高二数学椭圆的几何性质3
3.1.2椭圆的简单几何性质(离心率、焦半径公式)+课件-高二上学期数学人教A版选择性必修第一册

a3 3
课堂练习:
2、已知椭圆x a
2 2
y2 b2
1(a
b
0)的左、右焦点分别是F1, F2,
P是椭圆上一点.若 | PF1 | 2 | PF2 |,求椭圆的离心率的取值范围。
法二:解:| PF1 | | PF2 | 2a,| PF1 | 2 | PF2 |
求 | PF2 | • | PF1 | 范围
H
y
P
分析:| PF2 | a ex,| PF1 | a ex
F1 O
x F2
| PF2 | • | PF1 | (a ex)(a ex)
x a2
c
a2 (ex)2, x [a, a]
当x 0时,| PF2 | • | PF1 |max a2 当x a时,| PF2 | • | PF1 |min a2 c2 b2
-a≤x≤a,-b≤y≤b
-b≤x≤b,-a≤y≤a
长轴为A1A2=2a,短轴为B1B1=2b 关于x轴、y轴、原点对称
e c a
1
b2 a2
| F1F2 | | PF1 | | PF2
|
0 e 1
e越接近1, 椭圆越扁平; e越接近0, 椭圆越接近圆.
课前练习:
已知椭圆
x2
my 2
1的离心率
c
a
解:设d是点M到直线l : x a2 的距离,M (x, y). c
y
M
H
则动点M满足 | MF | c d a
oF
x
(x c)2 y2 c | a2 x | ac
整理得 x2 a2
y2 a2 c2
1
动点M的轨迹是椭圆。
高二选修一椭圆的知识点

高二选修一椭圆的知识点椭圆是高中数学的重要内容之一,作为高二学生选修的数学课程之一,椭圆的知识点对于学生的数学素养和理解力有着重要的影响。
本文将介绍高二选修一中涉及的椭圆的知识点。
一、椭圆的定义与性质椭圆是平面上一点到两个给定定点的距离之和等于常数的点的集合。
这两个给定定点分别称为椭圆的焦点,常数称为椭圆的离心率。
椭圆具有如下性质:1. 椭圆的离心率小于1,且等于0时为圆。
2. 椭圆的中心即为焦点所连直线的垂直平分线的交点。
3. 椭圆的长半轴和短半轴分别是焦点所连直线的垂直平分线与椭圆的交点到焦点的距离。
4. 椭圆的顶点是和焦点在同一直线上的两个点。
二、椭圆的方程表达椭圆的方程表达有两种形式:标准方程和一般方程。
1. 标准方程椭圆的标准方程为(x - h)²/a² + (y - k)²/b² = 1,其中(h, k)为椭圆的中心坐标,a和b分别为椭圆的长半轴和短半轴。
2. 一般方程椭圆的一般方程为Ax² + Bxy + Cy² + Dx + Ey + F = 0,其中A、B、C、D、E和F均为常数。
三、椭圆的参数方程椭圆的参数方程是将椭圆的坐标表示为参数θ的函数形式。
椭圆的参数方程为x = h + a cosθ,y = k + b sinθ,其中θ为参数。
四、椭圆的焦点与直径椭圆的焦点是指离心率所决定的椭圆上两个特殊的点,位于椭圆的长轴上。
椭圆的直径是从椭圆上一点到椭圆的另一点的最长线段。
五、椭圆与切线椭圆上的任意一点处都存在切线。
椭圆的切线与椭圆的法线垂直。
六、椭圆的重要参数椭圆的重要参数包括离心率、焦距、短半轴、长半轴、准线等,这些参数可以通过椭圆的方程表达或者几何性质求解。
七、椭圆的应用椭圆在日常生活和工程领域中有着广泛的应用。
例如,椭圆的形状可以模拟行星的轨道,从而研究天体运动;椭圆的形状也可以用来设计汽车、船舶和建筑物等工程项目。
椭圆的简单几何性质(3)

