一,隐函数的求导法则
高等数学-隐函数的求导法则

第五节 隐函数的求导法则一、一个方程的情形隐函数存在定理 1 设函数(,)F x y 在点00(,)P x y 的某一邻域内具有连续偏导数,00(,)0F x y =,00(,)0y F x y ≠,则方程(,)0F x y =在点0x 的某一邻域内恒能唯一确定一个连续且具有连续导数的函数()y f x =, 它满足条件00()y f x =,并有d d x yF yx F =-. 说明:1) 定理证明略,现仅给出求导公式的推导:将()y f x =代入(,)0F x y =,得恒等式(,())0F x f x ≡,等式两边对x 求导得d 0d F F y x y x∂∂+=∂∂, 由于0y F ≠ 于是得d d x yF yx F =-. 2) 若(,)F x y 的二阶偏导数也都连续, 则按上述方法还可求隐函数的二阶导数:22d d ()()d d x x y y F F y y x x F y F x∂∂=-+-⋅∂∂ 22()x x y y x xx y y y y xxy y yF F F F F F F F F F F F --=---2232x x y x y x y y y x yF F F F F F F F-+=-.例1 验证方程sin e 10x y x y +--=在点(0,0)的某一邻域内能唯一确定一个单值可导的隐函数()y f x =,并求22d d ,00d d y yx x x x ==. 解 设(,)sin e 1x F x y y x y =+--, 则 1) e x x F y =-,cos y F y x =-连续; 2) (0,0)0F =; 3) (0,0)10y F =≠.因此由定理1可知,方程sin e 10x y x y +--=在点(0,0)的某一邻域内能唯一确定一个单值可导的隐函数()y f x =.d 0d y x x =0x y F x F =-=e 10,0cos x yx y y x -=-=-==-,22d 0d y x x = d e ()0,0,1d cos x yx y y x y x -=-'===-- 0201(e )(cos )(e )(sin 1)(cos )x x x y y y y x y y y y x =='=-''-----⋅-=--3=-.隐函数存在定理还可以推广到多元函数.一般地一个二元方程(,)0F x y =可以确定一个一元隐函数,而一个三元方程(,,)0F x y z =可以确定一个二元隐函数. 隐函数存在定理2 设函数(,,)F x y z 在点000(,,)P x y z 的某一邻域内具有连续的偏导数,且000(,,)0F x y z =,000(,,)0z F x y z ≠,则方程(,,)0F x y z =在点00(,)x y 的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数(,)z f x y =, 它满足条件000(,)z f x y =,并有x z F z x F ∂=-∂,y zF zy F ∂=-∂. 说明:定理证明略,现仅给出求导公式的推导:将(,)z f x y =代入(,,)0F x y z =, 得(,,(,))0F x y f x y ≡,将上式两端分别对x 和y 求导,得0=∂∂⋅+xz F F z x , 0=∂∂⋅+y z F F z y .因为z F 连续且000(,,)0z F x y z ≠,于是得x z F z x F ∂=-∂, y zF zy F ∂=-∂. 例2 设22240x y z z ++-=,求22zx∂∂.解 设222(,,)4F x y z x y z z =++-,则2x F x =,24z F z =-,2242x z F z x x x F z z∂=-=-=∂--,2222223(2)(2)()(2)2(2)(2)(2)z xx xx x zx x x z xz z z ∂-+-+∂-+∂-===∂---. 二、方程组的情形在一定条件下, 由方程组(,,,)0(,,,)0F x y u vG x y u v =⎧⎨=⎩ 可以确定一对二元函数(,)(,)u u x y v v x y =⎧⎨=⎩, 例如方程0xu yv -=和1yu xv +=可以确定两个二元函数22y x yu +=,22y x x v +=. 事实上,0xu yv -=u y x v =1=⋅+u yx x yu 22y x yu +=, 2222yx x y x yy x v +=+⋅=. 下面讨论如何由组求u ,v 的导数.隐函数存在定理3 设(,,,)F x y u v ,(,,,)G x y u v 点0000(,,,)P x y u v 的某一邻域内具有对各个变量的连续偏导数,又0000(,,,)0F x y u v =,0000(,,,)0G x y u v =,且偏导数所组成的函数行列式(或称雅可比(Jacobi )行列式)(,)(,)FF FG u v J G G u v uv∂∂∂∂∂==∂∂∂∂∂ 在点0000(,,,)P x y u v 不等于零,则方程组(,,,)0F x y u v =,(,,,)0G x y u v =,在点0000(,,,)P x y u v 的某一邻域内恒能唯一确定一组连续且具有连续偏导数的函数(,)(,)u u x y v v x y =⎧⎨=⎩,. 