自动控制理论第3版课后答案(打印)

合集下载

自动控制理论[刘丁著]课后习题二~八答案解析

自动控制理论[刘丁著]课后习题二~八答案解析

习题22-1.(1)线性,时变,动态(2)非线性,时变,动态 (3)非线性,定常,动态 (4)非线性,定常,静态 (5)非线性,定常,动态 (6)非线性,定常,静态 2-2.(a )1212)(st e ss s F -+=(b )211)1(1)(sst e s t s F -+-=(c )2121)1)(1()(1st e s t s F s t --+= 2-3.1212221332121(1)(),lim(1),lim(3)134324321111()[],2132s s t tc c s s F s c s c s s s s s s s F s f t e e s s →-→---++=+=+==+=++++++∴=+=+++得到:()()()()1023(2)()1+cos(t)-5*sin(t)111(3)sin cos 222119(4)()8181(5)()12131(6)()()32412t t t tt t t f t f t e t e t t f t e ef t t e f t t e e -------==--+=-==+=-++(4) syms s FF=ilaplace(1/(s^3+21*s^2+120*s+100))运行结果:F =1/81*exp(-t)-1/9*t*exp(-10*t)-1/81*exp(-10*t) (5) syms s FF=ilaplace((s^2+2*s+3)/(s+1)^3) 运行结果:F =t^2*exp(-t)+exp(-t) (6) F=ilaplace((s+2)/(s*(s+3)*(s+1)^2))运行结果:F = 2/3+1/12*exp(-3*t)-1/2*t*exp(-t)-3/4*exp(-t)2-4.(1) ()1()1()tT x t e r t t -=-= ()(1)tT x t t T e r t-=--=(2) 2()tx t - (3) ()1(1)t x t t e -=-+2-5.(a )21212=++crU R U R R R R s(b )1221212+=++crU R R cs R U R R R R cs2-6 (a )211crU R Cs U R Cs+=-,实际上是一个PI 控制器。

自动控制理论 机械工业出版社 课后习题答案 夏德岑_第三版 PDF可打印

自动控制理论 机械工业出版社 课后习题答案 夏德岑_第三版 PDF可打印

, t 0
比较上述两种情况, 可见有 z 1 零点时, 单位脉冲响应的振幅较无零点时小, 而且产生相移, 相移角为 arctg
1 2 n 。 1 n
2.单位阶跃响应 (a) 无零点时
ct 1
2 n t 1 2 t arctg 1 e sin n 1 2
G( s) 2a ss (2 a) s (2 2a)
2
根据条件(1) ,可得
Kv 1 2a 0.5 esr 2 2a
解得 a 1 ,于是由系统的开环传递函数为
G( s) 2 ss 3s 4
2
3-10
1M 2M
3t
s
p p
46.6%, t s 7.99s2%, ( n 2.12rad / s, 0.24) 16.3%, t s 8s2%, ( n 1rad / s, 0.5)
C m s 60 U a s s La Js 2 La f Ra J s Ra f C eC m 2
2-4
C s Rs
K A C m 60 iL a Js 3 iL a f Ra J s 2 i Ra f C eC m s K A C m 2
C 2 lim
s 0
d2 2(0.1s 2 s 10) 20(0.2s 1) 2 s lim 0 e s 0 ds 2 (0.1s 2 s 10) 3
(1)
s (t ) r (t ) R0 ,此时有 rs (t ) R0 , r r (t ) 0 ,于是稳态误差级数为 s esr t C0 rs (t ) 0 , t 0

自动控制理论第三章习题答案

自动控制理论第三章习题答案

=
600
=
600
=
ω
2 n
s(s + 60)(s + 10)
s(s 2 + 70s + 600)
s(s 2
+
2ξω n s
+
ω
2 n
)
显然闭环传递函数为
ω
2 n
(s2
+
2ξω n s
+
ω
2 n
)
其中
ω
2 n
=
600
ωn = 10 6
2ξωn = 70
根据(3-17)
h(t) = 1 + e−t /T1 + e−t /T12 T2 / T1 − 1 T1 / T2 − 1
(1) k(t) = 0.0125e−1.25t
(2) k(t) = 5t + 10sin(4t + 450 )
(3) k (t) = 0.1(1 − e−t / 3 )
解:
(1) Φ(s) = 0.0125 s + 1.25
1
胡寿松自动控制原理习题解答第三章
(2) k(t) = 5t + 10sin 4t cos 450 + 10 cos 4t sin 450
ξ2 −1 = 6 = 1+
ξ2 −1
1−
1

