2020年江苏地区高中数学必修三复习试卷 苏教版

合集下载

2019-2020学年苏教版高中数学必修三新课改地区专用模块综合检测 Word版含解析

2019-2020学年苏教版高中数学必修三新课改地区专用模块综合检测 Word版含解析

姓名,年级:时间:模块综合检测(时间120分钟满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某产品共有三个等级,分别为一等品、二等品和不合格品.从一箱产品中随机抽取1件进行检测,设“抽到一等品"的概率为0。

65,“抽到二等品"的概率为0。

3,则“抽到不合格品”的概率为( )A.0。

95 B.0.7C.0。

35 D.0.05解析:选 D “抽到一等品"与“抽到二等品”是互斥事件,所以“抽到一等品或二等品"的概率为0。

65+0。

3=0.95,“抽到不合格品”与“抽到一等品或二等品"是对立事件,故其概率为1-0。

95=0。

05。

2.某校为了解学生学习的情况,采用分层抽样的方法从高一1 000人、高二1 200人、高三n人中,抽取81人进行问卷调查.已知高二被抽取的人数为30,那么n=( )A.860 B.720C.1 020 D.1 040解析:选D 根据分层抽样方法,得错误!×81=30,解得n=1 040。

故选D.3.某实验室有4个饲养房,分别养有18,54,24,48只白鼠供实验用,某项实验需抽取24只白鼠,你认为最合适的抽样方法是()A.在每个饲养房各抽取6只B.把所有白鼠都加上编号不同的颈圈,用简单随机抽样法确定24只C.从4个饲养房分别抽取3,9,4,8只D.先确定这4个饲养房应分别抽取3,9,4,8只,再在各饲养房自己加号码颈圈,用简单随机抽样的方法确定解析:选D 因为这24只白鼠要从4个饲养房中抽取,所以要先用分层抽样法决定各个饲养房应抽取的只数,再用简单随机抽样法从各个饲养房选出所需的白鼠.选项C用了分层抽样法,但在每层中没有考虑到个体的差异,也就是说在各个饲养房中抽取样本时,没有说明是否具有随机性.4.已知函数y=a-x,当a在集合错误!中任意取值时,函数为增函数的概率为( )A.错误!B.错误!C.错误!D.错误!解析:选D y=a-x=错误!x为增函数时,有错误!>1,即0<a<1.由于a∈错误!,所以函数为增函数包含3个基本事件,基本事件总数为5,则函数为增函数的概率为错误!.5。

2020-2021学年苏教版高中数学必修三《统计》基础训练题及解析

2020-2021学年苏教版高中数学必修三《统计》基础训练题及解析

(新课标)2018-2019学年苏教版高中数学必修三第二章 统计[基础训练A 组] 一、选择题1 10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a ,中位数为b ,众数为c ,则有( ) A c b a >> B a c b >> C b a c >> D a b c >> 2 下列说法错误的是 ( )A 在统计里,把所需考察对象的全体叫作总体B 一组数据的平均数一定大于这组数据中的每个数据C 平均数、众数与中位数从不同的角度描述了一组数据的集中趋势D 一组数据的方差越大,说明这组数据的波动越大3 某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此求出的平均数与实际平均数的差是( ) A 3.5 B 3- C 3 D 5.0-4 要了解全市高一学生身高在某一范围的学生所占比例的大小,需知道相应样本的( )A 平均数B 方差C 众数D 频率分布5 要从已编号(160:)的60枚最新研制的某型导弹中随机抽取6枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的6枚导弹的编号可能是( )A5,10,15,20,25,30 B3,13,23,33,43,53 C1,2,3,4,5,6 D2,4,8,16,32,486A 14和0.14B 0.14和14 C141和0.14 D 31和141二、填空题1 为了了解参加运动会的2000名运动员的年龄情况,从中抽取100名运动员;就这个问题,下列说法中正确的有 ;① 2000名运动员是总体;②每个运动员是个体;③所抽取的100名运动员是一个样本; ④样本容量为100;⑤这个抽样方法可采用按年龄进行分层抽样;⑥每个运动员被抽到的概率相等2 经问卷调查,某班学生对摄影分别执“喜欢”、“不喜欢”和“一般”三种态度,其中执“一般”态度的比“不喜欢”态度的多12人,按分层抽样方法从全班选出部分学生座谈摄影,如果选出的2位“喜欢”摄影的同学、1位“不喜欢”摄影的同学和3位执“一般”态度的同学,那么全班学生中“喜欢”摄影的比全班人数的一半还多 人3 数据70,71,72,73的标准差是______________4 数据123,,,...,n a a a a 的方差为2σ,平均数为μ,则(1)数据123,,,...,,(0)n ka b ka b ka b ka b kb ++++≠的标准差为 ,平均数为(2)数据123(),(),(),...,(),(0)n k a b k a b k a b k a b kb ++++≠的标准差为 ,平均数为5 观察新生婴儿的体重,其频率分布直方图如图所示,则新生婴儿体重在(]2700,3000的三、解答题1 试求全校初二男生俯卧撑的平均成绩2为了了解初三学生女生身高情况,某中学对初三女生身高进行了一次测量,所得数m n M N所表示的数分别是多少?(1)求出表中,,,(2)画出频率分布直方图(3)全体女生中身高在哪组范围内的人数最多?3某校高中部有三个年级,其中高三有学生1000人,现采用分层抽样法抽取一个容量为185的样本,已知在高一年级抽取了75人,高二年级抽取了60人,则高中部共有多少学生?4从两个班中各随机的抽取10名学生,他们的数学成绩如下:画出茎叶图并分析两个班学生的数学学习情况数学3(必修)第二章 统计 [基础训练A 组]参考答案一、选择题1 D 总和为147,14.7a =;样本数据17分布最广,即频率最大,为众数,17c =;从小到大排列,中间一位,或中间二位的平均数,即15b = 2 B 平均数不大于最大值,不小于最小值3 B 少输入9090,3,30=平均数少3,求出的平均数减去实际的平均数等于3- 4 D 5 B 60106=,间隔应为106 A 频数为100(1013141513129)14-++++++=;频率为140.14100=二、填空题1 ④,⑤,⑥ 2000名运动员的年龄情况是总体;每个运动员的年龄是个体;23 3位执“一般”对应1位“不喜欢”,即“一般”是“不喜欢”的3倍,而他们的差为12人,即“一般”有18人,“不喜欢”的有6人,且“喜欢”是“不喜欢”的6倍,即30人,全班有54人,1305432-⨯= 37071727371.5,4X +++==2s == 4 (1)kσ,k b μ+(2)k σ,k kb μ+(1)1212......n nka b ka b ka b a a a X k b k b n nμ+++++++++==⋅+=+s k σ===(2)1212()()...()...n nk a b k a b k a b a a a X k nb k nb n nμ+++++++++==⋅+=+s k σ===5 0.3 频率/组距0.001=,组距300=,频率0.0013000.3=⨯= 三、解答题1 解:1089685716645743313607.25050X ⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯===2 解:(1)150,50(1420158)20.02M m ===-++++=21,0.0450N n ===(2)…(3)在153.5157.5:范围内最多3 解:从高三年级抽取的学生人数为185(7560)50-+=而抽取的比例为501100020=,高中部共有的学生为1185370020÷=4 解:乙班级总体成绩优于甲班。

2020-2021学年苏教版高中数学必修三《统计》单元专项测试题及解析

2020-2021学年苏教版高中数学必修三《统计》单元专项测试题及解析

(新课标)2018-2019学年苏教版高中数学必修三高二数学必修三统计单元测试题一、选择题:(本题共14小题,每小题4分,共56分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、抽样调查在抽取调查对象时A 、按一定的方法抽取B 、随意抽取C 、全部抽取D 、根据个人的爱好抽取 2、对于简单随机抽样,下列说法中正确的命题为①它要求被抽取样本的总体的个数有限,以便对其中各个个体被抽取的概率进行分析;②它是从总体中逐个地进行抽取,以便在抽取实践中进行操作;③它是一种不放回抽样;④它是一种等概率抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的概率相等,而且在整个抽样过程中,各个个体被抽取的概率也相等,从而保证了这种方法抽样的公平性。

A 、①②③B 、①②④C 、①③④D 、①②③④3、某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为(1);在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为(2)。

则完成(1)、(2)这两项调查宜采用的抽样方法依次是A 、分层抽样法,系统抽样法B 、分层抽样法,简单随机抽样法C 、系统抽样法,分层抽样法D 、简单随机抽样法,分层抽样法4、某小礼堂有25排座位,每排有20个座位。

一次心理讲座时礼堂中坐满了学生,会后为了了解有关情况,留下了座位号是15的所有的25名学生测试。

这里运用的抽样方法是A 、抽签法B 、随机数表法C 、系统抽样法D 、分层抽样法5、我校高中生共有2700人,其中高一年级900人,高二年级1200人,高三年级600人,现采取分层抽样法抽取容量为135的样本,那么高一、高二、高三各年级抽取的人数分别为 A 、45,75,15 B 、45,45,45 C 、30,90,15 D 、45,60,306、中央电视台动画城节目为了对本周的热心小观众给予奖励,要从已确定编号的一万名小观众中抽出十名幸运小观众。