它们满足条件000(,)u u x y =,000(,)v v x y =,且有1(,)(,)xvxv u v u v F F G G u F G F F x J x v G G ∂∂=-=-∂∂,1(,)(,)ux u xu v uvF FG G v F G F F x J u x G G ∂∂=-=-∂∂, 1(,)(,)yv y vu v uv F F G G u F G F F y J y v G G ∂∂=-=-∂∂,1(,)(,)u yu y u v u vF FG G v F G F F y J u y G G ∂∂=-=-∂∂. 说明:方程组所确定的隐函数的偏导数可分别对方程组中各方程两边求偏导数,然后解关于各偏导数的方程组,其中偏导数xu ∂∂,x v ∂∂由方程组0,0x u v x uv u v F F F x xu v G G G x x ∂∂⎧++=⎪⎪∂∂⎨∂∂⎪++=⎪∂∂⎩确定;偏导数yu ∂∂,y v ∂∂由方程组⎪⎩⎪⎨⎧=∂∂+∂∂+=∂∂+∂∂+.0,0y vG y u G G yv F y u F F v u y v u y 确定.例3 设0xu yv -=,1yu xv +=,求u x ∂∂,v x∂∂,uy ∂∂和v y ∂∂.解 两个方程两边分别对x 求偏导,得关于u x ∂∂和vx∂∂的方程组 00u v u x y x xu v y v x x x ∂∂⎧+-=⎪⎪∂∂⎨∂∂⎪++=⎪∂∂⎩,. 当220x y +≠时,解之得22u xu yv x x y ∂+=-∂+,22v yu xvx x y ∂-=∂+. 两个方程两边分别对y 求偏导,得关于u y ∂∂和vy∂∂的方程组 00uv x v y y y u v u y x y y ∂∂⎧--=⎪∂∂⎪⎨∂∂⎪++=⎪∂∂⎩,. 当220x y +≠时,解之得22u xv yu y x y ∂-=∂+,22v xu yvy x y ∂+=-∂+. 另解 将两个方程的两边微分得d d d d 0d d d d 0u x x u v y y v u y y u v x x v +--=⎧⎨+++=⎩,,即d d d d d d d d x u y v v y u x y u x v u y v x -=-⎧⎨+=--⎩,. 解之得2222d d d xu yv xv yu u x y x y x y +-=-+++,2222d d d yu xv xu yvv x y x y x y-+=-++. 于是22u xu yv x x y ∂+=-∂+,22u xv yu y x y ∂-=∂+,22v yu xv x x y ∂-=∂+,22v xu yvy x y ∂+=-∂+. 例 设函数(,),(,)x x u v y y u v ==在点(,)u v 的某一领域内连续且有连续偏导数,又(,)0(,)x y u v ∂≠∂. 1) 证明方程组(,)(,)x x u v y y u v =⎧⎨=⎩ 在点(,,,)x y u v (的某一领域内唯一确定一组单值连续且有连续偏导数的反函数(,),(,)u u x y v v x y ==.2)求反函数(,),(,)u u x y v v x y ==对,x y 的偏导数. 解 1)将方程组改写成下面的形式(,,,)(,)0(,,,)(,)0F x y u v x x u v G x y u v y y u v ≡-=⎧⎨≡-=⎩,,则按假设 (,)(,)0(,)(,)F G x y J u v u v ∂∂==≠∂∂,由隐函数存在定理3,即得所要证的结论.2)将方程组所确定的反函数(,),(,)u u x y v v x y ==代入原方程组,即得[(,),(,)][(,),(,)].x x u x y v x y y y u x y v x y ≡⎧⎨≡⎩,将上述恒等式两边分别对x 求偏导数,得10.x u x v u x v xy u y v u x v x ∂∂∂∂⎧=⋅+⋅⎪⎪∂∂∂∂⎨∂∂∂∂⎪=⋅+⋅⎪∂∂∂∂⎩, 由于0J ≠,故可解得1u y x J v ∂∂=∂∂, 1v yx J u∂∂=-∂∂. 同理,可得1u x y J v ∂∂=-∂∂, 1v x y J u∂∂=∂∂. .。
隐函数及其求导法则

x 1 3 z
y
x 1 z 2 3 z y
x 2y 2 xy 2 3. 3z 3z 9z
( 2 z )2 x 2 . 3 (2 z )
设 z x y z , 求 dz . 例4
解 令 F ( x, y, z ) z x y z . 因为
Fx z x lnz , Fy z y z 1 ,
xz x 1 y z ln y , Fz
导, 得
z Fx Fz 0, x
z Fy Fz 0. y
因 为Fz 0, 所以
Fy Fx z z , x Fz y Fz
这就是二元隐函数的求导公式.