10
例:已知椭圆
与两焦点的连线互相垂直,P点的坐标为___。
x2 y 2 1, P为椭圆在第一象限内的点,它 45 20
解法二
解:a 3 5 , b 2 5 , c 5.设P( x, y )(x 0, y 0), 2 由 PF1 PF2 2a 6 5得 ( , PF1 PF2 ) 180 , 即 PF1 PF2 2 PF1 PF2 180 — —( 1 ) 又PF1 PF2, PF1 PF2 F1 F2 100 — —(2) ( 1 ) ( - 2)得2 PF1 PF2 80, PF1 PF2 40 1 1 又S PF1F2 PF1 PF2 F1 F2 y得y 4, 代入方程得 2 2 x 3, P(3,4)
2.2.2椭圆的简 单几何性质(3)
高二数学 选修2-1
第二章
圆锥曲线与方程
1
复习练习:
1、若椭圆的焦距长等于它的短轴长,则其离心率
为
2 2
。
2、若椭圆的两个焦点及一个短轴端点构成正三角
形,则其离心率为
1 2
。
3、若椭圆的 的两个焦点把长轴分成三等分,则其
离心率为
1 3
。
2
已知BC F1 F2 , F1 B 2.8cm, F1 F2 4.5cm, 求截口BAC所在椭圆的方 习
说明:
(第二定义 )
F1
O
F2
X
PF1 c a2 a x0 x2 y2 c 2 1 2 c a 2 F1,右焦点为F2,P0(x0,y0)为椭圆上一点, (a>b>0)左焦点为 a b PF1 ( x0 ) a ex0 a c其中|PF1|、 |PF2|叫焦半径. 则|PF1|=a+ex0,|PF2|=a-ex 0。
3.1.2椭圆的简单几何性质第三课时(第二定义焦半径和三角型面积)课件-高二上学期数学人教A版选择性

练习 已知椭圆C: x2 y2 1过,点(0, 2)作圆x2+y2=1的切线l交椭圆C于A, B两点. 4
(1) 求椭圆C的焦点坐标和离心率;(2) O为坐标原点, 求△OAB的面积.
解:(1) 由已知得 a 2, b 1, 所以c 3 .
∴椭圆C 的焦点坐标为( 3, 0),( 3, 0), 离心率为e c
y B1
M •F2
A1 O A2 x •F1 B2
b x b, a y a
对称性
关于x, y轴对称,关于原点对称
顶点 离心率
A1(a, 0), A2 (a, 0), B1(0, b), B2(0, b) A1(b, 0), A2 (b, 0), B1(0, a), B2(0, a)
e c a
联立x2 2 y2 2, 消y得 (1 2k 2 )x2 4k 2 x 2k 2 2 0, 8k 2 8.
y k(x 1),
SABF2
1 2
|
F1F2
|
y1 y2
k x1 x2
k
8(k 2 1) 1 2k 2
2
∴ △ABF2面积的最大值为 2.
应用2:三角形的面积与韦达定理
②焦半径公式: 若P(x, y), 则
P(x,y)
焦点在x轴上 : PF1 a ex, PF2 a ex
F1
F2
焦点在y轴上 : PF1 a ey, PF2 a ey
y A2 F2 x
③定义: PF1 PF2 2a ④乘积最值: b2 PF1 PF2 a2
B1 O
B2
PF1 PF2 (a ex)(a ex)
l
设A( x1 ,
y1), B( x2 ,
y2 ).
高二椭圆知识点总结

高二椭圆知识点总结一、椭圆的基本概念1.1 椭圆的定义椭圆是平面上到两个固定点的距离之和等于常数的点的轨迹。
具体来说,设两点为F₁和F₂,距离之和为常数2a,那么椭圆E的定义:E = {P∈R² | |PF₁| + |PF₂| = 2a}其中,P为椭圆上的点,F₁和F₂为两个固定点,a为椭圆的半长轴。
1.2 椭圆的几何性质椭圆有如下几何性质:(1)椭圆的离心率:椭圆的形状由离心率e来表征。
(2)椭圆的焦点:椭圆的两个焦点分别为F₁和F₂。
(3)椭圆的半长轴和半短轴:半长轴为椭圆的长轴的一半,半短轴为椭圆的短轴的一半。
1.3 椭圆和圆的关系可以看到,当两个焦点重合时,椭圆变成了圆。
这也说明圆是椭圆的一种特殊情况,也就是说圆是椭圆的特例。
二、椭圆的方程和性质2.1 椭圆的标准方程椭圆的标准方程为:x^2/a^2 + y^2/b^2 = 1其中,a为椭圆的半长轴,b为椭圆的半短轴。
2.2 椭圆的参数方程椭圆的参数方程为:x = a*cosθy = b*sinθ其中,θ为参数,a和b分别为椭圆的半长轴和半短轴。
2.3 椭圆的性质椭圆有许多重要的性质,如焦点、离心率、长轴、短轴等。
椭圆的性质对于解析几何的学习非常重要。
在实际应用中,我们可以利用这些性质进行问题的求解和分析。
2.4 椭圆的参数方程与标准方程的转化椭圆的参数方程与标准方程可以相互转化,通过参数方程与三角函数之间的关系,我们可以得到椭圆的标准方程。
三、椭圆的相关计算3.1 椭圆的面积椭圆的面积可以通过参数方程和积分来计算,最终可以得到椭圆的面积公式为:S = πab其中,a和b为椭圆的半长轴和半短轴。
3.2 椭圆的周长椭圆的周长也可以通过参数方程和积分来计算,最终可以得到椭圆的周长公式为:L = 4aE(e)其中,a为椭圆的半长轴,E(e)为椭圆的第二类椭圆积分,e为椭圆的离心率。
3.3 椭圆方程的化简对于一些复杂的椭圆方程,我们可以通过一些方法对椭圆方程进行化简,使得问题的求解变得更加简单。
重庆市南坪中学高二数学(人教A版)《2.1.1椭圆的简单几何性质》导学案3