1 ξ2
1

1 ξ2
解方程得ξ = 7 26
由 T1
=
ωn (ξ
1 −ξ
2
− 1)
=
1 10
得到ωn (ξ − ξ 2 − 1) = 10
所以 ω n

(完整版)自动控制原理谢克明第三版部分习题答案

(完整版)自动控制原理谢克明第三版部分习题答案

《自动控制原理(第3版)》部分习题答案第2章C2-1(a) 21211()(1)()()(1)R sL R Cs G s R sL R Cs R ++=+++C2-221114232233342526()()(1)(1)()()()()()()()()()()()()()m a a a a a e ma a L a a a a e m f fR G s K R R G s R Cs K T s R G s K c s G s U s JL s L f JR s fR c c L s R s G s M s JL s L f JR s fR c c U s G s K s =-=-=-+=-+=-Ω==++++-+Ω==++++==Ω 123412346512346()()()()()()1()()()()()()()()1()()()()()r L G s G s G s G s s U s G s G s G s G s G s G s s M s G s G s G s G s G s Ω=+Ω=+C2-4(a) 3123123()()()R LsG s R R R Ls R R R =++++C2-4(b) 323123()()()R LsG s R R Ls R R R =+++C2-5321122211212311(1)(1)(),(),(),()()1a b c d R Cs R Cs R C s R C s RG s RCs G s G s G s R Cs R C s R R R Cs ++++=-=-=-=-++ C2-612314512123214342123312341232233344()()()()()()()1()()()()()()()()()()()()()()()()()()()()1()()()()()()()()()()a b G s G s G s G s G s G s G s G s G s H s G s G s H s G s G s H s G s H s G s G s G s H s G s G s G s G s G s G s G s G s H s G s G s H s G s G s H s +=++++++=+++-12341()()()()()G s G s G s G s H sC2-713241761113241762851324()()[1()()]()()()()()1()()()()()()()()()()()()()()G s G s G s G s G s G s G s C s R s G s G s G s G s G s G s G s G s G s G s G s G s G s G s ++=+++++ 283261213241762851324()()()()()()()1()()()()()()()()()()()()()()G s G s G s G s G s C s R s G s G s G s G s G s G s G s G s G s G s G s G s G s G s +=+++++ 24132852213241762851324()()[1()()]()()()()()1()()()()()()()()()()()()()()G s G s G s G s G s G s G s C s R s G s G s G s G s G s G s G s G s G s G s G s G s G s G s ++=+++++ 17413152113241762851324()()()[1()()]()()()()1()()()()()()()()()()()()()()G s G s G s G s G s G s G s C s R s G s G s G s G s G s G s G s G s G s G s G s G s G s G s ++=+++++ C2-812341123243123312312()()()()()1()()()()()()()()()()()()()()()()G s G s G s G s G s G s H s G s G s H s G s H s G s G s G s H s G s G s G s H s H s +=+++++C2-9 12345214561111452145145124561112322()()()[1()()()]()()()()()()()1()()()()()()()()()()()()()()()()[1()()]()()(()()()G s G s G s G s G s H s G s G s G s G s C s s R s G s H s G s G s H s G s G s G s G s G s G s H s H s G s G s G s G s H s G s G s G C s s R s --Φ==+-+-++Φ==4511452145145121122)()()1()()()()()()()()()()()()()()()()()()s G s G s G s H s G s G s H s G s G s G s G s G s G s H s H s C s s R s s R s +-+-=Φ+Φ C2-1013453564256313421356253431342535643535123561434523345624()()[1()()]()[1()()]()()1()()()()()()()()()a G s G G G s G H s G G H s G G G s G H s G G H s G G G G s G G G G s G H s G G H s G H s G G H s G G s G G H H s G G G H H s G G G H H s G G G G H H s =++++++-+++++++++12353241212131223123()()()()()[1()]()[1()()2()()]()1()()2()()()()2()()()b G s G s G s G s G s G s G s G s G s G s G s G s G s G s G s G s G s G s G s G s G s ++++++=+++++第3章C3-1 21()Ts TsK e Tse G s T s ----=C3-2 220.910()1110s s s s s ++Φ=++C3-3105050()10.283sin(545)()1 1.4sin(545)t t tc t e e t c t et ---=--+=-+精近C3-422*0.23()(0.5)2*0.23()0.50.23G s s s s s s =+Φ=++C3-51212T T bK T T ε+<<C3-6 阶跃信号作用下稳态误差为零,要求n m a b =加速度信号作用下稳态误差为零,要求1122,,n m n m n m a b a b a b ----=== C3-7 21()(1)c sG s K T s =+C3-8 24()(46)G s s s s =++C3-9 250()(1225)G s s s s =++ C3-100.243τ=C3-11 (1)06,(2)303,(4)010/3K K K <<<<<<结构不稳()C3-12 (1)015,(2)0.72 6.24K K <<<< C3-13(1)(2)34系统稳定系统不稳定,有两个右根,()系统稳定()系统不稳定,有三个右根C3-14 3,K ω==C3-1533231()()1()()()()()n r G s G s G s H s G s G s G s =-+=第4章C4-1 图略C4-2 (1)图略 (2) 2233()24x y ++=C4-3 (1)图略 (2) 0.40.5K <<C4-4 分会点和渐近线123=0,,2,22a a d d d a πδϕ-+==±12320,2a d d d ====-(1)当时,图略 123180,6a d d d ====-(2)当时,图略 120,0a a d σ<=>(3)当0<时,图略 1180,0a a d δ<=<(4)当2<时,图略12318,,0a a d d d δ><(5)当时,三个不同实数分会点,图略C4-5(1) 图略,原系统不稳定;(2)增加零点且选择合适位置,可是系统稳定,零点05z << C4-6图略,系统稳定34K > C4-7 (1) 图略(2)当0.8629.14K <<,系统为欠阻尼状态,且 1.87K =阻尼比最小,系统地闭环极点为3 2.8j -±(3)试探求得 2,4 2.8K j =-±闭环极点, 1.06,0.75~1P s M t == C4-8 (1)等效开环传递函数为: (1)()(2)K s G s s s --=+正反馈系统根轨迹, 图略(2)系统稳定02K <<(3) 2,K ω==C4-9等效开环传递函数为: 22()===10)(44)(4410)Ka K G s K a s s s K s s s ''++++等(,图略 C4-10(1) 图略(2) 64,K ω==(3)1,20.5,1s ζ==-±C4-11(1) 图略 (2) 不在根轨迹上; (3) ()1cos 4c t t =-C4-12等效开环传递函数为: 322()=(4416)(4)(4)K KG s s s s s s s s =+++++等,K=8时试探求第5章C5-1(1)C5-1(2)C5-1(3)C5-2000(1)()0.83sin(30 4.76)(2)()0.83sin( 4.76) 1.64cos(2459.46)c t t c t t t =+-=----C5-3当12T T <,系统稳定当12T T >,系统不稳定. C5-4 2100()10100G s s s =++ C5-5(a) 0110(1)300(),4111(1)(1)510s G s s s γ+==++ (b) 00.1(),2581(1)50sG s s γ==+(c) 032(),141(1)2G s s s γ==+(d) 025(), 1.66(1001)(0.11)G s s s s γ==-++(e) 020.5(21)(),36.8(0.51)s G s s s γ+==+ (f) 0231.62(),9.860.010.0981G s s s γ==++ C5-6 (1) K=1(2)K=25(3)K=2.56(或精确求K=3.1) C5-7()()()a g i 稳定,(b)不稳定,(c)稳定,(d)稳定,(e)不稳定,(f)稳定,不稳定,(h)不稳定,不稳定,(j)不稳定,C5-8 102510000K K <<<和 C5-9(1)(2)闭环系统稳定; (3)078.5,g K γ==∞(4)K 增大10倍,对数幅值上升,但相频特性不变,系统的快速性提高,平稳性降低,系统地抗干扰性降低。