z 例 3 设 x y z 4 z 0,求 2 . x
2
2 2 2
F ( x, y, z ) x 2 y 2 z 2 4z , 解 令
则 Fx 2x, Fz 2z 4,
z Fx x , x Fz 2 z
x z 2 z ( 2 z ) x x ( 2 z ) x 2 z 2 2 x ( 2 z )2 (2 z )
第六节
隐函数及其求导法则
1. 一元隐函数的求导公式 设方程 F (x , y) = 0 确定了函数 y = y(x),两端 对 x 求导,得
Fx Fy dy 0, dx
若 F y 0, 则
dy Fx . dx Fy
这就是一元 隐函数的求导公式.
例1
dy . 设 x y 2x , 求 dx
2 2பைடு நூலகம்
x y y x 则 Fx ( x , y ) 2 , Fy ( x , y ) 2 , 2 2 x y x y
隐函数的求导公式

的求导运算,尤其是在求指定点的二阶偏导数时,
dy y 1.已知 ln x y arctan ,求 . x dx
2 2
2. 求由方程
x y
y
x
所确定的
隐函数 y f ( x)的导数.
(2)、二元隐函数求导法则
设方程 F ( x, y, z ) =0确定z是x, y的具有连续偏导 数的函数 z f ( x, y),将 z f ( x, y) 代入上述方 程,得到关于x,y 的恒等式 :
F ( x, y, f ( x, y)) 0
,
如果函数 F ( x, y, z ) 具有连续的偏导数,将上述 两端对x,y求偏导,根据复合函数求导法则有
F F z 0, x z x
若
F F z 0, y z y
Fz 0 ,得:
z Fx x Fz
②直接法
方程两边连续求导两次
方程两边对x求导得:Fx Fy 方程两边再对x求导得:
dy 0 dx
Fx
x y
x
Fy dy dy Fx Fx dy Fy d2y 1 ( 1 ) Fy 2 0 x y dx x y dx dx dx dy dy 2 d2y Fxx 2 Fxy Fyy ( ) Fy 2 0 dx dx dx 2 2 2 F F 2 F F F F F xy x y yy x 解得: d y xx y dx2 Fy3
dFy dFx Fy Fx 2 d y dx 于是 2 dx dx Fy2
Fy dx Fy dy Fx dx Fx dy ( ) Fy Fx ( ) x dx y dx x dx y dx Fy2
隐函数的求导法则

Fu Fy 1 (F ,G ) v = = Gu G y J ( u, y ) y
例 5
Fu Fv . Gu Gv
设xu yv = 0,yu + xv = 1,
u u v v 求 , , 和 . x y x y
直接代入公式; ቤተ መጻሕፍቲ ባይዱ接代入公式;
解1
运用公式推导的方法, 解2 运用公式推导的方法, 将所给方程的两边对 x 求导并移项
1 = 3 [FxxFz2 2FxzFxFz + FzzFx2 ] Fz
( Fx )Fz Fx ( Fz ) 2 z x = x 2 Fz2
Fx z = , Fz x
2z 2z 类似地可求得 , 2 x y y ②直接法 方程两边连续求导两次
z Fx + Fz = 0 x
z z 2 2z Fxx + 2 Fxz + Fzz ( ) + Fz 2 = 0 x x x
dy dz F ( x , y , z ) = 0 两边对 x 求导 怎样求 , dx dx
注意左边是复合函数(三个中间变量), 注意左边是复合函数(三个中间变量),
dy dz Fx + Fy + Fz = 0 dx dx
同理
dy dz Φ x + Φ y + Φz = 0 dx dx Fy Fz 若 则 J= ≠0 Φy Φz
练习题
一,填空题: 填空题:
y 1 ,设 ln x 2 + y 2 = arctan ,则 x dy = ___________________________. dx 2, 2,设 z x = y z ,则 z = ___________________________, x z = ___________________________. y 二,设 2 sin( x + 2 y 3 z ) = x + 2 y 3 z , z z 证明: + 证明: = 1. x y
隐函数的求导法则-取对数求导法

一.隐函数的求导法则
方法及步骤如下:
F ( x, f (x) ) 0 恒等式两边同时关于 x 求导: 从上式中解出 y , 整理得隐函数的导数. 将 y = f (x) 代入方程中, 得到恒等式: 如果由方程 F(x, y) = 0 确定隐函数 y = f (x) 可导,
判断:
202X
练
3.4 隐函数和高阶求导法则
CLICK HERE TO ADD A TITLE
高等数学之——
演讲人姓名
添加标题
添加标题
添加标题
添加标题
目录
例如
特点在于:
可以表示成等式左边是只含因变量,而右边等式
只含自变量。即解析式中明显地可以用一个变量
的代数式表示另一个变量时,称为显函数。
但不是所有函数都可用这种方式来表达,比如类
05.