【苏科版】高中数学必修三期末试卷(及答案)(1)

【苏科版】高中数学必修三期末试卷(及答案)(1)

一、选择题1.已知ABCD 为正方形,其内切圆I 与各边分别切于,,,E F G H ,连接,,,EF FG GH HE ,现向正方形ABCD 内随机抛掷一枚豆子(豆子大小忽略不计),记事件A:豆子落在圆I 内;事件B:豆子落在四边形EFGH 外,则()P B A =( )A .14π-B .4π C .21π- D .2π2.已知边长为2的正方形ABCD ,在正方形ABCD 内随机取一点,则取到的点到正方形四个顶点A B C D ,,,的距离都大于1的概率为( )A .16πB .4π C .3224π- D .14π-3.某市委积极响应十九大报告提出的“到2020年全面建成小康社会”的目标,鼓励各县积极脱贫,计划表彰在农村脱贫攻坚战中的杰出村代表,已知A ,B 两个贫困县各有15名村代表,最终A 县有5人表现突出,B 县有3人表现突出,现分别从A ,B 两个县的15人中各选1人,已知有人表现突出,则B 县选取的人表现不突出的概率是( ) A .13B .47C .23D .564.如图,过球心的平面和球面的交线称为球的大圆.球面几何中,球O 的三个大圆两两相交所得三段劣弧AB ,BC ,CA 构成的图形称为球面三角形ABC . AB 与AC 所成的角称为球面角A ,它可用二面角B OA C --的大小度量.若球面角3A π=,2B π=,2C π=,则在球面上任取一点P ,P 落在球面三角形ABC 内的概率为( )A .16B .18C .112D .1165.数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.下图是源于其思想的一个程序框图,若输入的a ,b 分别为6,3,则输出的n =( )A .2B .3C .4D .56.某程序框图如图所示,该程序运行后输出S 的值是( )A .910B .1011C .1112D .1117.对任意非零实数a 、b ,若a b ⊗的运算原理如图所示,则121log 43-⎛⎫⊗ ⎪⎝⎭的值为( )A .13B .1C .43D .28.执行如下图的程序框图,那么输出S 的值是( )A .2B .1C .12D .-19.2020年2月,受新冠肺炎的影响,医卫市场上出现了“一罩难求”的现象.在政府部门的牵头下,部分工厂转业生产口罩,下表为某小型工厂2-5月份生产的口罩数(单位:万) 月份x 2 3 4 5 口罩数y4.5432.5口罩数y 与月份x 之间有较好的线性相关关系,其线性回归直线方程是0.7y x a =-+,则a 的值为( ) A .6.1B .5.8C .5.95D .6.7510.若一组数据12345,,,,x x x x x 的平均数为5,方差为2,则12323,23,23x x x ---,4523,23x x --的平均数和方差分别为( )A .7,-1B .7,1C .7,2D .7,811.一组数据的平均数为x ,方差为2s ,将这组数据的每个数都乘以()0a a >得到一组新数据,则下列说法正确的是( ) A .这组新数据的平均数为x B .这组新数据的平均数为a x + C .这组新数据的方差为2as D .这组新数据的标准差为2a s12.某同学10次测评成绩的数据如茎叶图所示,总体的中位数为12,若要使该总体的标准差最小,则42x y +的值是( )A .12B .14C .16D .18二、填空题13.已知函数2()22f x x =-的定义域为M ,(())y f f x =的定义域为P ,在M 上随机取一个数x ,则x P ∈的概率是____________.14.已知某运动队有男运动员4名,女运动员3名,若现在选派3人外出参加比赛,则选出的3人中男运动员比女运动员人数多的概率是_________.15.某公司的班车在8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是__________ 16.某程序框图如图所示,则该程序运行后输出的S 值是_____________.17.如图是某算法流程图,则程序运行后输出S 的值为____.18.执行如图所示的程序框图,输出S 的值为___________.19.下列说法正确的是__________(填序号)(1)已知相关变量(),x y 满足回归方程ˆ24yx =-,若变量x 增加一个单位,则y 平均增加4个单位(2)若,p q 为两个命题,则“p q ∨”为假命题是“p q ∧”为假命题的充分不必要条件(3)若命题0:p x R ∃∈,20010x x -+<,则:p x R ⌝∀∉,210x x -+≥(4)已知随机变量()22X N σ~,,若()0.32P X a <=,则()40.68P X a >-=20.由茎叶图可知,甲组数据的众数和乙组数据的极差分别是__________.三、解答题21.从广安市某中学校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm 和195cm 之间,将测量结果按如下方式分成八组:第一组[)155160,,第二组[)160165,,...,第八组[)190,195,如图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4人.(1)求第七组的频率;(2)估计该校800名男生的身高的中位数以及身高在180cm 以上(含180cm )的人数; (3)若从样本中身高属于第六组和第八组的所有男生中随机抽取两名男生,求抽出的两名男生在同一组的概率.22.一工厂对某条生产线加工零件所花费时间进行统计,得到如下表的数据: 零件数x (个) 1020304050加工时间y (分钟)62 68 75 82 88(1)从加工时间的五组数据中随机选择两组数据,求该两组数据中至少有一组数据小于加工时间的均值的概率;(2)若加工时间y 与零件数x 具有相关关系,求y 关于x 的回归直线方程;若需加工80个零件,根据回归直线预测其需要多长时间.(121()()()ˆniii ni i x x y y bx x ==--=-∑∑,^^a yb x =-)23.已知数列{}n a 的递推公式111n n n a a a --=+,且11a =,请画出求其前10项的流程图. 24.根据下面的要求,求满足123500n +++⋅⋅⋅+>的最小的自然数n ,并画出执行该问题的程序框图.25.据了解,温带大陆性气候,干燥,日照时间长,昼夜温差大,有利于植物糖分积累.某课题研究组欲研究昼夜温差大小()/x ℃与某植物糖积累指数()/y GI 之间的关系,得到如下数据:下的2组数据进行检验,假设这剩下的2组数据恰好是第一组与第六组数据.(1)求y 关于x 的线性回归方程ˆˆˆybx a =+ (2)若由线性回归方程得到的估计数据与所选出的检验数据的差的绝对值均不超过2.58,则认为得到的线性回归方程是理想的,试问(1)中所得线性回归方程是否理想?(参考公式:回归直线方程ˆˆˆybx a =+的斜率和截距的最小二乘估计()()()211ˆˆˆ,iii ni ni x x y y bay bx x x ==--==--∑∑ 26.从某小区抽取100个家庭进行月用电量调查,发现其月用电量都在50度至350度之间,频率分布直方图如图所示.(1)根据直方图求x 的值,并估计该小区100个家庭的月均用电量(同一组中的数据用该组区间的中点值作代表);(2)从该小区已抽取的100个家庭中, 随机抽取月用电量超过300度的2个家庭,参加电视台举办的环保互动活动,求家庭甲(月用电量超过300度)被选中的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】分析:设正方形ABCD 边长为a ,分别求解圆I 和正方形EFGH 的面积,得到在圆I 内且在正方形EFGH 内的面积,即可求解()P B A . 详解:设正方形ABCD 边长为a ,则圆I 的半径为,2a r =其面积为21.4a π 设正方形EFGH 边长为b ,22,2b a b a =⇒=其面积为211,2S a =则在圆I 内且在正方形EFGH 内的面积为21,S S S =- 故()121.S S P B A S π-==- 故选C .点睛:本题考查条件概率的计算,其中设正方形ABCD 边长和正方形EFGH 得到在圆I 内且在正方形EFGH 内的面积是解题的关键.2.D解析:D 【分析】根据题意,作出满足题意的图像,利用面积测度的几何概型,即得解. 【详解】分别以A ,B ,C ,D 四点为圆心,1为半径作圆,由题意满足条件的点在图中的阴影部分224ABCD S =⨯=,214144ABCD S S ππ=-⨯⨯=-阴影由几何测度的古典概型,14ABCD S P S π==-阴影 故选:D 【点睛】本题考查了面积测度的几何概型,考查了学生综合分析,数形结合,数学运算的能力,属于中档题.3.B解析:B 【分析】由古典概型及其概率计算公式得:有人表现突出,则B 县选取的人表现不突出的概率是6041057=,得解. 【详解】由已知有分别从A ,B 两个县的15人中各选1人,已知有人表现突出,则共有111115*********C C C C ⋅-⋅=种不同的选法,又已知有人表现突出,且B 县选取的人表现不突出,则共有1151260C C ⋅=种不同的选法,已知有人表现突出,则B 县选取的人表现不突出的概率是6041057=. 