自动控制原理(第三版)试题及答案

自动控制原理(第三版)试题及答案

2012年6月23日星期六课程名称: 自动控制理论 (A/B 卷 闭卷)一、填空题(每空 1 分,共15分)1、反馈控制又称偏差控制,其控制作用是通过 与反馈量的差值进行的。

2、复合控制有两种基本形式:即按 的前馈复合控制和按 的前馈复合控制。

3、两个传递函数分别为G 1(s)与G 2(s)的环节,以并联方式连接,其等效传递函数为()G s ,则G(s)为 (用G 1(s)与G 2(s) 表示)。

4、典型二阶系统极点分布如图1所示,则无阻尼自然频率=n ω ,阻尼比=ξ ,该系统的特征方程为 ,该系统的单位阶跃响应曲线为 。

5、若某系统的单位脉冲响应为0.20.5()105t t g t e e --=+,则该系统的传递函数G(s)为 。

6、根轨迹起始于 ,终止于 。

7、设某最小相位系统的相频特性为101()()90()tg tg T ϕωτωω--=--,则该系统的开环传递函数为 。

8、PI 控制器的输入-输出关系的时域表达式是 , 其相应的传递函数为 ,由于积分环节的引入,可以改善系统的 性能。

二、选择题(每题 2 分,共20分)1、采用负反馈形式连接后,则 ( )A 、一定能使闭环系统稳定;B 、系统动态性能一定会提高;C 、一定能使干扰引起的误差逐渐减小,最后完全消除;D 、需要调整系统的结构参数,才能改善系统性能。

2、下列哪种措施对提高系统的稳定性没有效果 ( )。

A 、增加开环极点;B 、在积分环节外加单位负反馈;C 、增加开环零点;D 、引入串联超前校正装置。

3、系统特征方程为 0632)(23=+++=s s s s D ,则系统 ( )A 、稳定;B 、单位阶跃响应曲线为单调指数上升;C 、临界稳定;D 、右半平面闭环极点数2=Z 。

4、系统在2)(t t r =作用下的稳态误差∞=ss e ,说明 ( )A 、 型别2<v ;B 、系统不稳定;C 、 输入幅值过大;D 、闭环传递函数中有一个积分环节。

《自动控制理论(第3版)》全套参考答案

《自动控制理论(第3版)》全套参考答案

第一章习题参考答案1-1多速电风扇的转速控制为开环控制。

家用空调器的温度控制为闭环控制。

1-2 设定温度为参考输入,室内温度为输出。

1-3 室温闭环控制系统由温度控制器、电加热装置、温度传感器等组成,其中温度控制器可设定希望达到的室温,作为闭环控制系统的参考输入,温度传感器测得的室温为反馈信号。

温度控制器比较参考输入和反馈信号,根据两者的偏差产生控制信号,作用于电加热装置。

1-4 当实际液面高度下降而低于给定液面高度h r ,产生一个正的偏差信号,控制器的控制作用使调节阀增加开度,使液面高度逼近给定液面高度。

第二章 习题参考答案2-1 (1)()()1453223++++=s s s s s R s C ; (2)()()1223+++=s s s ss R s C ; (3)()()1223+++=-s s s e s R s C s2-2 (1)单位脉冲响应t t e e t g 32121)(--+=;单位阶跃响应t t e e t h 3612132)(----=; (2)单位脉冲响应t e t g t 27sin72)(-=;单位阶跃响应)21.127sin(7221)(2+-=-t e t h t 。

2-3 (1)极点3,1--,零点2-;(2) 极点11j ±-.2-4)2)(1()32(3)()(+++=s s s s R s C . 2-5 (a)()()1121211212212122112+++⋅+=+++=CS R R R R CS R R R R R R CS R R R CS R R s U s U ;(b)()()1)(12221112212121++++=s C R C R C R s C C R R s U s U 2-6 (a)()()RCsRCs s U s U 112+=;(b)()()141112+⋅-=Cs RR R s U s U ; (c)()()⎪⎭⎫⎝⎛+-=141112Cs R R R s U s U . 2-7 设激磁磁通f f i K =φ恒定()()()⎥⎦⎤⎢⎣⎡++++=Θφφπφm e a a a a m a C C f R s J R f L Js L s C s U s 2602.2-8()()()φφφπφm A m e a a a a m A C K s C C f R i s J R f L i Js iL C K s R s C +⎪⎭⎫⎝⎛++++=26023.2-9 ()2.0084.01019.23-=⨯--d d u i . 2-10 (2-6) 2-11(2-7)2-12 前向传递函数)(s G 改变、反馈通道传递函数)(s H 改变可引起闭环传递函数)()(s R s C 改变。