注意:y 是 x 的函数.
二.取对数求导法
适用范围:
取对数求导法常用来求一些 复杂的根式、乘除式、幂指函数 等的导数.
运用取对数求导法
例3
两边同时对x求导,得
解
故
复杂的根式
运用取对数求导法
两边关于 x 求导:
例4
解
复杂的乘除式
整理得
运用取对数求导法
两边关于 x 求导:
故
例5
解
幂指函数
似 由方程确定的隐函数。
求由方程
所确定的隐函数的导数 y
在恒等式两边关于 x 求导:
故
例1
解
由方程 确定 y 是 x 的函数,
设为 y =f (x) ,得恒等式
第一步
第二步
第三步
求曲线
在点(2,2)处的切线方程
大一隐函数的导数知识点总结

大一隐函数的导数知识点总结一、引言在微积分学中,隐函数是指由两个或多个变量之间的方程所确定的函数。
在求解隐函数的导数时,我们需要运用一些特定的方法和规则。
本文将对大一隐函数的导数知识点进行总结和归纳。
二、隐函数的导数定义隐函数的导数表示了函数在某一点处的变化率。
设函数 y=f(x)在点 (x,y) 处满足方程 F(x,y)=0,则 y 是 x 的隐函数,并且可以看作自变量 y 和函数 y=f(x) 的函数关系。
隐函数的导数可以通过求导来计算。
三、常用求导法则1. 隐函数的导数:设 y 是 x 的隐函数,可以通过求导求得 y 对x 的导数,即 dy/dx。
2. 利用链式法则求导:通过将隐函数的方程两边同时对x 求导,然后解方程得到 dy/dx。
3. 隐函数的高阶导数:通过多次使用链式法则,可以求得隐函数的高阶导数。
四、常见的隐函数求导方法1. 参数方程法:将隐函数表示为参数方程,对参数方程中的参数求导,然后根据参数与自变量之间的关系求得隐函数的导数。
2. 对数导数法:将隐函数两边同时取对数,然后对取对数后的方程两边求导。
3. 微分形式法:将隐函数的微分形式表示为等式形式,然后对等式两边求导。
4. Laplace公式法:对于特定的隐函数形式,如 y=f(x)^{g(x)},可以使用 Laplace 公式来求导。
5. 特殊函数求导法:对于一些特殊的隐函数,如反函数、对数函数、指数函数等,可以利用已知的导数性质求导。
五、隐函数的应用举例1. 切线与法线:通过求解隐函数的导数,我们可以得到曲线上某一点处的切线斜率,进而求得切线和法线的方程。
2. 最值问题:利用隐函数的导数求得极值点的横坐标,进而求得隐函数在该点的最值。
3. 隐函数图像绘制:通过求解隐函数的导数,我们可以了解到隐函数在不同区间的单调性和凹凸性,有助于绘制函数图像。
六、结论隐函数的导数是微积分学中的重要概念,它帮助我们理解和解决具有复杂关系的函数问题。
隐函数的求导法则

隐函数的求导法则在高等数学中,人们经常要研究使用函数表示不明确的关系的问题。
具有x和y两个自变量的方程通常也称为隐函数。
在这种情况下,求导的方法与单变量函数的情况有所不同。
假设我们有一个方程f(x,y)=0代表一个隐函数。
如果我们将y表示为x的函数,那么我们可以使用求导规则计算dy/dx。
我们用y=f(x)来代表意味着y是x的函数,在这种情况下,我们可以将原始方程看成f(x,f(x))=0。
现在我们需要将它们进行求导:通过链式法则,我们得到:∂f/∂x + ∂f/∂y * dy/dx = 0解决方程,我们可以得到dy/dx:dy/dx = -(∂f/∂x)/(∂f/∂y)这就是隐函数的求导法则。
现在我们来看几个例子。
例子1:考虑方程x^2+y^2 = 1,代表一个圆形。
假设我们需要求通过点(0.5,0.866)的圆的斜率。
我们可以通过对方程隐式地求导来解决这个问题。
从方程中得到:2x + 2y * dy/dx = 0这个时候,我们用点(0.5,0.866)代入求导公式:dy/dx = -(∂f/∂x)/(∂f/∂y) = -x/y = -0.577例子2:考虑方程x^2+y^2+z^2 = 1,代表一个球。
假设要求通过点(0.5, 0.866, 0)的球的切平面。
