高中数学高考数学50条秒杀型公式与方法

合集下载

干货 - 50个公式,50个快速解题法,高考数学

干货 - 50个公式,50个快速解题法,高考数学

干货 | 50个公式,50个快速解题法临考冲刺,快速解题是当前该关注的,50个公式,50个快速解题法,让你考试前定心。

1 . 适用条件[直线过焦点],必有ecosA=(x­1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。

x为分离比,必须大于1。

注:上述公式适合一切圆锥曲线。

如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x­1),其他不变。

2 . 函数的周期性问题(记忆三个)(1)若f(x)=­f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x­k),则T=6k。

注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。

c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。

3 . 关于对称问题(无数人搞不懂的问题)总结如下(1)若在R上(下同)满足:f(a+x)=f(b­x)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(b­x)的图像关于x=(b­a)/2对称;(3)若f(a+x)+f(a­x)=2b,则f(x)图像关于(a,b)中心对称4 . 函数奇偶性(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5 . 数列爆强定律(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)­S(n)、S(3n)­S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=­1时,未必成立(4)等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q6 . 数列的终极利器,特征根方程首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1­p),则数列通项公式为an=(a1­x)p²(n­1)+x,这是一阶特征根方程的运用。

高中数学秒杀口诀50条纯干货

高中数学秒杀口诀50条纯干货

高中数学秒杀口诀50条纯干货一:几何初等函数1.古典三角形:角平分线平行,等腰直角比定理。

2.矩形内角和:四个等边,和为全是360°。

3.三角形内角和:三个直角全等,和为180°。

4.外心内接圆:三角的内接圆两条邻边夹,外心即两角平分线夹。

5.等腰三角形:最大角等于中角,最小边等于两边之和。

6.锐角三角形:最大角大于中角,最小圆大于四分之一。

7.平行四边形:两个对角等于边之和,外心则是两角平分线之和。

8.直角三角形:两条直角等腰,直角大于两角小于90°。

9.梯形内角和:三角形的两个角和一个平角,和为180°。

10.直线的垂直交点:两条直线垂直相交,交点即两角平分线夹。

二:代数初等函数11.二次根式:二次根式的解法,一正一负要多除。

12.简化指数:指数运算把它拆,系数即是乘积啊。

13.分类联立:解三元一次方程,联立好可分析情况。

14.一次函数:一次函数的特征,斜率及截距说明。

15.一元二次:一元二次公式的解法,定理及变量要多算。

16.分式简化:分式的约分乘除,最大公因数要多求。

17.分数分母:分数乘除连除化,分母在最后要求。

18.交互消去:线性联立统一求,直接把变量交换消去。

19.完全平方:平方差和完全平方,两者的系数个数差别大。

20.二次方程:二次方程解决比较复,分类讨论得一套。

三:几何欧氏空间21.向量加减:向量加减法则规律,角平分头尾夹定理。

22.点线距离:点线距离公式的用,要知道夹角及长度。

23. 内积外积:内积叉积的多角度,余弦定理及正弦值。

24.向量积:向量积的乘积和,方向及大小要推算。

25.向量坐标:向量坐标的变换,从任意坐标转换。

26.向量的点积:向量的点积公式求,余弦定理和已知参数。

27.平面向量:平面向量的方向角,余弦及正弦定理求。

28.点在直线上:点在直线上确定位置,向量的夹角来判断。

29.直线平行:两直线平行向量点积,结果余弦定理明确。

高中数学48个考试秒杀公式

高中数学48个考试秒杀公式

高中数学48个考试秒杀公式work Information Technology Company.2020YEAR高中数学48条秒杀型公式与方法,看过的都说好除了课本上的常规公式之外,掌握一些必备的秒杀型公式能够帮你在考试的时候节省大量的时间,通哥这次的分享就是48条爆强的秒杀公式,直接往下看!1.适用条件:[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。

x为分离比,必须大于1。

注上述公式适合一切圆锥曲线。

如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

2.函数的周期性问题(记忆三个):(1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。

注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。

c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。

3.关于对称问题(无数人搞不懂的问题)总结如下:(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2;(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称4.函数奇偶性:(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5.数列爆强定律:(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立4,等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q6.数列的终极利器,特征根方程。

