自动控制理论习题课2(2)
(优选)自动控制原理课后习题.

2、系统方框图如图所示。
参考答案: a=2+2√2
– 已知闭环极点为s1,2 1j ,3 求参数kV 、k的取值; – 若kV为上式确定的常数,以k为参数绘制一般根轨迹。
3、系统方框图如图所示,已知两个开环极点为:
课后练习二
一、简答题: 1、根轨迹与虚轴交点坐标及参数的计算方法有几种?简述计算依据及步骤。 2、根轨迹与虚轴交点对应的K值在系统性能分析中的作用是什么? 3、两个极点、两个或一个零点在复平面上有根轨迹时,复平面上根轨迹的 形式如何?复平面上根轨迹的绘制规则又是什么? 4、“根据开环零极点分布绘制闭环系统的根轨迹,研究的是闭环系统的性 能。”这句话对否?
二、单位负反馈系统开环传递函数如下,用Routh判据判系统稳定的K值;确 定K为何值系统发生持续的等幅振荡,求振荡角频率。
G k( s )
k ( s 1 0 ) ( s s2(s 2)
2
0)
w (参考答案:k>14/3; k=14/3, =11.83)
三、已知单位负反馈系统闭环传递函数为如下(a,b为正数),K取何值时系 统对单位斜坡输入时无差。
1)
G
k(
s
)
s2(
k s
2
)2
;
3)
G
k(
s
)
s
(
k ( s 1 ) s2 4 s
5
)
;
2)
G
k(
s
)
(
s
k 2
)3
;
4)
Gk( s)
k(s2 2 s 2 ) s(s 2)
自动控制原理课后习题与答案

目录1自动控制系统的基本概念1.1内容提要1.2习题与解答2自动控制系统的数学模型2.1内容提要2.2习题与解答3自动控制系统的时域分析3.1内容提要3.2习颗与他答4根轨迹法4.1内容提要4.2习题与解答5频率法5.1内容提要5.2习题与解答6控制系统的校正及综合6.1内容提要6.2习题与解答7非线性系统分析7.1内容提要7.2习题与解答8线性离散系统的理论基础8.1内容提要8.2习题与解答9状态空间法9.1内容提要9.2习题与解答附录拉普拉斯变换参考文献1自动控制系统的基本概念1. 1内容提要基本术语:反馈量,扰动量,输人量,输出量,被控对象;基本结构:开环,闭环,复合;基本类型:线性和非线性,连续和离散,程序控制与随动;基本要求:暂态,稳态,稳定性。
本章要解决的问题,是在自动控制系统的基本概念基础上,能够针对一个实际的控制系统,找出其被控对象、输人量、输出量,并分析其结构、类型和工作原理。
1.2习题与解答题1-1图P1-1所示,为一直流发电机电压白动控制系统示意图。
图中,1为发电机;2为减速器;3为执行电机;4为比例放大器;5为可调电位器。
(1)该系统有哪些环节组成,各起什么作用” (2)绘出系统的框图,说明当 负载电流变化时,系统如何保持发 电机的电压恒定 (3)该系统是有差系统还是无 差系统。
(4)系统中有哪些可能的扰动, 答(1)该系统由给定环节、比较环节、中间环节、执行结构、检测环节、 发电机等环节组成。
给定环节:电压源0U 。
用来设定直流发电机电压的给定值。
比较环节:本系统所实现的被控量与给定量进行比较,是通过给定电 压与反馈电压反极性相接加到比例放大器上实现的中间环节:比例放大器。
它的作用是将偏差信号放大,使其足以带动 执行机构工作。
该环节又称为放大环节执行机构:该环节由执行电机、减速器和可调电位器构成。
该环节的 作用是通过改变发电机励磁回路的电阻值,改变发电机的磁场,调节发 电机的输出电压被控对象:发电机。
自动控制原理+第五版课后习题答案

C(s ) G 1G 2 G 3 = R ( s ) 1 + G 1 H 1 + G 2 H 2 + G 3 H 3 + G 1 H 1G 3 H 3
C(s ) G 1G 2G 3 = G4 + R (s ) 1 + G 2 H 1 G 1G 2 H 1 + G 2G 3 H 2
(f)
C(s) (G 1 + G 3 )G 2 = R(s ) 1 + G 1G 2 H 1
C(s ) G 3G 2 (1 + G 1G 2 H1 ) = N(s ) 1 + G 1G 2 + G 1G 2 H1
C(s ) G4 = N (s ) 1 + G 2 G 4 + G 3 G 4
2-18(a) (b)
C(s ) G 1G 2 = R(s ) 1 + G 1G 2 + G 1G 2 H1