故选:B . 【点睛】本题考查条件概率的计算,考查运算求解能力,求解时注意与古典概率模型的联系.4.C解析:C 【分析】根据球体的性质,利用面积比求出概率即可. 【详解】解:由题知,球面角3A π=,2B π=,2C π=,则得出球面三角形ABC 是112的球面,设球面三角形ABC 的面积为S ,则球面上任取一点P ,P 落在球面三角形ABC 内的概率为:1=12S P S =球. 故选:C. 【点睛】本题考查面积型几何概型,通过面积比求概率,还考查球体的性质和应用,解题时需要认真审题和理解分析题目.5.B解析:B 【分析】模拟程序运行,观察变量值的变化,判断循环条件得出结论. 【详解】程序运行中变量值变化如下:6,3a b ==,1n =,9,6a b ==,不满足a b ≤;2n =,13.5a =,12b =,不满足a b ≤;3n =,20.25a =,24b =,满足a b ≤,输出3n =. 故选:B . 【点睛】本题考查程序框图,考查循环结构.解题方法是模拟程序运行,观察变量值的变化,判断循环条件得出结论.6.B解析:B 【分析】模拟程序运行后,可得到输出结果,利用裂项相消法即可求出答案. 【详解】模拟程序运行过程如下: 0)1,0kS,判断为否,进入循环结构,1)110,2122S k =+==⨯,判断为否,进入循环结构, 2)11,3223S k =+=⨯,判断为否,进入循环结构, 3)111,422334S k =++=⨯⨯,判断为否,进入循环结构, …… 9)111,10223910S k =+++=⨯⨯,判断为否,进入循环结构, 10)1111,112239101011S k =++++=⨯⨯⨯,判断为是,故输出1112231011S =+++⨯⨯111111101122310111111=-+-++-=-=, 故选:B. 【点睛】 本题主要考查程序框图,考查裂项相消法,难度不大.一般遇见程序框图求输出结果时,常模拟程序运行以得到结论.7.B解析:B【解析】模拟执行程序框图可得程序的功能是计算并输出分段函数1,2,b a b a a b a a b b-⎧⎪⎪⊗=⎨+⎪>⎪⎩的值, ∵121log 4233-⎛⎫=<= ⎪⎝⎭.∴12131log 4132--⎛⎫⊗== ⎪⎝⎭. 本题选择B 选项. 8.A解析:A【解析】【分析】模拟程序的运行,依次写出每次循环得到的k 和S 值,根据题意即可得到结果. 【详解】程序运行如下,k=0, S =112-=﹣1, k =1,S =()111--=12; k =2,S =12112=-;k =3,S =11-2=-1… 变量S 的值以3为周期循环变化,当k=2018时,s=2,K=2019时,结束循环,输出s 的值为2.故选:A .【点睛】本题考查程序框图,是当型结构,即先判断后执行,满足条件执行循环,不满足条件,跳出循环,算法结束,解答的关键是算准周期,是基础题.9.C解析:C【分析】 求得 3.5x y ==,得到样本中心点(3.5,3.5),再把样本中心点代入回归直线方程得解.【详解】 由表可得 3.5x y ==,带入线性回归方程中有 3.50.7 3.5 5.95=+⨯=a ,故选:C .【点睛】本题考查利用线性相关关系求回归直线方程,属于基础题.10.D解析:D【分析】根据平均数的性质,方差的性质直接运算可得结果.【详解】令23(1,2,,5)i i y x i =-= 1234555x x x x x x ++++==, 1234523232323232310375x x x x x y x -+-+-+-+-∴==-=-=, (也可()(23)2()32537E y E x E x =-=-=⨯-=) ()()()2y 232428D D x D x =-==⨯=故选:D【点睛】本题主要考查方差及平均值的性质的简单应用,属于中档题.11.D解析:D【分析】根据平均数及方差的定义可知,一组数据的每个数都乘以a 得到一组新数据,平均值变为原来a 倍,方差变为原来2a 倍. 【详解】设一组数据1234,,,,,n x x x x x ⋯的平均数为x ,方差为2s ,则平均值为()12341n ax ax ax ax ax ax n ++++⋯+=, ()()()()()22222212341n s x x x x x xx x x x n ⎡⎤=-+-+-+-+⋯+-⎢⎥⎣⎦, ()()()()()222222212341n ax ax ax ax ax ax ax ax ax ax a s n ⎡⎤∴-+-+-+-+⋯+-=⋅⎢⎥⎣⎦ 故选:D.【点睛】本题主要考查了方差,平均数的概念,灵活运用公式计算是解题关键,属于中档题. 12.A解析:A【分析】由题,中位数为12,求得4x y +=,再求得平均数,利用总体标准差最小和基本不等式求得x ,y 的值,即可求得答案.【详解】由题,因为中位数为12,所以242x y x y +=∴+= 数据的平均数为:1(22342019192021)11.410x y ++++++++++= 要使该总体的标准最小,即方差最小,所以222222.8(1011.4)(1011.4)( 1.4)( 1.4)2()0.722x y x y x y +-+-++-=-+-≥= 当且紧当 1.4 1.4x y -=-,取等号,即2x y ==时,总体标准差最小此时4212x y +=故选A【点睛】本题考查了茎叶图,熟悉茎叶图,清楚中位数、标准差的求法是解题的关键,属于中档题型.二、填空题13.【分析】根据函数解析式可求得定义域和的定义域即可由几何概型概率求解【详解】函数的定义域为则的定义域为即解得即根据几何概型的概率计算公式得故答案为:【点睛】本题考查了函数定义域的求法复合函数定义域的求解析:22- 【分析】根据函数解析式,可求得()f x 定义域M 和(())y f f x =的定义域P ,即可由几何概型概率求解.【详解】函数()f x =M ,则[1,1]M =-,(())y f f x =的定义域为P []1,1-,解得1,22x ⎡⎤∈--⋃⎢⎥⎣⎦⎣⎦,即1,P ⎡⎤=-⋃⎢⎥⎣⎦⎣⎦.根据几何概型的概率计算公式得212⎛⨯- ⎝⎭=.故答案为:22-. 【点睛】本题考查了函数定义域的求法,复合函数定义域的求法,几何概型概率求法,属于中档题. 14.【分析】将所求事件分为两种情况:男女男这两个事件互斥然后利用古典概型的概率公式和互斥事件的概率加法公式可求出所求事件的概率【详解】事件选出的人中男运动员比女运动员人数多包含事件男女和事件男由古典概型 解析:2235. 【分析】 将所求事件分为两种情况:2男1女,3男,这两个事件互斥,然后利用古典概型的概率公式和互斥事件的概率加法公式可求出所求事件的概率.【详解】事件“选出的3人中男运动员比女运动员人数多”包含事件“2男1女”和事件“3男”, 由古典概型概率公式和互斥事件的概率加法公式可知,事件“选出的3人中男运动员比女运动员人数多”的概率为213434372235C C C C +=, 故答案为2235. 【点睛】 本题考查古典概型的概率公式和互斥事件的概率加法公式的应用,解题时要将所求事件进行分类讨论,结合相关公式进行计算,考查计算能力,属于中等题.15.【分析】求出小明等车时间不超过10分钟的时间长度代入几何概型概率计算公式可得答案【详解】设小明到达时间为当在7:50至8:00或8:20至8:30时小明等车时间不超过10分钟故故答案为【点睛】本题考 解析:12【分析】求出小明等车时间不超过10分钟的时间长度,代入几何概型概率计算公式,可得答案.【详解】设小明到达时间为y ,当y 在7:50至8:00,或8:20至8:30时,小明等车时间不超过10分钟, 故201402P ==.故答案为12. 【点睛】 本题考查的知识点是几何概型,难度不大,属于基础题.16.【分析】按照程序框图运行程序可确定输出结果利用裂项相消法可求得结果【详解】由程序框图运行程序输入则循环;循环;……输出结果故答案为:【点睛】本题考查根据程序框图计算输出结果涉及到裂项相消法求和的问题 解析:20152016【分析】 按照程序框图运行程序可确定输出结果111122320152016S =++⋅⋅⋅+⨯⨯⨯,利用裂项相消法可求得结果.【详解】由程序框图运行程序,输入1k =,0S = 则112S =⨯,2k =,循环;111223S =+⨯⨯,3k =,循环; (111122320152016)S =++⋅⋅⋅+⨯⨯⨯,2016k =,输出结果 11111111112232015201622320152016S ∴=++⋅⋅⋅+=-+-+⋅⋅⋅+-⨯⨯⨯12015120162016=-= 故答案为:20152016 【点睛】本题考查根据程序框图计算输出结果,涉及到裂项相消法求和的问题,属于基础综合题. 17.41【分析】根据给定的程序框图计算逐次循环的结果即可得到输出的值得到答案【详解】由题意运行程序框图可得第一次循环不满足判断框的条件;第二次循环不满足判断框的条件;第三次循环不满足判断框的条件;第四次 解析:41【分析】根据给定的程序框图,计算逐次循环的结果,即可得到输出的值,得到答案.【详解】由题意,运行程序框图,可得第一次循环,1n =,不满足判断框的条件,1415S =+⨯=;第二次循环,2n =,不满足判断框的条件,54213S =+⨯=;第三次循环,3n =,不满足判断框的条件,134325S =+⨯=;第四次循环,4n =,不满足判断框的条件,254441S =+⨯=;第五次循环,5n =,满足判断框的条件,输出41S =,故答案为41.