高考数学必备50条公式和结论

高考数学必备50条公式和结论

1,适用条件:[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。

x为分离比,必须大于1。

注上述公式适合一切圆锥曲线。

如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

2,函数的周期性问题(记忆三个):1、若f(x)=-f(x+k),则T=2k;2、若f(x)=m/(x+k)(m不为0),则T=2k;3、若f(x)=f(x+k)+f(x-k),则T=6k。

注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。

c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。

3,关于对称问题(无数人搞不懂的问题)总结如下:1,若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2;2、函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;3、若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称4,函数奇偶性:1、对于属于R上的奇函数有f(0)=0;2、对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项3,奇偶性作用不大,一般用于选择填空5,数列爆强定律:1,等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);2等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差3,等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立4,等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q6,数列的终极利器,特征根方程。

(如果看不懂就算了)。

首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1)+x,这是一阶特征根方程的运用。

高中数学 高考数学50条秒杀型公式与方法

高中数学  高考数学50条秒杀型公式与方法

高中数学| 高考数学50条秒杀型公式与方法1,适用条件:[直线过焦点],必有e c o sA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。

x为分离比,必须大于1。

注上述公式适合一切圆锥曲线。

如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

2,函数的周期性问题(记忆三个):①、若f(x)=-f(x+k),则T=2k;②、若f(x)=m/(x+k)(m不为0),则T=2k;③、若f(x)=f(x+k)+f(x-k),则T=6k。

注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。

c.周期函数加周期函数未必是周期函数,如:y=s i n x y=si n派x相加不是周期函数。

3,关于对称问题(无数人搞不懂的问题)总结如下:①,若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2;②、函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;③、若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称。

4,函数奇偶性:①、对于属于R上的奇函数有f(0)=0;②、对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项③,奇偶性作用不大,一般用于选择填空。

5,数列爆强定律:①,等差数列中:S奇=n a中,例如S13=13a7(13和7为下角标);②,等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差;③,等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立;④,等比数列爆强公式:S(n+m)=S(m)+q²m S(n)可以迅速求q。

6,数列的终极利器,特征根方程。

首先介绍公式:对于a n+1=p an+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1)+x,这是一阶特征根方程的运用。

高中数学高考数学50条秒杀型公式与方法

高中数学高考数学50条秒杀型公式与方法

高中数学高考数学50条秒杀型公式与方法高中数学是高考的重要科目之一,其中有许多公式和方法需要掌握。

本文将介绍50条秒杀型公式和方法,供高中生备考高考使用。

一、代数1. 二次函数顶点坐标公式:对于一般式二次函数f(x)=ax^2+bx+c,顶点坐标为(-b/2a, -Δ/4a),其中Δ=b^2-4ac。

2. 一元二次方程求根公式:对于一元二次方程ax^2+bx+c=0,解为x=[-b±(b^2-4ac)^(1/2)]/(2a)。

3. 幂函数指数规律公式:(a^m)^n=a^(mn),(ab)^n=a^n*b^n,(a^n)^m=a^(nm)。

4. 对数换底公式:loga(b)=logc(b)/logc(a),其中a、b、c为正数且a≠15.平均值与方差的性质公式:n个数的平均值为平方和除以n,方差为平方和减去平均值的平方再除以n。

6. 二次差公式:an=a1+(n-1)d+(n-1)(n-2)/2!c,其中a1表示首项,d表示公差,c表示公差的变化量。

7.等比数列求和公式:Sn=a1(1-q^n)/(1-q),其中Sn表示前n项和,a为首项,q为公比。

二、几何1.圆的周长和面积公式:圆的周长为2πr,面积为πr^2,其中r为圆的半径。

2.直角三角形勾股定理:直角三角形任意一条直角边的平方等于另外两条直角边的平方的和。

3. 三角形面积公式:三角形面积为底乘以高的一半,即S=(1/2)bh。

4. 三角形的正弦定理:a/sinA=b/sinB=c/sinC=2R,其中a、b、c为三角形的边长,A、B、C为对应的角度,R为三角形的外接圆半径。

5. 三角形的余弦定理:c^2=a^2+b^2-2abcosC,其中a、b、c为三角形的边长,C为对应的角度。

6.直角三角形的高与斜边的关系公式:直角三角形的高为两直角边乘积除以斜边长。

7.正多边形内角和公式:正n边形的内角和为(n-2)180°。

50条高考数学秒杀公式方法

50条高考数学秒杀公式方法

高中数学秒杀型推论函数1.抽貌函数的周期⑴f(a±x)=f(b±x)I=|b-a|(2)f(a±x)=-f(b±x)I=2|b-a|(3)f(x-a)+f(x+a)=f(x)T=6u(4)f(x-u)=f(x+a)I=2u(5)f(x+u)=-f(x)T=2a.奇偶函数概念的推广及其周明:(1)雨于函数f(X).若存在常数a.使得f(a-x)=f(a+x).则称f(x)为广义(I)型偶函数.且当有两个相异实数a. b同时满足时.f(x)为周明函数T=2|b-a|(2)若f(a-x)=-f(a+x).则f(x)是广义(I )型奇函数,当有两个相异实数a,b同时满足时,f(x)为周期函数T=21b-a|3.抽象函数的对称性(1)若f(x)满足f(a+x)+f(b-x)=c则函数关于(学,;)成中心对称(充要)(2)若f(x)满足f(a+x)=f(b-x)则函数关于直线炉号成轴对称(充要)4.洛必达法贝!],设连续可导函数f(x)和g(x)|irn f(x)=f'(x)Hm f(x)=f'(x) E"g(x)g,(x)Rx)*g(x)g'(x) g(x)TO g(x)^oo二、三角1.三角形恒等式4B B C C A (1)在△中,tan-tan-+t an-tan-+tan-tan-=1222222coMcotB+cotBcotC+cotCcotA=1 (2)正切定理&余切定理:任非Ri△中,有tanA+tanB+tanC-taii^tanBtanCA b c ABCcot一 +cot一+cot-=cot一cot一cot一222222 (3)sinA+sinB+sinC=4cos-cos-cos-ABCcosA+cosB+cosC=1 +4sin—sin—sin222(4)sin2A+sin2B+sin2C=2+ZcosAcosBcosCcos2A+cos2B+cos2C=1-2cx)sAcosBcosC (5)2sinAcosBcosC=eye2sinAcosBcosC+sinBcosAcosC+sinCcosAcosB=sinAsinBsinC>cosAsinBsinC=eyecosAsinBsinC+cosBsinAsinC+cosCsinAsinB=cosAcosBcosC一12.任意三角形射影定理(又称第一余弦定理):在ZiABC中a=bcosC+ccosB;h=ccosA+acosC:c-acosB+bcosA3.任意三角形内切圆半径(S为面积),a十u十c外接圆半径R=^=危=七=矗欧拉不等式:R>2r1.梅涅劳斯定理如下图,E.D.F三点共线的充要条件是竺Y竺乂四EA^DC35.塞瓦定理如下图,Al)、BE、CF三线共点的充要条件是AF BD CE访x无=16.斯特瓦尔特定理:如下图,设已知左ABC及其底边上B、C两点间的一点D,则WA1P XDC+AC2XBD-/\D2 XBC=BCxDCxBD7、和差化积公式(只记忆第一条)•I.er、,x+g a—8sin a+sm〃二2sin—-一 os—;—・qc h+£sin zr~si n"=Zcos―-—sin—-—4cos a i cos#=2cqs?;)cos?,'o O a+P«—p cos2-cos/7=-2si n—-—sin——8、积化和差公式Q cos(a+p)-cos(a-P) sin a sm p二---------------2cos acos(a+g)+cos(a一3)2cos3-.c sin(a+B)+sin(a-B)sin a cos p=-------------sin(a+p)-sin(a-p)cos a sm p=-------;------9、万能公式10.三角混合不等式:若xC(0.;),sinx <x<tcinx5当x»0时sinx^x^tauxIL海伦公式变式如下图,图中的圆为大三角形的内切圆,大三角形三边长分别为a.h・c.大三角形面积为S=qxyz(x+y+z)=(a+b+c)(a+b-c)(a+c-b)(b+c-a)*12.双曲函数-X 定义双曲正弦函数Sinhx二二一,双曲余弦函数coshx二二一易知(1)奇偶性:sinhx为奇函数.coshx为偶函数(2)导函数:(si nhx)=coshx,(coshx)=sinhx两角和:sinh(x+y)=sinhxcoshy+coshxsinhycosh(x+y)=coshxcoshy+sinhxsinhy(4)复数域:sinh(ix)=isin(x)(5)cosh定义域:xCR(ix) =icos(x)(6)值域:sinhxCR,coshx£[l,+«□)13.三角形三边a. b.c成等差数列.则讪=;614.三角形不等式(1)在锐角△中.si nA+sinB+sinC>cosA+cosB+cosCtanA+tanB+tanC>cotA+cotB+cotC(2)在△中,x2 +y2+z2>2yzcosA+2xzcosB+2zycosC(3)在△中,sinA>sinB<=>cos2A>cos2B15.ASA的面积公式:a2sinBsinC b2sinAsinC c2sinAsinBS=-------------=--------------=--------------2sin(B+C)2sin(A+C)2sin(A+B)三、成1.欧拉公式(泰勒级数推出)cos e+isine=cM2.棣莫弗定理(欧拉公式推出)(cos sin0)''二c os(nO)+isin(n。