我们如何确定这个平面的法向量?这里我们可以思考什么会构成法向量:从点(0.5, 0.866, 0)向球的中心(0,0,0)所成的向量,然后我们将这个向量投影在切平面上。
我们可以通过隐函数求导的方法来找到它的方向。
从方程中得到:2x + 2y * dy/dx + 2z * dz/dx = 0我们需要知道dz/dx的值,但只有两个自变量,我们该怎么办?我们可以再次隐式地求导。
我们有这样的等式:∂f/∂x + ∂f/∂y * dy/dx + ∂f/∂z * dz/dx = 0将方程放入这个等式,我们得到:(1) + y * dy/dx + z * dz/dx = 0然后再用我们之前求出的dy/dx代替,得到:(1) + y * (-x/y) + z * dz/dx = 0然后代入我们想要的点,我们得到:dz/dx = -x * z/y = (-0.5) * 0/0.866 = 0现在我们知道了dz/dx = 0。
五节隐函数求导法则

P( x0 , y0 , z0 ) 的某一邻域内恒能唯一确定一个 单值连续且具有连续偏导数的函数 z f ( x, y)
,它满足条件 z0 f ( x0 , y0 ) 并有:
z Fx x Fz
z Fy y Fz
例3 设x2 y2 z2 4z 0 ,求2z . x 2
解 令 F (x, y, z) x2 y2 z2 4z,
,且偏导数所组成的函数行列式(或称雅可比式)
F F
J
(F ,G) (u, v )
u G
v G
u v
在点 P( x0 , y0 , u0 ,v0 ) 不等于零,则方程组 F ( x, y,u,v) 0 G( x, y,u,v) 0
在点 P( x0 , y0 , u0 ,v0 )的某一邻域内恒能唯一确定一 组单值连续且具有连续偏导数的函数 u u( x, y), v v( x, y) ,它们满足条件 u0 u( x0 , y0 ) , v0 v( x0 , y0 ) ,并有
二、方程组的情形
F ( x, y,u,v) 0 G( x, y,u,v) 0
隐函数存在定理 3 设 F ( x, y, u,v),G( x, y, u,v) 在
点 P( x0 , y0 , u0 ,v0 ) 的某一邻域内有对各个变量的连续 偏导数,且 F ( x0 , y0 , u0 ,v0 ) 0 ,G( x0 , y0 , u0 ,v0 ) 0
某一邻域内恒能唯一确定一个单值连续且具有连续
导数的函数y f ( x),它满足条件 y0 f ( x0 ), 并
有
dy Fx . dx Fy
隐函数的求导公式
例1 验证方程x2 y2 1 0在点(0,1) 的某邻 域内能唯一确定一个单值可导、且x 0时 y 1 的隐函数y f ( x),并求这函数的一阶和二阶导 数在x 0 的值. 解 令 F (x, y) x2 y2 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
;
(
arccot
x
)
1
1 x
2
.
2019年12月9日5时15分
8
例:求函数 y (arcsin x )2 的导数, 2
解: y 2 arc sin x
1
1
2 1 ( x )2 2
2
2 arcsin x
2;
4 x2
2019年12月9日5时15分
9
例:求函数y ln(x a2 x2的导数
2 4 x2 4 x2
2
2019年12月9日5时15分
13
第二节 导数的运算
对数求导法
本节
知识
引入
本节 目的 与要
观察函数
y
一,隐函数的求导法则
二,由参数方程所确定的函数 的导数
2019年12月9日5时15分
1
第二节 导数的运算
一、隐函数的求导法则
本节
知识 引入
定义:由方程所确定的函数 y y( x)称为隐函数.
本节
目的 与要
y f ( x) 形式称为显函数.
求
本节 F ( x, y) 0
重点
y f ( x) 隐函数的显化
2
2
主 页 后退 目录
退 出
法线方程为 y 3 x 3 即 y x, 显然通过原点.