【点睛】本题主要考查了循环结构的程序框图的计算与输出问题,其中利用循环结构表示算法,一定要先确定是用当型循环结构,还是用直到型循环结构;当型循环结构的特点是先判断再循环,直到型循环结构的特点是先执行一次循环体,再判断;注意输入框、处理框、判断框的功能,不可混用,着重考查了分析问题和解答问题的能力,属于基础题.18.48【解析】第1次运行成立第2次运行成立第3次运行成立第3次运行不成立故输出的值为48解析:48【解析】第1次运行,1,2,122,4i S S i ===⨯=<成立第2次运行,2,2,224,4i S S i ===⨯=<成立第3次运行,3,4,3412,4i S S i ===⨯=<成立第3次运行,4,12,41248,4i S S i ===⨯=<不成立,故输出S 的值为4819.【分析】(1)由回归方程知相关变量与成负相关(2)为假命题则同时为假命题为假命题则中至少有一假命题(3)全称命题与特称命题转换条件不变结论变相反(4)由正态曲线的对称性可解【详解】(1)由回归方程知 解析:(2)【分析】(1)由回归方程ˆ24yx =-知相关变量y 与x 成负相关,(2) “p q ∨”为假命题则,p q 同时为假命题,“p q ∧”为假命题则,p q 中至少有一假命题(3)全称命题与特称命题转换条件不变,结论变相反 (4)由正态曲线的对称性可解.【详解】(1)由回归方程ˆ24yx =-知相关变量y 与x 成负相关,若变量x 增加一个单位,则y 平均增加4-个单位,故(1)错误(2) “p q ∨”为假命题则,p q 同时为假命题,“p q ∧”为假命题则,p q 中至少有一假命题,所以“p q ∨”为假命题是“p q ∧”为假命题的充分不必要条件是正确的.故(2)正确 (3)全称命题与特称命题转换条件不变,结论变相反,故(3)错误(4)由正态曲线的对称性知,随机变量()22X N σ~,,若()0.32P X a <=,对称轴是2x = ,则()40.32P X a >-=,故(4)错误.故答案为; (2)【点睛】利用正态曲线的对称性求概率是常见的正态分布应用问题.解题的关键是利用对称轴=x μ确定所求概率对应的随机变量的区间与已知概率对应的随机变量的区间的关系,必要时可借助图形判断.对于正态分布2()N μσ,,由=x μ是正态曲线的对称轴知: (1)对任意的a ,有()()P X a P X a μμ<->+=;(2)()001;()P X x P X x -≥=<;(3)()()=()P a X b P X b P X a <<<≤-.20.【分析】首先从茎叶图中找到出现次数最多的数从而得到甲组数据的众数找出乙组数据的最大值和最小值两者作差求得极差得到结果【详解】根据众数的定义可以断定甲组数据的众数是21;从茎叶图中可以发现其最大值为其 解析:21,43【分析】首先从茎叶图中找到出现次数最多的数,从而得到甲组数据的众数,找出乙组数据的最大值和最小值,两者作差求得极差,得到结果.【详解】根据众数的定义,可以断定甲组数据的众数是21;从茎叶图中可以发现,其最大值为52,其最小值为9,所以极差为52943-=, 故答案为21,,43.【点睛】该题考查的是茎叶图的应用,涉及到的知识点有一组数据的众数和极差的概念,只要明确众数是数据中出现次数最多的数,极差是最大值和最小值的差距,从而求得结果.三、解答题21.(1)0.06;(2)1745.;144;(3)715. 【分析】(1)先由第六组的人数除以样本容量得到第六组的频率,然后用1减去除第七组外其它各组的频率和即可得到第七组的频率;(2)过中位数的直线两侧的矩形的面积相等.第一组到第三组的频率和为0.32,第一组到第四组的频率和为0.52,所以中位数在第四组内,可求出中位数;(3)求出第八组的人数,根据排列组合,求出从这两组的所有男生中随机抽取两名男生的基本事件总数和抽出的两名男生在同一组的基本事件数,即可求得概率.【详解】 第六组的频率为400850.=, ∴第七组的频率为()100850008200160042006006......--⨯⨯++⨯+=(2)第一组到第三组的频率和为()50.0080.0160.040.32⨯++=,第一组到第四组的频率和为()50.0080.0160.0420.52⨯++⨯=,所以中位数在第四组内,设中位数为m ,则170175m <<,由()0.321700.040.5,174.5m m +-⨯=∴=,所以可估计该校800名男生的身高的中位数为1745..第六组到第八组的频率和为0.080.0650.0080.18++⨯=,身高在180cm 以上(含180cm )的人数为8000.18144⨯=人.(3)第六组的人数为4人,第八组的人数为5050.0082⨯⨯=人.记“抽出的两名男生在同一组”为事件A ,从样本中身高属于第六组和第八组的所有男生中随机抽取两名男生,共有2615C =种不同选法,其中事件A 包含22427C C 种, 所以事件A 的概率715P =. 【点睛】 本题主要考查频率分布直方图,属于基础题.22.(1)710(2)108分钟. 【分析】(1)利用列举法和古典概型的概率公式计算可得;(2)根据公式计算可得回归方程,根据回归公式计算可得答案.【详解】解:(1)6268758288755y ++++== 记:“两组数据中至少有一组数据小于加工时间的均值” 为事件A ,基本事件:(62,68),(62,75),(62,82),(62,88),(68,75),(68,82),(68,88),(75,82),(75,88),(82,88)共10种,其中事件A :(62,68),(62,75),(62,82),(62,88),(68,75),(68,82),(68,88)共7个,所以7()10P A =. (2)由题,1020304050305x ++++==, ()5214001001004001000i i x x =-=+++=∑ ()()5126070070260660iii x x y y =--=++++=∑ ()()()121ˆ0.66,ni ii n i i x x y y b x x ==--==∴-∑∑ˆˆ55.2a y bx=-= 所以回归方程为ˆ0.6655.2yx =+.80x =时,ˆ0.668055.2108yx =⨯+=,即预测其加工80个零件需要108分钟. 【点睛】本题考查了利用列举法和古典概型概率公式计算概率,考查了求线性回归方程,考查了运算求解能力,属于中档题.23.流程图见解析【分析】由数列的递推公式可知,该数列由前项推出后项,可用循环结构的流程图来表示.在画流程图之前,先将上述流程分解为若干比较明确的步骤,并确立这些步骤之间的关系即可画出流程图.【详解】流程图如图:【点睛】本题考查的知识要点:数列的递推关系式,流程图,主要考查学生的转换能力及思维能力,属于基础题型.24.详见解析【分析】用当型或直到型循环结构写程序框图,当型循环结构是当满足条件时,进入循环体,否时退出循环,判断框填入500S ≤,直到型循环结构是当满足条件时退出循环体,否时进入循环,判断框填入500S >.【详解】或者【点睛】本题考查当型或直到型循环结构,需熟悉循环结构特征,分清两种循环结构,并且注意判断框的写法,25.(1)171277y =⨯;(2)该小组所得线性回归方程是理想的. 【分析】 (1)根据数据求出ˆb与ˆa 的值,即可求出y 关于x 的线性回归方程; (2)分别计算出1月份和6月份对应的预测值,与检验数据作差取绝对值,再与2.58进行比较即可得到结论.【详解】(1)由表中2月至5月份的数据, 得11(1113128)11,(24302818)2544x y =+++==+++=, 故有()()520(1)2513(3)(7)34i i i x x y y =--=⨯-+⨯+⨯+-⨯-=∑, ()5222222021(3)14i i x x =-=+++-=∑, 34171712,251114777b a y bx ∴===-=-⨯=-, 即y 关于x 的线性回归方程为171277y =⨯; (2)由171277y =⨯,当10x =时,171215810777y =⨯-=, 1581820 2.5877-=<,当6x =时,1712906777y =⨯=, 901515 2.5877-=<, 则该小组所得线性回归方程是理想的.【点睛】方法点睛:该题考查的是有关回归分析的问题,解题方法如下:(1)结合题中所给的数据,根据最小二乘法系数公式起的ˆb与ˆa 的值,得到回归直线方程;(2)将相应的变量代入,得到的值域题中条件比较,得到结论.26.(1)x=0.0044, 月均用电量约为186度;(2). 【详解】(1)由题意得,.设该小区100个家庭的月均用电量为S则9+22.5+52.5+49.5+33+19.5=186.(2),所以用电量超过300度的家庭共有6个.分别令为甲、A 、B 、C 、D 、E ,则从中任取两个,有(甲,A )、(甲,B )、(甲,C )、(甲,D )、(甲,E )、(A,B )、(A,C )、(A,D )、(A,E )、(B,C )、(B,D )、(B,E )、(C,D )、(C,E )、(D,E )15种等可能的基本事件,其中甲被选中的基本事件有(甲,A )、(甲,B )、(甲,C )、(甲,D )、(甲,E )5种.家庭甲被选中的概率.。