高中数学48条秒杀公式

高中数学48条秒杀公式

高中数学48条秒杀公式1.适用条件:[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。

x为分离比,必须大于1。

注上述公式适合一切圆锥曲线。

如果焦点分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

2.函数的周期性问题(记忆三个):(1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。

注意点:a.周期函数,周期必无限 b.周期函数未必存在最小周期,如:常数函数。

c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。

3.关于对称问题(无数人搞不懂的问题)总结如下:(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2;(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称4.函数奇偶性:(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5.数列爆强定律:(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立4,等比数列爆强公式:S(n+m)=S(m)+q2mS(n)可以迅速求q6.数列的终极利器,特征根方程。

(如果看不懂就算了)。

首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p2(n-1)+x,这是一阶特征根方程的运用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学 | 高考数学50条秒杀型公式与方法1,适用条件:[直线过焦点],必有e c o s A=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。

x为分离比,必须大于1。

注上述公式适合一切圆锥曲线。

如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

2,函数的周期性问题(记忆三个):①、若f(x)=-f(x+k),则T=2k;?②、若f(x)=m/(x+k)(m不为0),则T=2k;?③、若f(x)=f(x+k)+f(x-k),则T=6k。

注意点:a.周期函数,周期必无限 b.周期函数未必存在最小周期,如:常数函数。

c.周期函数加周期函数未必是周期函数,如:y=si nx y=si n派x相加不是周期函数。

3,关于对称问题(无数人搞不懂的问题)总结如下:①,若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2;②、函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;③、若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称。

4,函数奇偶性:①、对于属于R上的奇函数有f(0)=0;②、对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项③,奇偶性作用不大,一般用于选择填空。

5,数列爆强定律:①,等差数列中:S奇=n a中,例如S13=13a7(13和7为下角标);②,等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差;③,等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立;④,等比数列爆强公式:S(n+m)=S(m)+q2mS(n)可以迅速求q。

6,数列的终极利器,特征根方程。

首先介绍公式:对于a n+1=p an+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p2(n-1)+x,这是一阶特征根方程的运用。

二阶有点麻烦,且不常用。

所以不赘述。

希望同学们牢记上述公式。

当然这种类型的数列可以构造(两边同时加数)。

7,函数详解补充:①、复合函数奇偶性:内偶则偶,内奇同外;②、复合函数单调性:同增异减;③、重点知识关于三次函数:恐怕没有多少人知道三次函数曲线其实是中心对称图形。