2
2
2019年12月9日5时15分
5
第二节 导数的运算
例3 设 x4 xy y4 1, 求y在点(0,1)处的值 .
本节
知识 引入
解 方程两边对x求导得
本节 目的
4x3 y xy 4 y3 y 0
得
y
x0 y1
1. 16
2019年12月9日5时15分
6
第二节 导数的运算
反函数求导法则
• 反函数的导数,亦可以用隐函数的求导方法求出。
2019年12月9日5时15分
7
第二节 导数的运算
例1 求y arcsin x(1 x 1)的导数
本节 知识
解
由y arcsin x可得x sin y
(1)
与要
求
本节 重点 与难
代入 x 0, y 1得
y
x0 y1
1; 4
点
本节
将方程(1)两边再对x求导得
复习
指导
12x2 2 y xy 12 y2( y)2 4 y3 y 0
主 页 后退 目录
退 出
代入 x 0,
y 1,
y
x0 y1
1 4
与难
点
本节 问题:隐函数不易显化或不能显化如何求导?
复习
指导
隐函数求导法则:
主 用复合函数求导法则直接对方程两边求导.
页 后退 目录
退 出
2019年12月9日5时15分
2
隐函数的导数
设函数y=f(x)由方程F(x,y)=0所确定的隐函数,则其求导方法: 在方程F(x,y)=0的两边各项关于x求导,遇到y时先对y求导数
再乘y’,最后解出y’即可。 例八、求隐函数的导数y’: x3 2xy2 cos x 解:两边各项关于x求导:
3x2 2 y2 4xyy sin x
解出y’: y 3x2 2 y2 sin x 4xy
说明:一般地,隐函数的导数是同时含有x,y的表达式。
2019年12月9日5时15分
dx
dx
本节 复习 指导
解得
dy e x y dx x e y ,
由原方程知 x 0, y 0,
主 页 后退 目录
退 出
dy dx
x0
ex y xey
x0 y0
1.
2019年12月9日5时15分
4
第二节 导数的运算
例2 设曲线C的方程为x3 y3 3xy,求过C上
2
1
t2 2
1 t
,2ຫໍສະໝຸດ t t1; 1
2019年12月9日5时15分
12
例3,求 y x arcsin x 4 x2 的导数, 2
解:y arcsin x x 1 1 ( 2x)
2
1( x)2 2 2 4 x2
2
arcsin x x x arcsin x;
解:y
1 (1 2x )
x a2 x2
2 a2 x2
1
x a2 x2
x a2 x2 a2 x2
1; a2 x2
2019年12月9日5时15分
10
例1,求函数 y ln ln ln x 的导数,
解:y 1 1 1
1;
ln ln x ln x x x ln x ln ln x
本节 知识 引入
点(3 , 3)的切线方程, 并证明曲线C在该点的法
22
本节
目的 与要
线通过原点.
求
本节 解 方程两边对x求导, 3x2 3 y2 y 3 y 3xy
重点
与难
点
本节 复习 指导
y 3 3 (,) 22
y x2 y2 x
33
1.
(,)
22
所求切线方程为 y 3 ( x 3) 即 x y 3 0.
3
第二节 导数的运算
例1 求由方程 xy e x e y 0所确定的隐函数
本节 知识 引入
本节 目的
y的导数 dy , dy dx dx
. x0
将y看成x的函数,
与要 求
解 方程两边对x求导,
y的函数看成x的复合函数
本节 重点 与难 点
y x dy e x e y dy 0
例2,设函数f(x)可导,求 y f (sin2 x) f (cos2 x)的导数;
解:y f ( sin2 x)2sin xcosx f ( cos2 x)2cosx( sin x) sin 2x[ f ( sin2 x) f ( cos2 x)]
2019年12月9日5时15分
11
例4,求
y
arc
s
in 1
2t t
2
的导数;
解:
y
1
1
( 1
2t t
2
)2
2(1 t 2 ) 2t (1 t 2 )2
(2t )
1 t2 (1 t 2 )2
2(1 t 2 ) (1 t 2 )2
2(1 t 2 ) 1 t 2 (1 t 2 )
引入
本节 目的
两边同时对x求导,得
1 cos y dy
与要 求
dx
本节 重点 与难 点
(arcsinx) 1
cos y
1 1 sin2 y
1 .
1 x2
本节
复习
指导 同理可得 (arccos x)
1
.
1 x2
主 页 后退 目录
退 出
(arctan
x
)
1
1 x