苏教版数学必修3测试试卷

苏教版数学必修3测试试卷

苏教版数学必修3测试试卷江苏兴化楚水实验学校 王爱民一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 算法1S :输入n2S :判断n 是否是2;若2n =,则n 满足条件若2n >,则执行3S3S :依次从2到1n -检验能不能整除n .若不能整除n 满足条件.上述算法中输入( )数时一定能满足条件 ( )A.合 B.奇 C.偶 D.质2.根据如图所示的流程图计算,输出的结果是 ( )A.21B.101C.231D.3013.执行算法程序A .499500 0←S 1←IB .250000 while 1000≤I I S S +←C .249500 2+←I I End whileD .251001 int Pr S 的结果是4.如图所示的伪代码,最终输出的结果是 ( ) A.123100++++的值 B.2222123100++++的值 C.13599++++的值 D.222213599++++的值5.某城市有学校700所,其中大学20所,中学200所,小学480所.现用分层抽样的方法从中抽取一个容量为70的样本进行某项调查,则应抽取的中学数为 ( )A.70B.20C.48D.26. 为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁-18岁的男生体重(kg) ,得到频率分布直方图如下: 根据右图可得这100名学生中体重在〔56.5,64.5〕的学生人数是 ( ) A.20 B. 30C.40D. 507.一家旅社有100间相同的客房,经过一段时间经营实践,发现有如下表给出的关系,为使每天总收入达到最高,每间客房每天的定价应为( )每间每天定价 70元 60元 50元 40元 住房率55%65%80%95%A.70元B.60元C.50元D.40元8.x 是10021,,,x x x 的平均数,a 是4021,,,x x x 的平均数,b 是1004241,,,x x x 的平均数,则下列各式正确的是( ) A.4060100a b x +=B.6040100a b x +=C.x a b =+D.2a bx +=9.从一批产品中取出三件产品,记A 为事件“三件产品全不是次品”,B 为事件“三件产品全是次品”,C 为“三件产品不全是次品”,则下列结论正确的是 ( )A.A 与C 互斥B.B 与C 互斥C.任何两个均互斥D.任何两个均不互斥10.如图所示,在一个边长为)0(,>>b a b a 矩形内画一个梯形,梯形上、下底分别为a 31与a 21,高为b ,向该矩形内随机投入一点,则所投的点落在梯形内部的概率为 ( ) A .1312 B . 125 C . 127 D . 98二、填空题(本大题共6小题,每小题5分,共30分) 11.将容量为100的样本数据分为如下8组:aa 2a b则第3组的频率为 .12.自行车运动员甲、乙两人在相同的条件下进行了6次测试,测得他们的最大速度(m/s )的数据如下:根据上述数据,应选 参加比赛更合适。

苏教版高中数学必修三试卷(含参考答案).docx

苏教版高中数学必修三试卷(含参考答案).docx

红蓝黄白高中数学学习材料唐玲出品立发中学高二年级数学试卷(含参考答案)(试卷满分:160分;考试时间:2小时)第I卷(选择题,共50分)一、选择题:本大题共有10小题,每小题5分,共50分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.(B) 1.如图,将一个长与宽不等的长方形水平放置,长方形对角线将其分成四个区域,在四个区域内涂上红、蓝、黄、白四种颜色,并在中间装个指针,使其可以自由转动,对于指针停留的可能性, 下列说法正确的是A.一样大B.蓝白区域大C.红黄区域大D.由指针转动圈数确定(D) 2.下列说法正确的是A.某厂一批产品的次品率为110,则任意抽取其中10件产品一定会发现一件次品B.气象部门预报明天下雨的概率是90﹪,说明明天该地区90﹪的地方要下雨,其余10﹪的地方不会下雨C.某医院治疗一种疾病的治愈率为10%,那么前9个病人都没有治愈,第10个人就一定能治愈D.掷一枚硬币,连续出现5次正面向上,第六次出现反面向上的概率与正面向上的概率仍然都为0.5.(C) 3.同时投掷大小不同的两颗骰子,所得点数之和是5的概率是A.14B.16C.19D.112(C) 4.如图是一个边长为4的正方形及扇形(见阴影部分),若随机向正方形内丢一粒豆子,则豆子落入扇形的概率是A.16πB.8πC.4πD.π(B) 5.已知x、y之间的一组数据如下:x0 1 2 3y8 2 6 4 则线性回归方程ˆy bx a=+所表示的直线必经过点A.(0,0)B.(1.5,5)C.(4,1.5)D.(2,2)(D) 6.将数字1、2、3填入标号为1、2、3的三个方格里,每格填上一个数字,则方格的标号与所填的数字有相同的概率是A.61B.31C.21D.32(B) 7.从一批产品中取出三件产品,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,则下列结论正确的是A.A与C互斥B.B与C互斥C.任何两个均互斥D.任何两个均不互斥(C) 8.在5件产品中,有3件一等品,2件二等品. 从中任取2件,那么以710为概率的事件是A.都不是一等品B.恰有一件一等品C.至少有一件二等品D.至少有一件一等品(A)9. 正四面体的4个面上分别写着1、2、3、4,将3个这样均匀的正四面体同时投掷于桌面上,与桌面接触的3个面上的3个数的乘积能被4整除的概率是A.1611B.1613C.6413D.6441(D) 10. 下面有三个游戏规则,袋子中分别装有球,从袋中无放回地取球,问其中不公平的游戏是游戏1游戏2游戏33个黑球和一个白球 一个黑球和一个白球 2个黑球和2个白球 取1个球,再取1个球 取1个球取1个球,再取1个球 取出的两个球同色→甲胜取出的球是黑球→甲胜取出的两个球同色→甲胜 取出的两个球不同色→乙胜 取出的球是白球→乙胜取出的两个球不同色→乙胜A .游戏1和游戏3B .游戏1C .游戏2D .游戏3第II 卷(非选择题,共110分)二、填空题:本大题共6小题,每小题5分,共30分.将答案填在题中的横线上. 11.总数为10万的彩票,中奖率为11000,买1000张彩票是否一定中奖?____否____.(填“是”或“否”) 12.某公共汽车站,每隔15分钟有一辆车出发,并且发出前在车站停靠3分钟,则乘客到站候车时间大于10分钟的概率为____215____.(结果用分数表示)13.在平面直角坐标系中,横坐标与纵坐标都在集合A ={0,1,2,3,4,5}内取值的点中任取一个点,此点正好在直线x y =上的概率为____16____.(结果用分数表示)14.过正三角形ABC 的顶点B 任作一条射线BT ,交AC 于T ,则CT ≤12BC 的概率为___12_____.15. 某射手射击一次,命中环数及其概率如下表:命中环数 10环 9环 8环 7环 7环以下概率0.150.260.210.200.18则该射手射击一次,至少命中7环的概率为___0.82_____.16. 某徒工加工外形完全一样的甲、乙两种零件. 他加工的5个甲种零件中有2个次品,2个乙种零件中有1个次品,现从这7个零件中随机抽取2个,则能抽到甲种零件的次品的概率为___1121____.(结果用分数表示)三、解答题:本大题共5小题,每小题16分,共80分.解答应写出文字说明、证明过程或演算步骤.17.一个口袋内装有形状、大小都相同的2个白球和3个黑球.(1)从中一次随机摸出两个球,求两球恰好颜色不同的概率;(2)从中随机摸出一个球,不放回后再随机摸出一个球,求两球同时是黑球的概率; (3)从中随机摸出一个球,放回后再随机摸出一个球,求两球恰好颜色不同的概率. 解:(1)记“一次摸出两个球,两球颜色恰好颜色不同”为事件A ,摸出两个球的基本事件共有10种,其中两球为一白一黑的事件有6种.…………3分 6()0.610P A ∴==.答:从中一次摸出两个球,求两球恰好颜色不同的概率是0.6. ……………5分 (2)记“从中摸出一个球,不放回后再摸出一个球,两球同时是黑球”为事件B ,不放回地摸出两个球的基本事件共有20种,其中两球为黑球的事件有6种. ……8分 63()2010P B ∴==. 答:从中摸出一个球,不放回后再摸出一个球,求两球为黑球的概率是310. ……10分 (3)记“从中摸出一个球,放回后再摸出一个球,两球颜色恰好颜色不同”为事件C ,有放回地摸出两个球的基本事件共有25种,其中两球为一白一黑的事件有12种.………………13分 12()0.4825P C ∴==.答:从中摸出一个球,放回后再摸出一个球,求两球恰好颜色不同的概率是0.48.18.甲、乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜(24小时)内到达的时间是等可能的,如果甲船停泊的时间是1小时,乙船停泊的时间是2小时,求它们中任何一艘都不需要等候码头空出的概率.10131152(提示:可设甲、乙两船到达该码头的时刻分别为,x y ) 19. 摆地摊的某摊(赌)主拿了8个白的,8个黑的围棋子放在一个口袋里,并规定凡愿意摸彩者每人交一元钱作手续费,然后一次从口袋摸出5个棋子,中彩情况如下:摸棋子 5个白 4个白 3个白其它彩金20元2元纪念品(价值5角)同乐一次(无任何奖品)(1)某人交一元钱作手续费,然后一次从口袋摸出5个棋子,求获得彩金20元的概率; (2)某人交一元钱作手续费,然后一次从口袋摸出5个棋子,求无任何奖品的概率;(3)按摸彩1000次统计,赌主可望净赚约多少钱?解:(1)获得彩金20元的概率585161;78C C =同理:获得彩金2元的概率41885165;39C C C ⋅=获得彩金5角的概率328851614;39C C C =(2)无任何奖品的概率为:1514117839392---= (3)按摸彩1000次统计,赌主可望净赚:151410001000201000210000.5308(783939-⨯⨯-⨯⨯-⨯⨯≈元) 答:略.20. F 表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据:x3 4 5 6 y2.5344.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程ˆy= bx a +; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:3⨯2.5+4⨯3+5⨯4+6⨯4.5=66.5) 解: (1)如下图:01234567012345产量能耗(2)4118ii x==∑, 4114i i y ==∑42186ii x==∑,413 2.5+43+54+6 4.5=66.5i i i x y ==⨯⨯⨯⨯∑.代入公式1112211()(),()n n ni i i i i i i n ni i i i n x y x y b a y bx n x x =====-==--∑∑∑∑∑得:266.54 4.5 3.566.5630.7864 4.58681b -⨯⨯-===-⨯- 3.50.7 4.50.35a y bx =-=-⨯=故线性回归方程为y =0.7x +0.35(3) 根据回归方程的预测,现在生产100吨产品消耗的标准煤的数量为0.7⨯100+0.35=70.35故耗能减少了90-70.35=19.65(吨)21. 设有一个4⨯4网格,其各个最小的正方形的边长为4cm ,现用直径为2cm 的硬币投掷到此网格上,设每次投掷都落在最大的正方形内或与最大的正方形有公共点. (1)求硬币落下后完全在最大的正方形内的概率; (2)求硬币落下后与网格线没有公共点的概率. 解:考虑圆心的运动情况.(1)因为每次投掷都落在最大的正方形内或与最大的正方形有公共点,所以圆心的最大限度为原正方形向外再扩张1个小圆半径的区域,且四角为四分之圆弧;此时总面积为:16×16+4×16×1+π×12=320+π;完全落在最大的正方形内时,圆心的位置在14为边长的正方形内,其面积为:14×14=196;故:硬币落下后完全在最大的正方形内的概率为:196320Pπ=+;(2)每个小正方形内与网格线没有公共点的部分是正中心的边长为2的正方形的内部,一共有16个小正方形,总面积有:16×22=64;故:硬币落下后与网格线没有公共点的概率为:64320Pπ=+.答:硬币落下后完全在最大的正方形内的概率为:196320Pπ=+;硬币落下后与网格线没有公共点的概率为:64320Pπ=+.。