自动控制理论第三版课后练习题含答案

自动控制理论第三版课后练习题含答案

自动控制理论第三版课后练习题含答案前言自动控制理论是现代自动控制技术的基础课程,课后练习题是巩固理论知识和巩固实践技能最重要的方法之一。

本文档整理了自动控制理论第三版的课后习题,提供了详细的解题思路和答案,希望能够帮助读者更好地掌握自动控制理论。

1. 第一章课后习题1.1 第一章习题1题目已知一个系统的开环传递函数为$G(s)=\\frac{1}{s(s+1)(s+2)}$,求该系统的稳定性。

解答该系统的零点为0。

该系统的极点为−1和−2。

因为系统的极点都在左半平面,没有极点在右半平面,所以该系统稳定。

1.2 第一章习题2题目已知一个系统的传递函数为$G(s)=\\frac{1}{(s+2)(s+3)}$,求该系统的单位阶跃响应。

解答该系统的传递函数可以表示为$G(s)=\\frac{A}{s+2}+\\frac{B}{s+3}$的形式,解得$A=\\frac{1}{s+3}$,$B=-\\frac{1}{s+2}$。

所以,该系统的单位阶跃响应为y(t)=1−e−2t−e−3t1.3 第一章习题3题目已知一个系统的传递函数为$G(s)=\\frac{1}{s^2+5s+6}$,求该系统的单位阶跃响应。

解答该系统的传递函数可以写成$G(s)=\\frac{1}{(s+2)(s+3)}$的形式。

所以,该系统的单位阶跃响应为$$ y(t)=1-\\frac{1}{2}e^{-2t}-\\frac{1}{3}e^{-3t} $$2. 第二章课后习题2.1 第二章习题1题目已知一个系统的传递函数为$G(s)=\\frac{1}{s^2+4s+3}$,求该系统的稳定性。

解答该系统的极点为−1和−3。

因为系统的极点都在左半平面,没有极点在右半平面,所以该系统稳定。

2.2 第二章习题2题目已知一个系统的传递函数为$G(s)=\\frac{1}{s^2+4s+3}$,求该系统的单位冲击响应。

解答该系统的传递函数可以写成$G(s)=\\frac{1}{(s+1)(s+3)}$的形式。

自动控制理论第三版课后习题详细解答答案(夏德钤翁贻方版)

自动控制理论第三版课后习题详细解答答案(夏德钤翁贻方版)
(b) 设流过 C1 、 C2 的电流分别为 I1 、 I 2 ,根据电路图列出电压方程:
1 U i ( s) I1 ( s) R1[ I1 ( s) I 2 ( s)] C1s 1 U o ( s) I 2 ( s) C2 s
并且有
1 1 I1 (s) ( R2 ) I 2 ( s) C1s C2 s
2
2-2 假设图 2-T-2 的运算放大器均为理想放大器,试写出以 ui 为输入, uo 为输出的传递函 数。 (a)由运算放大器虚短、虚断特性可知: 对上式进行拉氏变换得到
ui du du C i C 0 , uc ui u0 , R dt dt
U i ( s) sU i (s) sU 0 (s) RC
(s) (考虑温度计有贮存热的热容 C 和限制热流的热阻 R) 。 i (s)
解:根据能量守恒定律可列出如下方程:
C
对上式进行拉氏变换得到
d i dt R i (s) (s) R
Cs(s)
则传递函数为
( s) 1 i ( s) RCs 1
2-8 试简化图 2-T-8 所示的系统框图,并求系统的传递函数
CR1 dui 2u0 2ui 0 2R dt R1 R
对该式进行拉氏变换得到
CR1 2 2 sU i (s) U 0 ( s) U i (s) 0 2R R1 R
故此传递函数为
U 0 ( s) R ( R Cs 4) 1 1 U i ( s) 4R
2-3 试求图 2-T-3 中以电枢电压 ua 为输入量, 以电动机的转角 为输出量的微分方程式和传 递函数。 解:设激磁磁通 K f i f 恒定
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ωn e −ζωnt sin 1−ζ 2
1 − ζ 2 ωnt, (t ≥ 0)
(b)有零点 z = −1时
c(t) =
1−
2ζω n
+
ω2 n
1−ζ 2
⋅ωn
e −ζωnt
sin
1 − ζ 2 ωnt + arctg
1−ζ 2ωn 1 − ζωn
, (t