它有一个对称中心,求法为二阶导后导数为0,根x即为中心横坐标,纵坐标可以用x带入原函数界定。

另外,必有唯一一条过该中心的直线与两旁相切。

8,常用数列b n=n×(22n)求和S n=(n-1)×(22(n+1))+2记忆方法:前面减去一个1,后面加一个,再整体加一个2。

9,适用于标准方程(焦点在x轴)爆强公式:k椭=-{(b2)x o}/{(a2)yo}k双={(b2)xo}/{(a2)yo}k抛=p/y o注:(x o,y o)均为直线过圆锥曲线所截段的中点。

10,强烈推荐一个两直线垂直或平行的必杀技:已知直线L1:a1x+b1y+c1=0直线L2:a2x+b2y+c2=0若它们垂直:(充要条件)a1a2+b1b2=0;若它们平行:(充要条件)a1b2=a2b1且a1c2≠a2c1[这个条件为了防止两直线重合)注:以上两公式避免了斜率是否存在的麻烦,直接必杀!11,经典中的经典:相信邻项相消大家都知道。

下面看隔项相消:对于Sn=1/(1×3)+1/(2×4)+1/(3×5)+…+1/[n(n+2)]=1/2[1+1/2-1/(n+1)-1/(n+2)]注:隔项相加保留四项,即首两项,尾两项。

自己把式子写在草稿纸上,那样看起来会很清爽以及整洁!12,爆强△面积公式:S=1/2∣m q-n p∣其中向量A B=(m,n),向量BC=(p,q)注:这个公式可以解决已知三角形三点坐标求面积的问题!13,你知道吗空间立体几何中:以下命题均错:1,空间中不同三点确定一个平面;2,垂直同一直线的两直线平行;3,两组对边分别相等的四边形是平行四边形;4,如果一条直线与平面内无数条直线垂直,则直线垂直平面;5,有两个面互相平行,其余各面都是平行四边形的几何体是棱柱;6,有一个面是多边形,其余各面都是三角形的几何体都是棱锥注。

14,一个小知识点:所有棱长均相等的棱锥可以是三、四、五棱锥。

15,求f(x)=∣x-1∣+∣x-2∣+∣x-3∣+…+∣x-n∣(n为正整数)的最小值。

答案为:当n为奇数,最小值为(n²-1)/4,在x=(n+1)/2时取到;当n为偶数时,最小值为n²/4,在x=n/2或n/2+1时取到。

16,〔(a²+b²)〕/2≥(a+b)/2≥√a b≥2a b/(a+b)(a、b为正数,是统一定义域)17,椭圆中焦点三角形面积公式:S=b²ta n(A/2)在双曲线中:S=b²/t an(A/2)说明:适用于焦点在x轴,且标准的圆锥曲线。

A为两焦半径夹角。

18,爆强定理:空间向量三公式解决所有题目:co s A=|{向量a.向量b}/[向量a的模×向量b的模]|一:A为线线夹角,二:A为线面夹角(但是公式中co s换成si n)三:A为面面夹角注:以上角范围均为[0,派/2]。

19,爆强公式1²+2²+3²+…+n²=1/6(n)(n+1)(2n+1);1²3+2²3+3²3+…+n²3=1/4(n²)(n+1)²。

20,爆强切线方程记忆方法:写成对称形式,换一个x,换一个y。

举例说明:对于y²=2px可以写成y×y=p x+px再把(x o,y o)带入其中一个得:y×yo=p xo+p x。

21,爆强定理:(a+b+c)²n的展开式[合并之后]的项数为:C n+22,n+2在下,2在上。

22,切线长l=√(d²-r²)d表示圆外一点到圆心得距离,r为圆半径,而d最小为圆心到直线的距离。

23,对于y²=2p x,过焦点的互相垂直的两弦AB、C D,它们的和最小为8p。

爆强定理的证明:对于y²=2p x,设过焦点的弦倾斜角为 A.那么弦长可表示为2p/〔(sin A)²〕,所以与之垂直的弦长为2p/[(c os A)²],所以求和再据三角知识可知。

(题目的意思就是弦A B过焦点,C D过焦点,且A B垂直于CD)。

24,关于一个重要绝对值不等式的介绍爆强:∣|a|-|b|∣≤∣a ±b∣≤∣a∣+∣b∣25,关于解决证明含l n的不等式的一种思路:举例说明:证明1+1/2+1/3+…+1/n>ln(n+1)把左边看成是1/n求和,右边看成是S n。

