D1=1 E1 , D2= 2 E2 E1 2 r 2 所以 E2 1 r 1
可见在这两层电介质中场强并不相等,而是和 电容率(或相对电容率)成反比。
有电介质时的高斯定理
电位移
为了求出电介质中电位移和场强的大小,我们 可另作一个高斯闭合面S2 ,如图中左边虚线所示, 这一闭合面内的自由电荷等于正极板上的电荷,按 有电介质时的高斯定理,得
D S D
S1
1
S = S
E1 1 r1 0
再利用 D1=1 E1 , D2= 2 E2 可求得
电位移
例2. 一平板电容器板间为真空时,两极板上所带电荷 的面密度分别为+和-,,电压U0=200V。撤去充 电电源,在板间按图示充以三种介质,介质1充满一 半空间,介质2和3的厚度相同。求介质表面的束缚 电荷。(忽略边缘效应)
忽略边缘效应,板间各 解: 处 E、 D 均垂直于板面,
E2 2 r 2 0
方向都是由左指向右。
有电介质时的高斯定理
电位移
(2)正、负两极板A、B间的电势差为
d1 d 2 q d1 d 2 VA-VB=E1d1 E2 d 2 1 2 S 1 2
r 1 q0 q0 q 0 r r
总电荷量减小到自由电荷量的1/εr倍,这是离球 心r处P点的场强减小到真空时的1/εr倍的原因。
有电介质时的高斯定理
电位移
+
例题9-7 平行板电容器两板极 S1 的面积为S,如图所示,两板极 1 2 之间充有两层电介质,电容率分 S2 别为ε1 和ε2 ,厚度分别为d1 和d2 , E1 E2 电容器两板极上自由电荷面密度 D1 D2 为±σ。求(1)在各层电介质的 电位移和场强,(2)电容器的 A B d1 d2 电容. 解 (1 )设场强分别为E1 和E2 ,电位移分别为D1 和D2 ,E1和E2 与板极面垂直,都属均匀场。先在两层 电介质交界面处作一高斯闭合面S1,在此高斯面内的 自由电荷为零。由电介质时的高斯定理得
有电介质存在时的高斯定理的应用
(1)分析自由电荷分布的对称性,选择适当的高斯 面,求出电位移矢量。 (2)根据电位移矢量与电场的关系,求出电场。 (3)根据电极化强度与电场的关系,求出电极化强度。 (4)根据束缚电荷与电极化强度关系,求出束缚电荷。
有电介质时的高斯定理
电位移
例1. 一无限长同轴金属圆筒,内筒半径为R1,外筒半径 为R2,内外筒间充满相对介电常数为r的油,在内外筒间 加上电压U(外筒为正极),求电场及束缚电荷分布。 根据自由电荷和电介质分布的对称性,电场强度和 解: 电位移矢量均应有柱对称性。 设内圆筒单位长度带电为,以r为底半径、l为高作 一与圆筒同轴的圆柱面为高斯面,则 2 1 R R 1 D q0 rl q0 S D dS D 20 1 2rl S内 S内 r R 2r 1 r R2 R D
代入得到电场的分布为:
E
r ln( R2 / R1 ) U
0
沿半径向里
0
r R2
有电介质时的高斯定理
电位移
由 P 0 ( r 1) E 得电极化强度矢量的分布 0 r R1
P
r ln( R2 / R1 ) 0 ( r 1)U
R1 r R2 沿半径向里
r2 r3 2
2
S
D1 1
下底
D2 D3 2
有电介质时的高斯定理
电位移
由电场与电位移关系得: D1 1 D2 2 E1 E2 0 r 1 0 r 1 0 r 2 0 r 2 平衡时导体是等势体 电荷守恒
E3
0 r 3
1
r1
侧面、上底面电场电位 1 移通量均为零。 电介质中高斯定理 D dS D dS D dS D dS D dS S 上底 下底 侧面 下底 分别考虑三种介质: 介质1 dS D dS D1 S 1 S SD 下底 介质2 dS D dS D2 S 2 S SD 下底 介质3 D dS D dS D3 S 2 S