2020-2021学年苏教版高中数学必修三《概率》综合测评题及解析

2020-2021学年苏教版高中数学必修三《概率》综合测评题及解析

(新课标)2018-2019学年苏教版高中数学必修三章末综合测评(三)(时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分.请把答案填在横线上)1.把红、蓝、黑、白4张纸牌随机分给甲、乙、丙、丁四人,每人分得一张,那么事件“甲分得红牌”与事件“乙分得红牌”是________.(填序号)①对立事件;②互斥但不对立事件;③必然事件;④不可能事件. 【解析】 “甲分得红牌”与“乙分得红牌”不能同时发生,故它们是互斥事件,又甲、乙可能都得不到红牌,故它们不是对立事件.【答案】 ②2.利用简单随机抽样从含有6个个体的总体中抽取一个容量为3的样本,则总体中每个个体被抽到的概率是________.【解析】 总体个数为N ,样本容量为M ,则每一个个体被抽得的概率为P =M N =36=12. 【答案】 123.一个口袋内装有大小相同的10个白球,5个黑球,5个红球,从中任取一球是白球或黑球的概率为________.【解析】 记“任取一球为白球”为事件A ,“任取一球为黑球”为事件B ,则P(A +B)=P(A)+P(B)=1020+520=34. 【答案】 344.在一次教师联欢会上,到会的女教师比男教师多12人,从这些教师中随机挑选一人表演节目,若选到男教师的概率为920,则参加联欢会的教师共有________人.【解析】 设男教师为n 人,则女教师为(n +12)人, ∴n 2n +12=920. ∴n =54.∴参加联欢会的教师共有120人. 【答案】 1205.如图1,矩形长为5、宽为2,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为138颗,则我们可以估计出阴影部分的面积为________.图1【解析】 利用几何概型的概率计算公式,得阴影部分的面积约为138300×(5×2)=235.【答案】2356.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________.【解析】 从袋中随机摸出2只球有(白,红),(白,黄1),(白,黄2)(红,黄1)(红,黄2),(黄1,黄2)共6种取法,其中颜色不同的有5种,由古典概型概率公式得所求概率为56.【答案】 567.向图2中所示正方形内随机地投掷飞镖,则飞镖落在阴影部分的概率为________.图2【解析】 直线6x -3y -4=0与直线x =1交于点⎝ ⎛⎭⎪⎫1,23,与直线y =-1交于点⎝ ⎛⎭⎪⎫16,-1,易知阴影部分面积为12×56×53=2536.所以P =S 阴影S 正方形=25364=25144.【答案】251448.在抛掷一颗骰子的试验中,事件A 表示“不大于4的偶数点出现”,事件B 表示“小于5的点数出现”,则事件A +B 发生的概率为________.(B 表示B的对立事件)【导学号:11032076】【解析】事件A包含的基本事件为“出现2点”或“出现4点”;B表示“大于等于5的点数出现”,包含的基本事件为“出现5点”或“出现6点”.显然A与B是互斥的,故P(A+B)=P(A)+P(B)=13+13=23.【答案】2 39.小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点.若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书,则小波周末不在家看书的概率为________.【解析】∵去看电影的概率P1=π×12-π×⎝⎛⎭⎪⎫122π×12=34.去打篮球的概率P2=π×⎝⎛⎭⎪⎫142π×12=116.∴不在家看书的概率为P=34+116=1316.【答案】13 1610.口袋中装有100个大小相同的红球、白球、黑球,其中红球45个,从口袋中摸出1个球,摸出白球的概率是0.23,则摸出黑球的概率是________.【解析】∵摸出白球的概率是0.23,∴口袋中白球的个数为0.23×100=23个,∴袋中黑球共100-45-23=32个.∴从袋中摸出1个球,摸出黑球的概率为32100=0.32.【答案】0.3211.如图3,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的上底圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是________.图3【解析】鱼缸的体积为23=8,圆锥的体积为13π×12×2=2π3,故所求概率为P=8-2π38=1-π12.【答案】1-π1212.在5件产品中,有3件一等品和2件二等品,从中任取2件,以710为概率的事件是________.(填序号)①恰有1件一等品;②至少有一件一等品;③至多有一件一等品;④都不是一等品.【解析】将3件一等品编号为1,2,3,2件二等品编号为4,5,从中任取2件有10种取法:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).其中恰含有1件一等品的取法有:(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),恰有1件一等品的概率为P1=35,恰有2件一等品的取法有:(1,2),(1,3),(2,3).故恰有2件一等品的概率为P2=310,其对立事件是“至多有一件一等品”,概率为P3=1-P2=1-310=710,至少有一件一等品的概率为P4=35+310=910,都不是一等品的概率为P5=1-910=110.【答案】③13.随机掷两枚质地均匀的骰子,他们向上的点数之和不超过5的概率为p 1,点数之和大于5的概率为p2,点数之和为偶数的概率为p3,则p1,p2,p3的大小顺序是________.【解析】随机掷两枚质地均匀的骰子,所有可能的结果共有36种.事件“向上的点数之和不超过5”包含的基本事件有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1)共10种,其概率p1=1036=518.事件“向上的点数之和大于5”与“向上的点数之和不超过5”是对立事件,所以“向上的点数之和大于5”的概率p2=1318.因为朝上的点数之和不是奇数就是偶数,所以“点数之和为偶数”的概率p3=12.故p1<p3<p2.【答案】p1<p3<p214.在区间[0,5]上随机地选择一个数p,则方程x2+2px+3p-2=0有两个负根的概率为________.【解析】因为方程x2+2px+3p-2=0有两个负根,∴⎩⎪⎨⎪⎧Δ=4p 2-4(3p -2)≥0,x 1+x 2=-2p<0,x 1x 2=3p -2>0,解得23<p ≤1或p ≥2.由几何概型概率公式得所求概率为⎝⎛⎭⎪⎫1-23+(5-2)5-0=23.【答案】 23二、解答题(本大题共6个小题,共90分)15.(本小题满分14分)袋子中装有大小和形状相同的小球,其中红球与黑球各1个,白球n 个.从袋子中随机取出1个小球,取到白球的概率是12.(1)求n 的值;(2)记从袋中随机取出一个小球为白球得2分,为黑球得1分,为红球不得分.现从袋子中取出2个小球,求总得分为2分的概率.【解】 (1)由题意可得n 1+1+n =12,解得n =2.(2)设红球为a ,黑球为b ,白球为c 1,c 2,从袋子中取出2个小球的所有基本等可能事件为:(a ,b),(a ,c 1),(a ,c 2),(b ,c 1),(b ,c 2),(c 1,c 2),共有6个,其中得2分的基本事件有(a ,c 1),(a ,c 2), 所以总得分为2分的概率为26=13.16.(本小题满分14分)如图4,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0)且点C 与点D 在函数f(x)=⎩⎨⎧x +1,x ≥0,-12x +1,x<0的图象上.图4(1)求点A ,点C ,点D 的坐标;(2)若在矩形ABCD 内随机取一点,求此点取自阴影部分的概率.【解】 (1)由ABCD 为矩形,点B 的坐标为(1,0)知点C 的横坐标与点B 的横坐标相同,即x C=1,又因为点C 在函数f(x)=⎩⎨⎧x +1,x ≥0,-12x +1,x<0的图象上,故y C =x C +1=1+1=2,所以点C 的坐标为(1,2),因为CD ∥AB 所以y D =y C =2.令-12x +1=2得x =-2所以点D 的坐标为(-2,2),A 点坐标为(-2,0),综上所述,A(-2,0),C(1,2),D(-2,2). (2)因为S 矩形ABCD =3×2=6,S 阴影=12×3×1=32,所以由几何概型的概率公式得所求的概率P =326=14.17.(本小题满分14分)甲乙两人玩一种游戏,每次由甲、乙各出1到5根手指,若和为偶数算甲赢,否则算乙赢.(1)若以A 表示和为6的事件,求P(A);(2)现连玩三次,若以B 表示甲至少赢一次的事件,C 表示乙至少赢两次的事件,试问B 与C 是否为互斥事件?为什么?(3)这种游戏规则公平吗?试说明理由.【解】 (1)甲、乙出手指都有5种可能,因此基本事件的总数为5×5=25,事件A 包括甲、乙出的手指的情况有(1,5),(5,1),(2,4),(4,2),(3,3)共5种情况,所以P(A)=525=15.(2)B 与C 不是互斥事件.因为事件B 与C 可以同时发生,如甲赢一次,乙赢两次的事件即符合题意.(3)这种游戏规则不公平.由(1)知和为偶数的基本事件数为13个,即(1,1),(1,3),(1,5),(2,2),(2,4),(3,1),(3,3),(3,5),(4,2),(4,4),(5,1),(5,3),(5,5).所以甲赢的概率为1325,乙赢的概率为1225.所以这种游戏规则不公平.18.(本小题满分16分)先后2次抛掷一枚骰子,将得到的点数分别记为a ,b.(1)求直线ax +by +5=0与圆x 2+y 2=1相切的概率;(2)将a ,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.【解】 先后2次抛掷一枚骰子,将得到的点数分别记为a ,b ,包含的基本事件有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),…,(6,5),(6,6),共36个.(1)∵直线ax +by +5=0与圆x 2+y 2=1相切, ∴5a 2+b2=1,整理得a 2+b 2=25.由于a ,b ∈{1,2,3,4,5,6},∴满足条件的情况只有a =3,b =4或a =4,b =3两种情况.∴直线ax+by+5=0与圆x2+y2=1相切的概率是236=118.(2)∵三角形的一边长为5,三条线段围成等腰三角形,∴当a=1时,b=5,共1个基本事件;当a=2时,b=5,共1个基本事件;当a=3时,b=3,5,共2个基本事件;当a=4时,b=4,5,共2个基本事件;当a=5时,b=1,2,3,4,5,6,共6个基本事件;当a=6时,b=5,6,共2个基本事件.∴满足条件的基本事件共有1+1+2+2+6+2=14个.∴三条线段能围成等腰三角形的概率为1436=718.19.(本小题满分16分)某公务员去外地开会,他乘火车、轮船、汽车、飞机去的概率分别是0.3,0.2,0.1,0.4,求:(1)他乘火车或乘飞机去的概率;(2)他不乘轮船去的概率.【解】设乘火车去开会为事件A,乘轮船去开会为事件B,乘汽车去开会为事件C,乘飞机去开会为事件D,则A,B,C,D彼此互斥且P(A)=0.3,P(B)=0.2,P(C)=0.1,P(D)=0.4.(1)P(A+D)=P(A)+P(D)=0.3+0.4=0.7.(2)法一:设不乘轮船去开会为事件E,则P(E)=P(A+C+D)=P(A)+P(C)+P(D)=0.3+0.1+0.4=0.8.法二:E与B是对立事件,则P(E)=1-P(B)=1-0.2=0.8.20.(本小题满分16分)某学校共有教职工900人,分成三个批次进行继续教育培训,在三个批次中男、女教职工人数如下表所示.已知在全体教职工中随机抽取1名,抽到第二批次中女教职工的概率是0.16.&知识就是力量&(1)求x(2)现用分层抽样的方法在全体教职工中抽取54名做培训效果的调查,问应在第三批次中抽取教职工多少名?(3)已知y≥96,z≥96,求第三批次中女教职工比男教职工多的概率.【解】(1)由x900=0.16,解得x=144.(2)第三批次的人数为y+z=900-(196+204+144+156)=200,设应在第三批次中抽取m名,则m200=54900,解得m=12.∴应在第三批次中抽取12名教职工.(3)设第三批次中女教职工比男教职工多为事件A,第三批次女教职工和男教职工数记为数对(y,z),由(2)知y+z=200,(y,z∈N*,y≥96,z≥96),则基本事件总数有:(96,104),(97,103),(98,102),(99,101),(100,100),(101,99),(102,98),(103,97),(104,96),共9个,而事件A包含的基本事件有:(101,99),(102,98),(103,97),(104,96),共4个.∴P(A)=49.故第三批次中女职工比男职工多的概率为49.。