§2.1.1椭圆的简单几何性质(第 3课时)[自学目标]:掌握直线与椭圆的位置关系,并能利用椭圆的有关性质解决实际问题.[重点]: 直线与椭圆实际问题[难点]: 直线和椭圆的位置关系,相关弦长、中点等问题.[教材助读]:1、若设直线与椭圆的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入椭圆的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。
我们称这种代点作差的方法为“点差法”。
2、若直线b kx y l +=:与椭圆相交与A 、B 两点,),(),,2211y x B y x A (则弦长221221)()(y y x x AB -+-=221221)()(kx kx x x -+-=2121x x k -+=2122124)(1x x x x k -++=[预习自测] 1、过椭圆141622=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。
2、已知椭圆方程为1222=+y x 与直线方程21:+=x y l 相交于A 、B 两点,求AB 的弦长.待课堂上与老师和同学探究解决。
[合作探究 展示点评]探究一:点差法例1、已知椭圆1257522=+x y 的一条弦的斜率为3,它与直线21=x 的交点恰为这条弦的中点M ,求点M 的坐标。
探究二:弦长问题例2、斜率为2的直线l 被椭圆22132x y +=,求直线l 的方程。
[当堂检测]1.过椭圆x225+y29=1的右焦点且倾斜角为45°的弦AB 的长为( ) A .5 B .6 C.9017D .7 2、过椭圆 2224x y += 的左焦点作倾斜角为030的直线,则弦长 |AB|= _______1、求以椭圆x 216+y 24=1内的点M (1,1)为中点的弦所在的直线方程。
4、已知斜率为1的直线l 过椭圆2214x y +=的右焦点,交椭圆于A 、B 两点,求弦AB 的[拓展提升]★1.已知中心在原点,一焦点为)50,0(F 的椭圆被直线23:-=x y l 截得的弦的中点的横坐标为21,求椭圆的方程。
§2.2.2椭圆的几何性质(第3课时)

3 ,已知点 2
二次总结栏
3 P(0, ) 到椭圆上的点的最远距离是 7 ,求这个椭圆方程. 2
【例 3 】椭圆
x2 y 2 1(a b 0) 与直线 x y 1 交于 P, Q 两点 , 且 a 2 b2 OP OQ ,其中 O 为坐标原点.
(1)求
3 2 1 1 e ,求长轴的取值范围. 2 的值;(2)离心率 e 满足 2 3 2 a b
2 3 ,则 a =________.
2. 过原点 O 作圆 x2 y 2 6x 8 y 20 0 的两条切线 , 设切点分别为 P, Q ,则线段 PQ 的长为 .
二.今日练习 3.椭圆 2 x 2 3 y 2 6 的焦距是
.
4.若椭圆两准线间的距离等于焦距的 4 倍,则这个椭圆的离心率为
五.本节内容个人掌握情况反思,疑问
第2页
江苏省大港中学高二数学作业纸 选修 2-1 选修 1-1
班级:二(
) 姓名:
学号:
成绩:
编号:X2-1004
§2.2.2 椭圆的几何性质(第 3 课时)
纠错、总结栏
Байду номын сангаас
一.滚动复习 1. 若 圆 x 2 y 2 4 与 圆 x 2 y 2 2ay 6 0(a 0) 的 公 共 弦 长 为
5.若点 P 在椭圆
x2 y 2 1 上, F1 , F2 分别是椭圆的两焦点,且 F1 PF2 2 90 ,则 F1 PF2 的面积是 .
6.椭圆一顶点为 A(2,0) ,长轴长是短轴长的 2 倍,求椭圆的标准方程.
第3页
错误!链接无效。 §2.2.2 椭圆的几何性质(第 3 课时)
高中数学---椭圆知识点小结