& = f1 f 2 &&i ( t ) + ( f1k 2 + f 2 k1 ) x i ( t ) + k1k 2 x i ( t ) x 2-4(a) R1 R2 Cuo ( t ) + ( R1 + R2 )uo ( t ) = R1 R2 Cui ( t ) + R2 ui ( t ) & &
&& & & & m xo ( t ) = f1[ xi ( t ) - xo ( t )] - f 2 xo ( t )
&& & = R1 R2C1C 2 ui ( t ) + ( R1C1 + R2C 2 )ui ( t )
(完整版)自动控制原理课后习题及答案

第一章绪论1-1 试比较开环控制系统和闭环控制系统的优弊端.解答: 1 开环系统(1)长处 :构造简单,成本低,工作稳固。
用于系统输入信号及扰动作用能早先知道时,可获得满意的成效。
(2)弊端:不可以自动调理被控量的偏差。
所以系统元器件参数变化,外来未知扰动存在时,控制精度差。
2闭环系统⑴长处:不论因为扰乱或因为系统自己构造参数变化所惹起的被控量偏离给定值,都会产生控制作用去消除此偏差,所以控制精度较高。
它是一种按偏差调理的控制系统。
在实质中应用宽泛。
⑵弊端:主要弊端是被控量可能出现颠簸,严重时系统没法工作。
1-2什么叫反应?为何闭环控制系统常采纳负反应?试举例说明之。
解答:将系统输出信号引回输入端并对系统产生控制作用的控制方式叫反应。
闭环控制系统常采纳负反应。
由1-1 中的描绘的闭环系统的长处所证明。
比如,一个温度控制系统经过热电阻(或热电偶)检测出目前炉子的温度,再与温度值对比较,去控制加热系统,以达到设定值。
1-3试判断以下微分方程所描绘的系统属于何种种类(线性,非线性,定常,时变)?2 d 2 y(t)3 dy(t ) 4y(t ) 5 du (t ) 6u(t )(1)dt 2 dt dt(2) y(t ) 2 u(t)(3)t dy(t) 2 y(t) 4 du(t) u(t ) dt dtdy (t )u(t )sin t2 y(t )(4)dtd 2 y(t)y(t )dy (t ) (5)dt 2 2 y(t ) 3u(t )dt(6)dy (t ) y 2 (t) 2u(t ) dty(t ) 2u(t ) 3du (t )5 u(t) dt(7)dt解答: (1)线性定常(2)非线性定常 (3)线性时变(4)线性时变(5)非线性定常(6)非线性定常(7)线性定常1-4 如图 1-4 是水位自动控制系统的表示图, 图中 Q1,Q2 分别为进水流量和出水流量。
控制的目的是保持水位为必定的高度。
自动控制原理课后习题答案第二章

解:由图可得
联立上式消去中间变量U1与U2,可得:
2-8某位置随动系统原理方块图如图2-7所示。已知电位器最大工作角度,功率放大级放大系数为K3,要求:
(1) 分别求出电位器传递系数K0、第一级与第二级放大器得比例系数K1与K2;
(2) 画出系统结构图;
(3) 简化结构图,求系统传递函数。
证明:(a)根据复阻抗概念可得:
即 取A、B两点进行受力分析,可得:
整理可得:
经比较可以瞧出,电网络(a)与机械系统(b)两者参数得相似关系为
2-5 设初始条件均为零,试用拉氏变换法求解下列微分方程式,并概略绘制x(t)曲线,指出各方程式得模态。
(1)
(2)
2-7由运算放大器组成得控制系统模拟电路如图2-6所示,试求闭环传递函数Uc(s)/Ur(s)。
2-10试简化图2-9中得系统结构图,并求传递函数C(s)/R(s )与C(s)/N(s)。
图2-9 题2-10系统结构图
分析:分别假定R(s)=0与N(s)=0,画出各自得结构图,然后对系统结构图进行等效ቤተ መጻሕፍቲ ባይዱ换,将其化成最简单得形式,从而求解系统得传递函数。
解:(a)令N(s)=0,简化结构图如图所示:
可求出:
令R(s)=0,简化结构图如图所示:
所以:
(b)令N(s)=0,简化结构图如下图所示:
所以:
令R(s)=0,简化结构图如下图所示:
2-12 试用梅逊增益公式求图2-8中各系统信号流图得传递函 数C(s)/R(s)。
图2-11 题2-12系统信号流图
解:
(a)存在三个回路:
存在两条前向通路:
所以:
(3)简化后可得系统得传递函数为