2019—2020年最新苏教版高中数学必修三第2章《统计》同步练习试题4及解析.docx

2019—2020年最新苏教版高中数学必修三第2章《统计》同步练习试题4及解析.docx

(新课标)2019—2020学年苏教版高中数学必修三学业分层测评(十四)(建议用时:45分钟)[学业达标]一、填空题1.以下茎叶图2­3­4记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).图2­3­4已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x =________,y =________.【解析】 由甲组数据中位数为15知,x =5;而乙组数据的平均数16.8=9+15+(10+y )+18+245, 可得y =8.故填5,8.【答案】 5 82.x 1,x 2,…,x 10的平均数为a ,x 11,x 12,…,x 50的平均数为b ,则x 1,x 2,…,x 50的平均数是________.【解析】 由题意知前10个数的总和为10a ,后40个数的总和为40b ,又总个数为50,∴x1,x2,…,x50的平均数为10a+40b50=a+4b5.【答案】a+4b 53.某学校高一(5)班在一次数学测验中,全班数学成绩的平均分为91分,其中某生得分为140分,是该班的最高分.若不包括该生的其他同学在这次测验中的平均分为90分,则该班学生的总人数为________.【解析】设该班有n名学生,则有91n-140n-1=90.∴n=50.【答案】504.在一次射击训练中,一小组的成绩如下表:环数789人数2 3已知该小组的平均成绩是8.1环,那么成绩为8环的人数是________.【解析】设成绩为8环的人数是x,由平均数的概念,得7×2+8x+9×3=8.1×(2+x+3),解得x=5.【答案】 55.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则a,b,c的大小关系为________.【解析】取m=15,则所形成的新数据为0,2,-1,-5,0,2,2,1,-1,-3.∴a ′=0+2-1-5+0+2+2+1-1-310=-0.3. ∴a =15+(-0.3)=14.7.数据按从小到大的顺序排列为10,12,14,14,15,15,16,17,17,17,中位数b =15,众数c =17.则大小关系为c >b >a .【答案】 c >b >a6.在一组数据中出现10的频率为0.08,出现15的频率为0.01,出现11的频率为0.2;出现12的频率为0.31.出现13的频率为0.18,出现14的频率为0.16,出现16的频率为0.06,则这组数据的平均数为________.【解析】 由平均数的计算公式可得:x -=10×0.08+15×0.01+11×0.2+12×0.31+13×0.18+14×0.16+16×0.06=12.41.【答案】 12.417.如果a 1、a 2、a 3、a 4、a 5、a 6的平均数为3,那么2(a 1-3)、2(a 2-3)、2(a 3-3)、2(a 4-3)、2(a 5-3)、2(a 6-3)的平均数为________.【解析】 由题意知a 1+a 2+a 3+a 4+a 5+a 6=3×6=18,故所求平均数为16[2(a 1-3)+2(a 2-3)+2(a 3-3)+2(a 4-3)+2(a 5-3)+2(a 6-3)]=16[2(a 1+a 2+a 3+a 4+a 5+a 6)-6×6]=13×18-6=0. 【答案】 08.一位教师出了一份含有3个问题的测验卷,每个问题1分.班级中30%的学生得了3分,50%的学生得了2分,10%的学生得了1分,另外还有10%的学生得0分,则全班的平均分是________分.【导学号:11032047】【解析】设全班学生为n,则全班平均分为3×30%+2×50%+1×10%=2(分).【答案】 2二、解答题9.某农科所有芒果树200棵,2016年全部挂果,成熟期一到,随意摘下其中10棵树上的芒果,分别称得重量如下(单位:kg):10,13,8,12,11,8,9,12,8,9.(1)求样本平均数;(2)估计该农科所2016年芒果的总产量.【解】应用样本平均数的公式计算样本平均数,再估计总体平均数,从而求出该农科所2016年芒果的总产量.(1)样本平均数x-=110(10+13+8+12+11+8+9+12+8+9)=10(kg).(2)由样本的平均数为10 kg,估计总体平均数也是10 kg.所以总产量为200×10=2 000(kg).10.学校对王老师与张老师的工作态度、数学成绩及业务学习三个方面做了一个初步的评估,成绩如下表:工作态度教学成绩业务学习王老师989596张老师909998(1)如果以工作态度、教学成绩及业务学习三个方面的平均分来计算他们的成绩,作为评优的依据,你认为谁会被评为优秀?(2)如果三项成绩的比例依次为20%、60%、20%来计算他们的成绩,结果又会如何?【解】(1)王老师的平均分是(98+95+96)÷3≈96.张老师的平均分是(90+99+98)÷3≈95.7.王老师的平均分较高,评王老师为优秀.(2)王老师的平均分是(98×20%+95×60%+96×20%)=95.8,张老师的平均分为(90×20%+99×60%+98×20%)=97.张老师的得分高,评张老师为优秀.[能力提升]1.某校从参加高二年级学业水平测试的学生中抽出80名,其数学成绩(均为整数)的频率分布直方图如图2­3­5所示.则可估计该校学生的平均成绩为________.图2­3­5【解析】x=45×0.05+55×0.15+65×0.2+75×0.3+85×0.25+95×0.05=72.【答案】722.在一组数据:13,8,1,9,7,6,4,3,18,11中抽去一个,新的一组数据的平均数与原数据的平均数相同,则被抽去的数是________.【解析】抽去一个数后平均数没有变,说明被抽取的数应是平均数,从而有13+8+1+9+7+6+4+3+18+11=8.10【答案】83.某鱼塘放养鱼苗10万条,根据这几年的经验知道,鱼苗成活率为95%.一段时间后准备打捞出售,第一次从网中取出40条,称得平均每条鱼重2.5 kg;第二次网出25条,称得平均每条鱼重2.2 kg;第三次网出35条,称得平均每条鱼重2.8 kg.请你根据这些数据,估计鱼塘中的鱼的总重量约是________ kg.【解析】先算出三次称鱼的平均数为:2.5×40+2.2×25+2.8×35=2.53(kg),40+25+35所以鱼塘中的鱼的总重量为2.53×(100 000×95%)≈24万(kg).【答案】24万4.为了比较两种治疗失眠症的药(分别称为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h),试验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.23.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.12.3 2.4服用B药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.31.