高二数学椭圆知识点1、椭圆的第一定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ;若)(2121F F PF PF <+,则动点P 的轨迹无图形.2、椭圆的标准方程1).当焦点在x 轴上时,椭圆的标准方程:12222=+b y a x )0(>>b a ,其中222b a c -=;2).当焦点在y 轴上时,椭圆的标准方程:12222=+b x a y )0(>>b a ,其中222b a c -=;3、椭圆:12222=+by a x )0(>>b a 的简单几何性质(1)对称性:对于椭圆标准方程12222=+by a x )0(>>b a :是以x 轴、y轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。
(2)范围:椭圆上所有的点都位于直线a x ±=和by ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。
(3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。
②椭圆12222=+by ax )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。
③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。
a 和b 分别叫做椭圆的长半轴长和短半轴长。
(4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作aca c e ==22。
②因为)0(>>c a ,所以e 的取值范围是)10(<<e 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y=±a2/c
离心率
x2
a2
y2 a2
y2
b2
x2 b2
1的准线是x= 1 的准线是y=
a2 ac2 c
问题1:应用椭圆的第二定义要注意什么?
焦点相应于准线
问题2:椭圆离心率的几何意义是什么?
椭圆扁的程度
应用:
1、求下列椭圆的准线方程: ①x2+4y2=4 ② x 2 + y2 =1
16 81
2.已知P是椭圆
3
新家具如何除异味 新买的家具放在家里面都会散发出异味,这些异味长时间的留在房间里面,吸入到人的身体里以后会严重影响身体健康。那新买的家具应该如何去除异味呢?下面的经验里面就和大家分享一下新 的方法。
新家具在买来之后放在房间里面,白天要把房间的窗子打开通风换气,同时也要把家具的门子完全的打开,通过通风换气可以在几天之内就把家具散发出的异味慢慢散去。 新买来的家具如果散发出异味可以尝试泡制茶叶后剩下的茶叶水擦拭,在擦拭的时候要注意不要太湿,太湿的话会损坏家具的。一定要把抹布拧干水份后再擦拭家具,这样可以通过茶叶水的气味 慢的让家具上的异味消失。 去除新家具的异味还可以用盐放在一盆凉水里面溶解成盐水,然后将这盆盐水放到放有新家具的房间里面,也可以直接用盐水去擦拭家具,通过盐水的稀释再几天之内新家具的异味也会被消除的 在新家具的的内部可以放置一些橘子或者是橙子等果皮,通过果皮散发出来的香味可以将家具上面散发出来的异味去除。 在放置新家具的房间里面放上一些具有净化空气功能的盆景植物也是非常有效果的,如仙人掌,芦荟等植物都有净化空气的功能,这些植物可以把房间内家具的异味完全的净化。 除了以上的方法,还可以一些活性炭或者是专门去除装修异味的祛味剂,活性炭和祛味剂能够将家具的异味完全的吸附清除的。 / 硬笔书法培训加盟
问题:
已知动点M到定点F(c,0)与到定直线
l:x= a 2 的距离之比为 c (a>c>0),
c
a
求动点M的轨迹方程.
问:这个动点的轨迹是什么?
椭圆的第二定义:
点M与一个定点的距离与它到一条定
直线的距离比是定值(这个定值的范围是什
么?)时,这个点的轨迹是椭圆.
第二定义的“三定”:
定点是焦点;定直线是准线;定值是
5.设点M(x0,y0)是椭圆
x2 a2
y2 b2
1
上的一点,F1(-c,0),F2(c,0)
分别是椭圆的两焦点,e是椭圆的离心率,
求证: |MF1|=a+ex0;|MF2|=a-ex0
标准方程
x2 a2
y2 b2
1(a
b
0)
x2 b2
y2 a2
1(a
b
0)
图形 性
范 围 -a≤x≤a
-b≤y≤b
-a≤y≤a -b≤x≤b
顶点焦点 (a, 0) (0, b) (c, 0) (b, 0) (0, a) (0, c)
(-a, 0) (0, -b) (-c, 0) (-b, 0) (0, -a)(0,-c)
质 对 称 性 关于x,y轴成轴对称,关于原点成中心
对称
离心率
e
c a
∈(0,1)
准线
x=±a2/c
x2 100
+
y2到左焦点
的距离为_________.
3、已知P点在椭圆
x 2 + y2 =1 25 16
上,且P到
椭圆左、右焦点的距离之比为1:4,求P到
两准线的距离.
4、求中心在原点、焦点在x轴上、其长轴
端点与最近的焦点相距为1、与相近的一 条准线距离为 5 的椭圆标准方程。