自动控制原理第2章课后习题及解答

uc
= R1RL2C ur
2-3 证明图 2-34 (a) 所示的力学系统和图 2-34 (b) 所示的电路系统是相似系统(即 有相同形式的数学模型)。
图 2-34 系统原理图
解
(a) 取A、B两点分别进行受力分析,如图解2-3(a)所示。对A点有
k2 (x − y) + f 2 (x − y) = f1 ( y − y1 )
9
- 17 -
(3)
X (s) =
1
s(s + 2)3 (s + 3)
(4) X (s) =
s +1
s(s 2 + 2s + 2)
解
(1) x(t) = et−1
(2)
原式
=
2 3
⋅
s
2
3 + 32
x(t) = 2 sin 3t 3
(3)
原式 = −1 + 1 − 3 + 1 + 1 2(s + 2)3 4(s + 2)2 8(s + 2) 24s 3(s + 3)
+
1 C2R2
uc
=
du
2 r
dt 2
+
2 CR
dur dt
+
1 C2R2
ur
(c) 由图解 2-2(c)可写出
Ur (= s) R1 [I1(s) + I2 (s)] + (Ls + R2 )I2 (s) (6)
1 Cs
I1
(s)
=
(Ls
+
R2
)I2
(s)
(7)
自动控制原理课后习题答案
R1R2C1C2d2du22(tt)(R1C1R2C2R1C2)dd2u(tt)u2(t) v(t)
R1C1ddV (tt)V(t)
输入
(b) 以电压u3(t)为输出量,列写微分方程为:
u1(t)
C1
R1 R2
C2
R1R2C 1C2d2d u32(tt)(R1C 1R2C2)dd3u (t)t(R1C21)u3(t)
y=x3+x4=G2x2+G4x2=(G2+G4)G1x1
y=(G2+G4)G1x1
G(s)=Y(s)/U(s)=(G2+G4)G1/(1+G3G2G1)
作业:2.59题 把图2.75改画为信号流图,并用Mason公式求u到y传递函数
方框图
u(S)
__
G1(s)
G5(s)
—
y(S)
G2(s)
—
G3(s)
essfls i0m se(s)1K K21K2
(b)当r(t)=1(t),f(t)=1(t)时的ess。 解:求输入误差传递函数,直接代数计算法:
根据电路定律写出单体微分方程式(2.2.2)和 (2.2.3)。把特征受控量uc(t)选作输出量,依 据式(2.2.2)和(2.2.3),消除中间量i(t) , 则可得到输入输出微分方程(2.2.4)。
3、利用Laplace变换求出传递函数
R
L
+
+
u(t) i(t)
输入
_
+ uc(t) _
y
输出
_
U(t)Ld dtiR i uC
自动控制原理课后习题答案
第二章作业 概念题:传递函数定义:
单输入输出线性定常系统的传递函数,定义为零初始条件下,系统输出 量的拉氏变换像函数与输入量的拉氏变换像函数之比。
自动控制理论习题课
例1已知系统旳构造图如图所示。求
R(s)
1.a>0和a<0时,K : 0 变化系统旳根轨迹;
2.为确保系统单位阶跃响应稳态值为2,拟定
系统稳定且为欠阻尼状态旳a和K值。
3.证明根轨迹在复平面上为一圆。
1 s
C(s)
K
s(1 s 1)
3
a
系统旳闭环传递函数:
K (1 s)
(s)
s(
1 3
s
1)
1)
系统旳稳态终值:
c()
lim s0
s(
s)
R(s)
lim s0
s
(s
2)(
K(s s 3)
1) K(s
1)
4 s
4K 6K
4 7
系统旳稳态误差:
lim K p
s0
G(s) K 6
ess
1 1 Kp
1 1 K
/6
0.02
K
294
例6控制系统构造图如图所示, r 2t, n(t:) 1(t)
G(s)
K
s(s 1)(s 5)
试求当输入为单位斜坡函数时,系统旳最小稳态误差。
系统旳特征方程为: D(s) s3 6s2 5s K 0
劳氏判据判稳得系统稳定 0 K 30
lim 当输入为单位斜坡函数时,系统旳稳态误差
Kv
s0
sG(s) K 5
15 ess Kv K
5 K越大,系统旳稳态误差越小,但同步考虑稳定性,最小误差 ess 30
2.构造图化简求等效传递函数 简化应遵照旳原则:
(1)变换前后通道中旳传递函数旳乘积必须保持不变; (2)变换前后回路中旳传递函数旳乘积必须保持不变。 能够经过串联、并联、反馈、比较点和引出点旳移动进行 简化。 3.梅逊公式求传递函数 能够绘出系统旳信号流图,或直接由构造图应用梅逊公式 求取,注意: (1)输入节点到输出节点为前向通道; (2)同一系统 不变; (3) k 余子式。
自动控制理论第三版课后练习题含答案
自动控制理论第三版课后练习题含答案前言自动控制理论是现代自动控制技术的基础课程,课后练习题是巩固理论知识和巩固实践技能最重要的方法之一。
本文档整理了自动控制理论第三版的课后习题,提供了详细的解题思路和答案,希望能够帮助读者更好地掌握自动控制理论。
1. 第一章课后习题1.1 第一章习题1题目已知一个系统的开环传递函数为$G(s)=\\frac{1}{s(s+1)(s+2)}$,求该系统的稳定性。
解答该系统的零点为0。
该系统的极点为−1和−2。
因为系统的极点都在左半平面,没有极点在右半平面,所以该系统稳定。
1.2 第一章习题2题目已知一个系统的传递函数为$G(s)=\\frac{1}{(s+2)(s+3)}$,求该系统的单位阶跃响应。
解答该系统的传递函数可以表示为$G(s)=\\frac{A}{s+2}+\\frac{B}{s+3}$的形式,解得$A=\\frac{1}{s+3}$,$B=-\\frac{1}{s+2}$。
所以,该系统的单位阶跃响应为y(t)=1−e−2t−e−3t1.3 第一章习题3题目已知一个系统的传递函数为$G(s)=\\frac{1}{s^2+5s+6}$,求该系统的单位阶跃响应。
解答该系统的传递函数可以写成$G(s)=\\frac{1}{(s+2)(s+3)}$的形式。
所以,该系统的单位阶跃响应为$$ y(t)=1-\\frac{1}{2}e^{-2t}-\\frac{1}{3}e^{-3t} $$2. 第二章课后习题2.1 第二章习题1题目已知一个系统的传递函数为$G(s)=\\frac{1}{s^2+4s+3}$,求该系统的稳定性。
解答该系统的极点为−1和−3。
因为系统的极点都在左半平面,没有极点在右半平面,所以该系统稳定。
2.2 第二章习题2题目已知一个系统的传递函数为$G(s)=\\frac{1}{s^2+4s+3}$,求该系统的单位冲击响应。
解答该系统的传递函数可以写成$G(s)=\\frac{1}{(s+1)(s+3)}$的形式。
自动控制原理 吴怀宇 课后习题 第二章
第二章2-1试求下图所示电路的微分方程和传递函数。
解:(a )根据电路定律,列写出方程组:001L i R c L R C di L u u dtu R i i dt Ci i i ⋅+==⋅==+⎰ 消除中间变量可得微分方程:20002i d u du L L C u u dt R dt⋅⋅+⋅+= 对上式两边取拉氏变换得:2000()()()()i L L C U s s U s s U s U s R⋅⋅⋅+⋅⋅+= 传递函数为022()1()()1i U s R G s L U s R Ls LCRs s LCs R ===++++ (b)根据电路定律,列写出方程组:12011()i i u i R R idt C u u i R =++-=⎰消除中间变量可得微分方程:121012i R R R u u idt R R C+=-⎰ 对上式两边取拉氏变换得:2012()(1)()(1)i U s R Cs U s R Cs R Cs +=++ 传递函数为0212()1()()1i U s R Cs G s U s R Cs R Cs+==++2—3求下图所示运算放大器构成的电路的传递函数.解:(a )由图(a ),利用等效复数阻抗的方法得22111(s)1(s)()1o i R U R Cs Cs G U s R R Cs ++==-=-+ (b )由图(b ),利用等效复数阻抗的方法得222121211221211111(s)()1(s)1()1o i R U C s R R C C s R C R C s G U s R C s R C sR C s ++++==-=-+ 2—5试简化下图中各系统结构图,并求传递函数()()C s R s 。
2-6试求下图所示系统的传递函数11()()C s R s ,21()()C s R s ,12()()C s R s 及22()()C s R s 。