0)
比较上述两种情况,可见有 z = −1零点时,单位脉冲响应的振幅较无零点时小,而且产生相移,相移角为 arctg
esr (t ) = C0rs (t) + C1rs (t) = 0.1R1 , t ≥ 0
(3)
r(t)
=
R0
+
R1t
+
1 2
R2t 2
,此时有
rs
(t)
=
R0
+
R1t
+
1 2
R2t 2
,
rs (t) = R1 + R2t , rs (t) =R 2 ,于是稳态误差级数为
esr
(t )
=
C0 rs
R(s)
E(s) = R(s) − C(s) = s2 + (2ζ − aωn )ωn s R(s)
s 2 + 2ζωn s + ωn 2
R(s) = 1
s2
esr
=
im sE(s) =
s→0

− aωn ωn
可见取 a
=
2ζ ωn
,可使 esr
=0
3-7 ζ = 0.598,ωn = 19.588
( 4 ) 系 统 处 于 稳 定 的 临 界 状 态 , 由 辅 助 方 程 A(s) = 2s 4 + 6s 2 + 4 可 求 得 系 统 的 两 对 共 轭 虚 数 极 点
s1,2 = ± j; s3,4 = ± j 2 。须指出,临界稳定的系统在实际中是无法使用的。
3-16 (1)K>0 时,系统稳定。 (2)K>0 时,系统不稳定。 (3)0<K<3 时,系统稳定。
1−ζ 2 ωn −ζ
, (t
≥ 0)
加了 z = −1的零点之后,超调量 M p 和超调时间 t p 都小于没有零点的情况。
3-13 系统中存在比例-积分环节 K1 (τ1s + 1) ,当误差信号 e(t ) = 0 时,由于积分作用,该环节的输出保持不变,故系统输
s
出继续增长,知道出现 e(t ) < 0 时,比例-积分环节的输出才出现减小的趋势。因此,系统的响应必然存在超调现象。 3-14 在 r(t )为常量的情况下,考虑扰动 n(t ) 对系统的影响,可将框图重画如下
N(s) + _
ss((ττK2K2ss22++11))
C(s)
KK1(1τ(τ1s1s++11))
ss
图 A-3-2 题 3-14 系统框图等效变换
C(s)
=
s 2 (τ 2 s
K2s
+ 1) + K1K 2 (τ1s
+ 1)
N (s )
根据终值定理,可求得 n(t ) 为单位阶跃函数时,系统的稳态误差为 0, n(t ) 为单位斜坡函数时,系统的稳态误差为 1 。
=
98 500 2
rs (t) = sin 5t rs (t) = 5cos 5t rs (t) = −25sin 5t
esr
(t )
=
C0