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.22.7 0.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?(2)根据两组数据完成下面茎叶图2­3­6,从茎叶图看,哪种药的疗效更好?图2­3­6【解】(1)x-A=120(0.6+1.2+2.7+1.5+2.8+1.8+2.2+2.3+3.2+3.5+2.5+2.6+1.2+2.7+1.5+2.9+3.0+3.1+2.3+2.4)=2.3(h).x-B=120(3.2+1.7+1.9+0.8+0.9+2.4+1.2+2.6+1.3+1.4+1.6+0.5+1.8+0.6+2.1+1.1+2.5+1.2+2.7+0.5)=1.6(h).从计算结果看,A药服用者的睡眠时间增加的平均数大于服用B药的.所以A药的疗效更好.(2)从茎叶图看,A药的疗效更好.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年江苏地区高中数学必修三复习试卷
一、选择题.
1.下列程序框中,出口可以有两个流向的是 ( ) A.起止框 B.输入输出框 C.处理框 D.判断框
2.下列给出的赋值语句中正确的是
A.3←A B.M←—M C.B←A←2 D.x+y←0
3. 将两个数a=8,b=17交换,使a=17,b=8,下面语句正确一组是 ( )
4.算法 ( )
此算法的功能是
A.a,b,c中最大值
B.a,b,c中最小值
C.将a,b,c由小到大排序
D.将a,b,c由大到小排序
5.下列算法输出的结果是()
A.2005
3
2
1+
+
+

B.2005
5
3
1⨯


⨯Λ
C.求方程2005
5
3
1=



⨯n
Λ中的n值.
D.满足2005
5
3
1>



⨯n
Λ的最小正整数.
6. 为了了解1200名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔k为: ()
A.40 B. 30 C. 20 D. 12
7. 某中学组织春游,为了确定春游地点,打算从该校学号为0034~2037的所有学生中,采用系统抽样选50名进行调查,则学号为2020的同学被抽到的可能性为()
A.
2003
1
B.
2004
1
C.
2004
50
D.
2003
50
8.一个容量为20的样本,已知某组的频率为0.25,则该组的频数为()
A.5
B.15
C.2
D.80
9.在装有相等数量的白球和黑球的口袋中放进一个白球,此时由这个口袋中取出1个白球S1 m←a
S2 若b<m,则m←b
S3 若c<m,则m←c
S4 输出m.
S←1
I←1
While S≤2020
i←i+2
S←S×i
end while
print i
的概率比口袋中原来取出一个白球的概率大1.0,则口袋中原来共装有球 ( )
A.2个
B.4个
C.8个
D.10个
10.数据 821,,,x x x Λ平均数为6,标准差为2,则数据62,,62,62821---x x x Λ 的平
均数与方差分别为: ( )
A. 6,16
B. 12,8
C. 6 ,8
D. 12,16
11.某班共有学生50人,其中女生5人,现从该班选取一名学生作为学生代表,则不是女
生的概率是 ( ) A.91 B.98 C. 109 D. 10
1 12.将一个各个面上均涂有颜色的正方体锯成)3(3≥n n 个同样大小的小正方体,从这些小
正方体中任取一个,则其中三面都涂有颜色的概率为 ( ) A.31n B.34n C.38n D. 2
1n 二、填空
13.阅读下列伪代码,并指出当5,3-==b a 时的计算结果:
Read a, b
a ←a+b
b ←a-b
a ←(a+b)/2
b ←(a-b)/2
Print a, b
a=________ , b=_______.
14.在面积为S 的△ABC 内任投一点P ,则△PBC 的面积大于2
S 的概率是 . 15.甲乙两人下棋,甲获胜的概率为30%,两人下成和棋的概率为50%,则甲不输的概率为
__________.
16.某校共有师生2400人,现用分层抽样的方法,从所有师生中抽取一个容量为160的样本,
已知从学生中抽取的人数为150,那么该学校的教师人数是 .
17.如图,已知()()()()()()()()12,0,30,18,18,30,0,12,30,0,30,30,0,30,0,0Q P F E C B A O ,
在正方形OABC 内任取一点,该点在阴影内的概率是_______________.
17 题 18 题
17.从一批产品中取出三件产品,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,则下列结论正确的是_______________.
(1)A 与C 互斥 (2)B 与C 互斥 (3) 任何两个均互斥 (4)任何两个均不互斥(5)A 与B 是对立事件 (6)B 与C 是对立事件
18.边长为2的正方形ABCD ,现随机地向正方形内投一点P(落到正方形ABCD 外的不算),则点P 到点A 距离小于1的概率____________.
三、解答题.
19.(12分)设计一个计算100
131211++++Λ的算法,并画出流程图,写出伪代码.
20. (12分)为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得的数据整理后画出频率分布直方图(如下图),已知图中从左到右的前三个小组的频率分别是0.1,0.3,0.4.第一小组的频数是5.
(Ⅰ)求第四小组的频率和参加这次测试的学生人数;
(Ⅱ)参加这次测试跳绳次数在100次以上为优秀,试估计该校此年级跳绳成绩的优秀率是多少?
频率 组距 次数49.5 74.5 99.5 124.5 149.5
21.(14分)在20件产品中,有15件合格品,5件次品.从中任取2件,计算:
(1)2件都是合格品的概率;
(2)2件都是次品的概率;
(3)1件是合格品,1件是次品的概率.
(4)至少有有一件是合格品的概率.
22.(14分)国家安全机关用监听录音机记录了两个间谍的谈话,发现30min 长的磁带上,从开始30s 处起,有10s 长的一段内容包含两间谍犯罪的信息.后来发现,这段谈话的一部分被某工作人员擦掉了,该工作人员声称她完全是无意中按错了键,使从此处起往后的所有内容都被擦掉了.那么由于按错了键使含有犯罪内容的谈话被部分或全部擦掉的概率有多大?
23.(14分)有一个容量为50的样本,起数据的茎叶图表示如下:
1 34566678888999
2 0000112222233334455566667778889
3 01123
将其分成7组并要求:(1)列出样本的频率分布表;(2)画出频率分布直方图
[参考答案]
DBBBDB ,BCABA ,CC
(13)21 ,45- (14)41(15)0.8 (16)150 (17)2516 (18) 16π。

相关文档
最新文档