解:令an=1/n,令S n=ln(n+1),则bn=l n(n+1)-ln n,那么只需证an>b n即可,根据定积分知识画出y=1/x的图。

an=1×1/n=矩形面积>曲线下面积=b n。

当然前面要证明1>l n2。

注:仅供有能力的童鞋参考!!另外对于这种方法可以推广,就是把左边、右边看成是数列求和,证面积大小即可。

说明:前提是含l n。

26,简洁公式:向量a在向量b上的射影是:〔向量a×向量b 的数量积〕/[向量b的模]。

27,说明一个易错点:若f(x+a)[a任意]为奇函数,那么得到的结论是f(x+a)=-f(-x+a)〔等式右边不是-f(-x-a)〕,同理如果f(x+a)为偶函数,可得f(x+a)=f(-x+a)牢记!28,离心率爆强公式:e=si nA/(si n M+si nN)注:P为椭圆上一点,其中A为角F1P F2,两腰角为M,N。

29,椭圆的参数方程也是一个很好的东西,它可以解决一些最值问题。

比如x²/4+y²=1求z=x+y的最值。

解:令x=2c os a y=si na 再利用三角有界即可。

比你去=0不知道快多少倍!30,爆强公式:和差化积si nθ+si nφ=2si n[(θ+φ)/2]co s[(θ-φ)/2]si nθ-si nφ=2co s[(θ+φ)/2]si n[(θ-φ)/2]c osθ+c osφ=2c os[(θ+φ)/2]co s[(θ-φ)/2]co sθ-c o sφ=-2s in[(θ+φ)/2]si n[(θ-φ)/2]积化和差si nαsi nβ=[co s(α-β)-co s(α+β)]/2c osαco sβ=[c os(α+β)+c os(α-β)]/2s inαc osβ=[s in(α+β)+s i n(α-β)]/2cosαs inβ=[si n(α+β)-s in(α-β)]/231,爆强定理:直观图的面积是原图的2/4倍。

32,三角形垂心爆强定理:1,向量OH=向量O A+向量OB+向量O C(O为三角形外心,H为垂心)2,若三角形的三个顶点都在函数y=1/x的图象上,则它的垂心也在这个函数图象上。

33,爆强思路:如果出现两根之积x1x2=m,两根之和x1+x2=n,我们应当形成一种思路,那就是返回去构造一个二次函数,再利用△大于等于0,可以得到m、n范围。

34,常用结论:过(2p,0)的直线交抛物线y²=2p x于A、B两点。

O为原点,连接。

必有角AO B=90度35,爆强公式:ln(x+1)≤x(x>-1)该式能有效解决不等式的证明问题。

举例说明:l n(1/(2²)+1)+l n(1/(3²)+1)+…+l n(1/(n ²)+1)<1(n≥2)证明如下:令x=1/(n²),根据l n(x+1)≤x有左右累和右边再放缩得:左和<1-1/n<1证毕!36,函数y=(s i n x)/x是偶函数。

在(0,派)上它单调递减,(-派,0)上单调递增。

利用上述性质可以比较大小。

37,函数y=(ln x)/x在(0,e)上单调递增,在(e,+无穷)上单调递减。

另外y=x²(1/x)与该函数的单调性一致。

38,几个数学易错点:f`(x)<0是函数在定义域内单调递减的充分不必要条件;在研究函数奇偶性时,忽略最开始的也是最重要的一步:考虑定义域是否关于原点对称!39,不等式的运用过程中,千万要考虑"="号是否取到!研究数列问题不考虑分项,就是说有时第一项并不符合通项公式,所以应当极度注意:数列问题一定要考虑是否需要分项!39,提高计算能力五步曲:①,扔掉计算器;②,仔细审题(提倡看题慢,解题快),要知道没有看清楚题目,你算多少都没用!;③,熟记常用数据,掌握一些速算技巧;④,加强心算,估算能力;⑤,[检验]!。

相关文档
最新文档