C2 2
×
25
+ sin 5t
+
[C1
× 5 − ]cos 5t
= [4.9 ×10−4 + ]sin 5t + [1×102 − ]cos 5t
3-5 按技术条件(1)~(4)确定的二阶系统极点在 s 平面上的区域如图 A-3-1 (a) ~ (d)的阴影区域。
《自动控制理论 第 2 版》习题参考答案
第二章
2-1
(a)
U 2 (s) U1 (s)
=
R1R2CS + R2 R1R2CS + R1 + R2
= R2 ⋅ R1 + R2
R1CS + 1 R1R2 CS + 1
R1 + R2
( ) (b) U1 s =
1
( ) U 2 s R1R2C1C2 s 2 + (R1C1 + R1C2 + R2C2 )s + 1
(3)ts = 15s , (ωn = 0.4rad / s,ζ = 1.25) ,过阻尼系统,无超调。
3-11 (1)当 a = 0 时,ζ = 0.354,ωn = 2 2 。
(2)ωn 不变,要求ζ = 0.7 ,求得 a = 0.25
3-12 1. 单位脉冲响应 (a) 无零点时
c(t) =
(a) 当 ζ > 1时
( ) ( ) s1 = − ζ − ζ 2 −1 ωn , s2 = − ζ + ζ 2 −1 ωn
( ) c t = t − 2ζ +
1
e − ζ − ζ 2 −1 ωnt

e − ζ + ζ 2 −1 ωnt
( ) ( ) ωn
2
ζ
2
− 1ωn
ζ

2
ζ 2 −1
ζ+
Kp
=
∞, Kv
=
∞, K a
=
K 10
3-3 首先求系统的给定误差传递函数
(2) K p = ∞, Kv = K , K a = 0
(4)
Kp
=
∞, Kv
=
K 200 , K a
=
0
Φe (s) =
E(s) R(s)
=
1 1+ G(s)
=
s(0.1s + 1) 0.1s 2 + s + 10
误差系数可求得如下
1−ζ
ω2 n

1 − ζωn
2.单位阶跃响应 (a) 无零点时
c(t) = 1 −
1 1−ζ
2
e −ζωnt
sin
(b)有零点 z = −1时
1 − ζ 2 ωnt + arctg
1−ζ ζ
2
, (t

0)
c(t) = 1 +
1 − 2ζωn + ωn 2 1−ζ 2
e −ζωnt
sin
1−ζ
2 ωnt − arctg
ζ
2
−1
2
(b) 当 0 < ζ < 1时
( ) ( ) s1 = − ζ − j 1 − ζ 2 ωn , s2 = − ζ + j 1 − ζ 2 ωn
( ) c t = t − 2ζ − 2ζ e−ζωnt cos
ωn ωn
1−ζ 2ωnt +
1 − 2ζ 2 e −ζωnt sin 1−ζ 2ωn
( ) 3-8 G(s) =
4
s s2 + 4s + 6
3-9 按照条件(2)可写出系统的特征方程
(s + 1 − j)(s + 1 + j)(s + a) = (s 2 + 2s + 2)(s + a) = s3 + (2 + a)s2 + (2 + 2a)s + 2a = 0
将上式与1 + G(s) = 0 比较,可得系统的开环传递函数
=
0
C1
=
lim
s→0
d ds
Φ
e
(s)
=
lim
s→0
500(0.2s (0.1s 2 + s +
+ 1) 500)
2
=
1 500
C2
= lim d 2 s→0 ds 2
Φ
e
(s)
=
lim
s→0
100(0.1s
2
+ s + 500) −1000(0.2s (0.1s 2 + s + 500)3
+
1) 2
K1
从系统的物理作用上看,因为在反馈回路中有一个积分环节,所以系统对阶跃函数的扰动稳态误差为零。在反馈回路中 的积分环节,当输出为常量时,可以在反馈端产生一个与时间成正比的信号以和扰动信号平衡,就使斜坡函数的扰动输入时, 系统扰动稳态误差与时间无关。 3-15 (1)系统稳定。
(2)劳斯阵列第一列符号改变两次,根据劳斯判据,系统有两个极点具有正实部,系统不稳定。 (3)劳斯阵列第一列符号改变两次,根据劳斯判据,系统不稳定。
3-17 系统的特征方程为
2τs3 + (τ + 2)s 2 + (K + 1)s + K = 0
图 A-3-1 二阶系统极点在 s 平面上的分布区域
3-6 系统在单位斜坡输入下的稳态误差为
esr
=
2ζ ωn
加入比例—微分环节后
C(s) = [R(s)(1+ as) − C(s)]G(s)
C(s)
=
(1+ as)G(s) 1+ G(s)
R(s3; as)ωn 2
+ 2ζωn s + ωn 2
+
agdef
+
abcdi
相关文档
最新文档